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Abstract
An in-house FORTRAN code was developed to analyze the hybrid powders migration within a porous domain which was 
in appearance of Lorentz force. The permeable 2D enclosure was full of nanomaterial, and properties were selected via 
empirical formulas. Results indicate that positive impact on  Nuave can be obtained with rise of permeability which is related 
to greater temperature gradient. Also, similar impact exists for buoyancy force which shows the greater convective flow with 
rise of Ra. Reduction in temperature gradient with rise of Ha makes the convective flow to reduce.
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Introduction

In porous media, investigating heat transfer and fluid stream 
attracted researchers’ attentions within the past ten years. 
Increasing emphasis on fibrous and efficient granular 

insulation systems stimulated different investigations in fluid 
flowing in porous media leading many results to achieve for 
convective stream in basic geometries in internal and exter-
nal streams [1–9]. These days, thermal transmission can be 
improved by applying nanofluids which are typical fluids 
including nanoparticles [10–25]. In various technologies, 
natural convection plays the main role in different applica-
tions of engineering including—building applications, solar 
applications and electronic applications. Some problems for 
industrial ovens or boilers are porous media and nonlinear 
boundaries of closed or open geometries. In addition, oper-
ant fluid might be nanofluids or viscous fluids. Recently, 
many researchers conducted various studies in nanofluids’ 
convective heat transfer. Typical heat transfer fluids includ-
ing—oil, ethylene glycol and water—have small rate of k 
which is a basic restriction in improving the compactness 
and the efficiency of various electronic applications. Thus, 
it is required to enhance advanced heat transfer fluids with 
greater rate of thermal conductivity. By defining nanofluids, 
such need was tackled [26–40]. Keblinski et al. [41] sur-
veyed possible systems for nanoparticle clustering.

Javed and Siddiqui [42] numerically surveyed the effect 
of magnetic area on free convection stimulated with ferro-
fluid which has an inner obstacle. They illustrated that such 
area leads the strength of flow to weaken. The thermal per-
formance of centered sheet on micropolar liquid flow within 
a tank was surveyed by Muthtamilselvan et al. [43] who 
illustrated that the presence of micropolar fluid leads the rate 
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of heat transfer to decrease while increasing non-uniformity 
terms of sheet outputs in an augment in heat transfer rate.

Societies provided various new ways to reach more capa-
ble thermal system [44–72]. Saravanan and Sivaraj [73] 
numerically studied surface radiation and free convection 
through an enclosure including adiabatic horizontal walls 
and vertical cold borders. They applied an in-house code 
improved on the base of FVM. Based on their results, vari-
able heating raises the ∇T. The mixed convection of viscous 
fluid flowing inside a tank in appearance of cold vertical 
borders and inner isothermal triangular heater has been 
investigated by Gangawane et al. [74] via Fluent software. 
They found that thermal transition in such system can be 
improved by applying great Pr number fluids and greater 
blockage. The impacts of Lorentz on alumina nanomate-
rial combined behavior within a lid-driven tank including 
a entrally isothermal body were investigated by Mehmood 
et al. [75] who found that an increase in Hartmann num-
ber reduces the mean Nu, the mean entropy generation and 
Bejan amount because of heat transfer.

As Eastmenet al. [76] reported that nanomaterials have 
a considerably greater thermal conductivity rate compared 
with that of typical ones. The represented stream inside a 
permeable media has been investigated by Zhang and Liu 
[77] who applied a numerical technique according to the 
Brinkman–Forchheimer model. In addition to these, some 
investigations including LTNE model in a porous media have 
been conducted. Kalidasan et al. [78] scrutinized the free 
convection of  H2O-copper nanomaterial in a tank including 
2 blocks. They numerically resolved the equations. Based 
on their results, the mixture effect of unsteady temperature 
of wall and nanoparticles destroys the hydrodynamic block-
age. Free convection of silver powder including centrally hot 
sheet in the case of cold vertical surfaces was investigated 

by Mahalakshmi et  al. [79] who applied homogeneous 
model. According to their results, the thermal transmission 
increases when the concentration of nanoparticle and Re 
grows. Numerical approaches were developed for complex 
physics [80–124]. Numerically, free convection within a per-
meable tilted tank including a centrally solid obstacle under 
the impact of magnetic area has been studied by Sivaraj and 
Sheremet [125] who found that an increase in Hartmann 
amount suppresses the boundary-induced fluid movement 
and the strength of thermal transition within the enclosure. 
The empirical results illustrate a much greater thermal con-
ductivity rate compared with that projected by these models. 
Yu and Choi [126] represented an alternation statement for 
estimating the thermal conductivity rate of liquid–solid com-
bination. They reported that a structural model of nanofluids 
may include a bulk liquid and solid nanoparticle.

