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Abstract
In the present study, laminar natural convection of a non-Newtonian ferrofluid inside an elliptical porous cavity was numeri-
cally simulated in the presence of a non-uniform external magnetic field. This natural convection problem was relevant to the 
cooling of micro-sized electronic devices. The well-known finite volume method was employed to discretize the governing 
equations for ferrofluid flow under the effect of an external magnetic field. The effects of pertinent non-dimensional numbers 
including the Rayleigh number, the magnetic number, the power-law index, and the Darcy number were studied on the flow 
pattern and the heat transfer rate of the non-Newtonian ferrofluid. The results showed that by applying the magnetic field by 
a wire, the overall heat transfer rate increased significantly. Moreover, to achieve the maximum heat transfer enhancement, 
the wire should have been placed at the center of the elliptical walls of the enclosure. It was also shown that the impact of the 
power-law index on the heat transfer rate was considerable, and using a shear-thinning liquid increased the average Nusselt 
number in the porous elliptical enclosure.
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List of symbols
a	� Large inner ellipse radius
b	� Small inner ellipse radius
B⃗	� Magnetic induction
C	� Consistency index (Nsn m−2)
CP	� Specific heat capacity (J kg−1 K−1)

Cd	� Inertia coefficient of porous media
d	� Outer ellipse radius
Da	� Darcy number
Dij	� Rate of deformation tensor
g	� Gravitational acceleration (ms−2)
H⃗	� Magnetic field vector (A m−1)
I	� Electrical intensity (A)
L	� Reference length (m)
m	� Consistency index
Mn	� Magnetic non-dimensional number
n	� Power-law index
Nu	� Nusselt number
P	� Pressure (Pa)

Pr	� Prandtl number
Ra	� Rayleigh number
u⃗, v⃗	� Velocity vector components (m s−1)
x, y	� Cartesian coordinates (m)

Greek symbols
α	� Thermal diffusivity (m2 s−1)
θ	� Non-dimensional temperature
ν	� Kinematic viscosity (m2 s−1)
μ	� Dynamic viscosity (kg m−1 s−1)
μ0	� Magnetic permeability in a vacuum 

(= 4π × 10−7 T m A−1)
χ	� Magnetic susceptibility
β	� Thermal expansion coefficient (1 K−1)
ρ	� Density (kg m−3)
φ	� Solid volume fraction
κ	� Permeability of porous medium (m2)
τ	� Shear stress (Pa)
ε	� Porosity
λ	� Thermal conductivity (W m−1 K−1)

Subscript
avg	� Average
c	� Cold
eff	� Effective (porous media)
f	� Base fluid
h	� Hot
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nf	� Mixture (nanofluid)
p	� Particle
w	� Wall

Introduction

Natural convection heat transfer has been continuously 
investigated because of its ubiquitous occurrence both in 
nature and in numerous engineering applications including, 
but not limited to, passive cooling of electronic devices (free 
air cooling) [1], design of heat exchanging equipment [2], 
and refrigeration and HVAC systems [3]. In all heat transfer 
engineering applications for which the natural convection 
is the dominant heat transfer mechanism, there is always a 
strong desire for achieving the highest possible heat transfer 
rate. Among various techniques which have been developed 
for the enhancement of natural convection heat transfer, 
using ferrofluids as the heat transferring liquid (under the 
effect of a magnetic field) and using porous media seem to 
be highly promising.

In addition, using elliptical solid surfaces in heat transfer-
ring equipment has attracted significant interest from chemi-
cal and petroleum industries, because the thermal perfor-
mance of elliptical tubes could be superior to the common 
circular tubes in identical thermal conditions. Hence, the 
study of heat transfer from an elliptical geometry into an 
enclosure is of great importance in the optimal design of 
heat exchangers involving elliptical tubes [4], and numer-
ous numerical and experimental studies have been carried 
out to examine the heat transferring behavior of elliptical 
surfaces. As an example of such studies, Dogonchi et al. 
[5] numerically studied the natural convection heat transfer 
inside a cavity with an inclined elliptical heater. They inves-
tigated the effect of the magnetic field and Rayleigh number 
on the heat transfer rate and proposed a new correlation for 
the Nusselt number in this innovative geometry. Some other 
similar studies were carried out by other researchers, includ-
ing, but not limited to, Sheikholeslami et al. [6, 7].

