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Abstract
This article demonstrates the examination of magnetic nanofluid hydrothermal pattern on a sheet, including thermal radia-
tion. Runge–Kutta method is applied to achieve solutions of ordinary differential equations acquired from a resemblance 
solution. Considering the influences of Brownian movement, Koo–Kleinstreuer–Li equation is utilized for simulating the 
CuO–water’s features. The impact of significant factors including magnetic factors, speed ratio factors, temperature index, 
radiation and nanofluid mass fraction on hydrothermal pattern is expressed. The results confirm that the factors of surface 
friction are increased with growing magnetic factors, whereas they are decreased with growing speed ratio factor. It is also 
found that there is a direct dependency among Nu and the temperature index factors and the speed ratio, while it has a reverse 
correlation with the radiation as well as magnetic factors.
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Introduction

Heat transfer near stretching sheets boundary layer is rel-
evant to a extensive range of usages such as extrusion, 
rotating and cooling fibers and polymers [1–7]. In these 

applications, the cooling process should be carefully con-
trolled since the products’ properties strongly depend on the 
amount of heat transfer which required significant amount 
of energy [8–15]. Due to the high demand for energy, eco-
nomic and environmental aspects of the energy sources 
have become important in the present century; fossil fuels 
do not keep their significance any more due to the increase in 
human population [15–25]. Concerns on the harmful impact 
of fossil fuels on our health and environment have created 
urgent needs for alternative resources. There has been sig-
nificant growth in the use of renewable sources, directly and 
indirectly, such as sun (solar energy, wind and hydropower), 
gravity (ebb and flow) and the core of earth (geothermal) 
[25–35]. Among these resources, solar energy contributes 
the smallest to the environmental impacts compared to other 
renewable energy sources, and it can be utilized on a larger 
scale worldwide [35–45]. Nanomaterial has a wide range of 
application in different devices such as electronic cooling 
devices, transformer cooling, cooling and heating proce-
dure of energy conversion and cancer therapy [45–50]. Choi 
[51] studied nanofluids in terms of their applications, and 
he claims that such fluids are the best option for increasing 
the performance in conventional fluids. The specifications 
of  TiO2–H2O applied was evaluated by Khedkar et al. [52] 
who found that dispersing powders increased the efficiency 
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by 14%. Nanomaterials are introduced as effective carrier 
fluids [53–72]. Mixed convection of a nanomaterial within 
a lid-driven geometry has been demonstrated by Zhou et al. 
[73] who applied different heat sources. Raising the volume 
fraction of nanoparticles by 6 percent led the efficiency to 
grow continuously.

For cooling a heat generation element in a cavity, Miro-
shnichenko et al. [74] utilized a nanofluid. They managed to 
minimize the average temperature of the heater, as they uti-
lized the nanofluid in natural convection. An investigation on 
performance of alumina-oil flowing within an annulus was 
conducted by Chun et al. [75] who observed an important 
growth of performance. To find the best optimized values of 
parameters, various methods were utilized [76–93]. Empiri-
cally, the thermal conductivity of aluminum oxide-silver/
H2O hybrid nanofluid has been studied by Aparna et al. [94]. 
Based on their results, nanofluids’ thermal conductivity grew 
as the temperature or the volume fraction rose. They found 
that the effect of temperature on knf was more considerable 
at greater volume concentration of particle. Numerically, 
the stream of MHD nanofluid for three-dimensional stream 
moved by a stretching plate has been scrutinized by Ahmad 
et al. [95]. The effect of different operant fluids’ features 
on mixed convection was researched by Prasad et al. [96]. 
Based on their results, Biot number raises the temperature 
for greater amounts illustrating that the mixed convection 
is the main heat transfer medium in the proposed geometry. 
A 2D mixed convection problem was studied by Jmai et al. 
[97] who concentrated on the impacts of the driven speed 
of wall on performance. They managed to find a correlation 
between nanoparticles volume fraction and Ri (Richardson 
number) in various speeds of the wall. MHD pseudo nano-
material transient stream and its performance in a limited 
thin membrane on a stretching plate including inner heat 
production were studied by Lin et al. [98]. Various authors 
tried to present effective techniques for augmenting heat 
transfer [99–115].  Al2O3–Cu/water hybrid nanofluid by a 

thermochemical technique was synthesized by Suresh et al. 
[116] who surveyed its thermophysical features in various 
volume fractions ranging from 0.1 percent to 2 percent and 
compared these values with the amounts achieved from theo-
retical correlations. They found that knf of hybrid material 
is greater than that of mono nanomaterial. A nanofluid 3D 
mixed convection stream in the existence of Lorentz force 
has been scrutinized by Zhou et al. [117] who demonstrated 
that Richardson number has a considerable impact on the 
mixed convection stream dynamics, no more so than for 
Ri lower than. However, applying nanofluid raises the heat 
transfer rate in low Ra values. This decent effect is weakened 
as Ra increases. An empirical investigation on knf of  SiO2/
water,  Al2O3/water nanofluid and their hybrid combinations 
was performed by Moldoveanu et al. [118] who presented 
some correlations for hybrid and mono nanofluids as to the 
temperature and the particle volume fraction. The impacts of 
CuO–water nanofluid and water on heat transfer rate, coef-
ficient, pressure fall, exergy destruction and frictional drop 
was surveyed by Khairul et al. [119] who reported that the 
Nu of nanofluid grew about 18.50–27.20% compared to pure 
water.