In current article, a 2D CVFEM simulation was proposed 
to investigate the impact of Hartmann number on transporta-
tion of hybrid nano-powders. To involve the porous media, 
non-Darcy terms were included in momentum equations and 
impact of the presence of radiation term was analyzed.

Definition

A curved cavity with three walls was scrutinized (Fig. 1). 
The left surface is hot, and curved wall is adiabatic. To 
change the flow pattern, magnetic field has been applied, 
but we neglected the joule heating because the strength of 
B is not enough to produce such effect. In current simu-
lation, nanomaterial with hybrid particles as introduced in 
[127] was selected and properties were calculated based of 
empirical formulas [127]. To reach the accurate data, in cur-
rent article, the CVFEM which belongs to Sheikholeslami 

Fig. 1  Curved domain with B
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[128] was utilized. Regard to its advantages, accurate solu-
tion can be obtained. All walls are impermeable. By adding 
buoyancy effect, the below formulation can be considered:

Regard to previous article [127], we selected hybrid fer-
rofluid (MWCNT-Fe3O4) with base fluid of water. To gain 
the properties, empirical formulas were applied which are 
valid for φ = 0.003. Equation (6) was considered to simplify 
formulas.

Then, the following equation was developed for the dimen-
sionless variables:

Considering the above equations, Eqs. (8–10) were obtained:
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with following new parameters:

Finally, the rate of heat transfer was estimated using Eq. (11) 
expressed below:

Results and discussion

Inclusion of hybrid powders into  H2O creates new carrier fluid, 
and we utilized such material in porous region and insert the 
magnetic field. CVFEM in-house code was utilized to simu-
late this article, and influences of active factors were scruti-
nized. Profile of θ was compared with previous work and is 
presented in Fig. 2 which indicates that code has nice accuracy. 
In Table 1, one example of grid analysis was illustrated [129]. 
This step is the most important step of numerical modeling to 
gain independent outputs.

Patten of Ψ with rise of Da is shown in Fig. 3. Configura-
tions of θ and Ψ with rise of Ha are depicted in Figs. 4 and 5. 
Existing two walls with different temperatures lead to form 
one vortex. Adding external force shifts the vortex center 
to left side. Permeability and Lorentz effects are opposed to 
each other. As expected, lower ∇T with rise of Ha changes the 
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main mechanism and provides weaker vortex. With insertion 
of magnetic force, opposed flow changes the modes from con-
vection to conduction and such behavior can be seen from iso-
therms changes. Distortion of isotherms increases for greater 
buoyancy effect, but it changes in appearance of magnetic 
field. Although increasing Da and Ra generates the thermal 
plume, adding magnetic field makes it to disappear which is 
attributed with lower convective strength. Undesirable impact 
of Ha on  Nuave is relevant to this fact that Lorentz forces make 
nanomaterial flow to reduce. Influence of Da at high Hartmann 

number is insignificant. To exhibit the various values of  Nuave, 
Fig. 6 was demonstrated which is based on below equation:

Augmentation of Da which is related to augmentation in 
permeability makes  Nuave to increase, while Ha has reverse 
relationship. Both Ra and Rd can enhance the  Nuave, so ∇T 
augments with rise of them. Transverse flow can be achieved 
with rise of Ha which suppresses the nanomaterial flow and 
reduces the ∇T. Negative effect on  Nuave is reported with rise 
of Ha. Greater values of Rd provide more negative effect of 

(12)

Nuave = 1.48 + 0.038Da∗ log(Ra)

− 0.17Ha∗Rd + 0.85 log(Ra)

+ 0.023Da∗ − 0.16Ha∗ − 0.015Da∗Ha∗

+ 0.021RdDa∗ + 0.81Rd − 0.32Ha∗ log(Ra)

Fig. 2  Verification of CVFEM 
code (compared with [129])
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Ha. Besides, as Rd augments  Nuave can enhance according 
to definition of this factor.

Conclusions

An application of new in-house code for simulating nano-
material flow has been presented. To manage the treatment 
of hybrid powders, Lorentz force was applied. Outcomes 
are classified to exhibit the effect of scrutinized factors. 
With respect to lower temperature gradient,  Nuave decreases 
with augment of Ha, but reverse trend is reported for Da. 
With rise of permeability, better mixing of nanomaterial is 
occurred which provides stronger convective flow. Appear-
ance of magnetic force has unfavorable impact of ∇T, and 
such impact will maximize with increase in Rd.
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