One of the most effective ways of enhancing the thermal 
performance of a particular engineering system is to use 
nanofluids as its working fluid [8]. A nanofluid is a mix-
ture of solid nanoparticles with high thermal conductivity, 
which are homogeneously dispersed in a common base heat 
transferring liquid like water or oil [9, 10]. To obtain a stable 
nanofluid, it is necessary to functionalize the nanoparticles, 
control the PH of the mixture, and use a proper sonic mix-
ing procedure. Nanofluids have found their relevance in a 
wide range of engineering applications including cooling 
of electronic devices, HVAC and ventilation systems, drug 
delivery, crude oil transportation, and solar systems [11].

In the specific case of natural convection heat transfer, 
using nanofluids enhances the heat transfer rate significantly. 

This claim is well supported by numerous theoretical and 
experimental studies available in the relevant scientific lit-
erature. As an example, in a comprehensive study, Roy [12] 
showed that for the natural convection inside a rectangular 
enclosure, the average Nusselt number increases almost lin-
early with the volume fraction of nanoparticle. This con-
clusion was also confirmed by other researchers, including 
Abu-Nada et al. [13], Aminossadati and Ghasemi [14], Ho 
et al. [15], Daneshvar et al. [16], Selimefendigil et al. [17], 
Selimefendigil et al. [18], and Ghasemi and Siavashi [19].

More recently, besides conventional nanofluids, research-
ers have examined the thermal behavior of non-Newtonian 
nanofluids as well. As an example, Xiong et al. [20] studied 
the effect of non-Newtonian behavior of nanofluids numeri-
cally. Their results indicated a considerable increment in 
Nusselt number for shear-thinning nanofluids. In two other 
studies, Bozorg and Siavashi [21] and Siavashi and Ros-
tami [22] studied the thermal behavior of non-Newtonian 
nanofluids inside a square cavity in the presence of rotating 
thermal elements and in an annulus filled with porous media. 
They also corroborated the superior thermal performance of 
shear-thinning nanofluids.

Ferrofluids are a special class of nanofluids, which con-
tain magnetic nanoparticles such as Fe2O3 and Fe3O4 [23, 
24]. These magnetic nanoparticles become strongly mag-
netized in the presence of an external magnetic field, and 
as a result, the thermal performance of such nanofluids can 
be easily controlled by adjusting the magnitude and the 
orientation of the applied external magnetic field [25–29]. 
This unique characteristic of ferrofluids is highly desirable 
for various heat transfer engineering applications, and as 
a result, in recent years, ferrohydrodynamics (FHD) which 
is the study of ferrofluid flow and convective heat transfer 
under the effect of an external magnetic field has become an 
active field of study.

As an early example of theoretical studies on the subject 
of ferrofluid natural convection heat transfer, the work of 
Moraveji and Hejazian [30] could be mentioned in which the 
natural convection of Fe3O4/water nanofluids in a rectangu-
lar enclosure with an oval-shaped heat source was simulated. 
In the absence of an external magnetic field, no augmenta-
tion in the heat transfer rate was reported inside the cavity 
after the addition of Fe3O4 nanoparticles to the base fluid 
(which was water in this case). In another study, Kefayati 
[31] simulated the natural convection of cobalt/kerosene 
ferrofluid inside a rectangular cavity in the presence of a 
uniform external magnetic field. He concluded that increas-
ing the volume fraction of magnetic nanoparticles reduced 
the average Nusselt number inside the cavity for all Rayleigh 
numbers considered in the range of 103–105.