The main objective of current work is to study the influ-
ence of Lorentz on CuO–water nanomaterial on a stretching 
sheet. Current article aims to understand the impacts of ther-
mal radiation on CuO–water nanofluid using KKL pattern 
and how the model parameters influence the heat transfer.

Mathematic description

Figure 1 schematically shows the test case considered in the 
present work. Uw(x) is the stretching flow velocity which is 
equivalent to ax , and U∞(x) is the free flow velocity, which is 
equivalent to bx . Tw(x) = T∞ + cxn is the sheet temperature 
and 

(

B0

)

 is the magnetic field utilized. The simulations are 
based on the single-phase pattern that considers the impact 

Fig. 1  Geometry and related 
boundaries
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of thermal radiation. The main features of CuO and water are 
presented in Table 1. The boundary conditions and the partial 
differential equations are expressed as:

qr is the radiation heat flux obtained using the Rosseland 
estimation qr = −

4�e

3�R

�T4

�y
 where �R, �e are the mean absor-

bency factors and the Stefan–Boltzmann constant, respec-
tively. Temperature variations are small, and hence, Taylor 
series T4 can be considered as T4 ≅ 4T3

c
T − 3T4

c
 where Tc is 

cooling temperature.
As provided in Ref. [115], the efficient electrical conductiv-

ity, heat capacity and density of CuO–water can be obtained 
using:

By utilizing KKL pattern, μnf and Knf of CuO–water are 
modeled as

(1)
�v
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+
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= 0,

(2)

�nf

(

−U∞

dU∞

dx
+

�u

�y
v +

�u

�x
u

)

= �nf

�2u

�y2
+ �nfB

2
0

(

−u + U∞

)

,

(3)
(

�Cp

)

nf

(

�T

�x
u +

�T

�y
v

)

= −
�qr
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+ knf
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,

(4)
v = 0, T = Tw(x), u = Uw(x) @y = 0

T = T∞, u = U∞(x) @y → ∞

(5)
�nf

�f
= 1 +

3(−1 + ��)�

−(−1 + ��)� + (+2 + ��)
, �� = �s∕�f

(6)�nf = (1 − �)�f + �s�, � = �Cp

(7)�nf = �s� + �f(1 − �),

(8)knf = kstatic + kBrownian,

(9)
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= 1 +

3
(
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− 1
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�

(
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+ 2

)

−
(

kp
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− 1

)

�

,

Values for the function g and coefficients a1 to a10 for 
CuO–water and its properties were mentioned in [115].

The dimensionless parameters can be expressed as:

The ODEs companied with the BCs are expressed as 
below:

The magnetic parameters, velocity ratio, Prandtl num-
ber, radiation coefficients and Ai, (i = 1… 5) are repre-
sented as follow:

The Nu and Cf are expressed as:

A RK4 method is applied to solve ODEs.

(10)Rf +
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(19)Nu = −��(0)A3, Cf = f ��(0)A4

Table 1  Comparison of −��(0) for various � when 
M = 0, S = 0, � = 0, Pr = 0.05, � = 0, K1 = 0

−��(0) �

0.1 0.5 2
Ref. [120] 0.081245 0.135571 0.241025
Current paper 0.0811 0.1354 0.2412
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Results and discussion

To validate the model, the normalized temperature (θ) for 
various values of � is first compared to those acquired by 
Sharma and Singh [120], and the results are presented in 
Table 1, confirming satisfactory agreement. A comprehen-
sive analysis is achieved to study the impact of key param-
eters including as velocity ratio, radiation, magnetic param-
eters, nanoparticles mass fraction and temperature index.

The influence of Lorentz powers and � on Cf is demon-
strated in Fig. 2. Magnetic field leads to produce a Lorentz 
power, resulting in retardation in the flow. The intensity of 
the power which is presented by M is increased as the speeds 
reduce while the temperature augments. For the stretching 
velocity larger than external flow velocity (i.e., b < a ), flow 
has an inverse boundary layer. The velocity grows with the 
augment of velocity ratio factor, but the temperature drops 
with growing λ. The impacts of velocity ratio and magnetic 
parameters on Nu as well as on Cf are illustrated in Fig. 2. 
Nu decreased with rising Lorentz power. Cf increased with 
rising magnetic factors, while it falls with increasing λ. Fig-
ures 3–5 demonstrate influences of n, Rd, M and � on Nu. 
It can be found that the influences of the temperature index 
parameters, which increasing this leads to a decline in the 
profile of temperature, on the distribution of temperature and 
on Nusselt number. As a result, Nu in a growing function of 
temperature index.    

According to data, the following correlation is derived:

(20)
Cf = 1.29 − 0.82� + 0.27M − 0.223�M − 0.485�2 − 5.15 × 10−3M2

(21)

Nu = 2.27 + 0.59n − 0.96Rd + 0.14� − 0.14M

− 0.045nM + 0.047RdM + 0.046�M

− 0.094n2 − 0.02�2 + 0.046M2
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Conclusions

Numerically, magnetic nanofluid stream over a stretch-
ing sheet was surveyed considering thermal radiation. 
The impacts of velocity ratio, nanoparticle mass fraction, 
temperature index magnetic and radiation coefficients on 
the velocity and temperature distributions were analyzed. 
Results illustrate that the width of the hydraulic boundary 
layer decreased with augmenting magnetic parameters, while 
it grew with rising velocity ratio factor. The distribution of 
temperature grew when the magnetic factors and radiation 
ones increased; however, it declined as the velocity ratio and 
temperature index parameters rose.
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