Selimefendigil et al. [32] studied the natural convection 
of a ferrofluid under the effect of a magnetic dipole inside 
a square cavity with a partial heater. It was shown that by 
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adjusting the strength and the location of the dipole, the 
flow pattern inside the cavity could be effectively altered. 
Moreover, the spatial variation of the local Nusselt number 
was strongly affected by the presence of the uniform mag-
netic field. In a comprehensive experimental study, Joubert 
et al. [33] investigated the natural convection heat transfer of 
ferrofluids in a differentially heated cavity under the effect of 
a permanent magnet. It was revealed that when the Rayleigh 
number ranged from 2 × 108 to 4 × 108, the presence of Fe2O3 
magnetic nanoparticles with a volume fraction of 0.1% and 
the exertion of an external magnetic field enhanced the heat 
transfer rate up to 5.63% and 2.81%, respectively.

In a more recent study, Sun et al. [34] numerically exam-
ined the natural convection of ferrofluids inside a horizontal 
annulus under the effect of uniform and non-uniform mag-
netic fields. The anisotropy of the ferrofluid thermal con-
ductivity in the presence of an external magnetic field was 
accounted for. It was shown that the presence of a magnetic 
field resulted in the appearance of two new forces: the Lor-
entz force (which originated from the electrical conductivity 
of the fluid and suppressed the fluid convection) and the 
Kelvin body force (which originated from the magnetization 
of magnetic nanoparticles and promoted the convective heat 
transfer). Under the competing effects of these two forces, 
it was concluded that the magnetic field could enhance or 
deteriorate the heat transfer rate inside the annulus.

The use of porous media for the purpose of heat transfer 
enhancement is now a common practice in various indus-
trial applications [35–37]. Therefore, natural convection and 
mixed convection heat transfer of ferrofluids inside porous 
media has become an active field of study [38, 39]. In almost 
all of these studies, the induced magnetic field within the 
ferrofluid was assumed to be negligible (i.e., the low mag-
netic Reynolds number assumption) and only the effect of 
the induced Lorentz forced was considered. For example, 
Javed et al. [40] simulated the natural convection of a cobalt/
kerosene ferrofluid inside a rectangular porous cavity when 
a uniform horizontal magnetic field was present. It was 
shown that the average Nusselt number was a decreasing 
function of Hartmann number and an increasing function of 
the nanoparticle concentration up to a limiting value which 
depended on the assumed thermal conditions. Astanina et al. 
[41] examined the MHD natural convection of a ferrofluid 
inside an open porous trapezoidal cavity under the effect of 
a uniform and inclined magnetic field. A detailed account 
of the entropy generation inside the trapezoidal cavity was 
provided, and a comprehensive parametric study was pre-
sented. Some other noteworthy studies on this topic were 
carried out by Gibanov et al. [42] and Pekmen Geridonmez 
and Oztop [43].

In the present work, a numerical study was carried out 
on the natural convection of ferrofluids in an elliptical 
porous enclosure. The flow and temperature fields were 

visualized under the effect of a non-uniform external mag-
netic field which was generated by the use of an electri-
cal current-carrying wire when the Kelvin body force was 
the dominant electromagnetic force within the fluid flow. 
The ferrofluid was assumed to have a power-law viscos-
ity function due to the superior thermal performance of 
non-Newtonian shear-thinning nanofluids flowing through 
porous media. To the best of our knowledge, the use of the 
Kelvin body force exerted on a ferrofluid in the presence of 
a spatially non-uniform magnetic field has not been con-
sidered for the regulation and enhancement of natural con-
vection heat transfer rate inside porous media. Moreover, 
the simultaneous usage of oval-shaped heating and cool-
ing elements together with a porous media saturated by a 
non-Newtonian liquid has not been addressed, and it has a 
great potential to yield a notable heat transfer augmenta-
tion for various applications. As a result, in the present 
study and for the first time, the non-Newtonian ferrofluid 
buoyancy-driven flow and heat transfer in the presence of 
a non-uniform magnetic field inside an oval-shaped porous 
enclosure was comprehensively investigated.

Problem description

In the present study, an enclosure between two concentric 
elliptical cylinders is assumed as the flow domain, and it 
is depicted in Fig. 1. The outer ellipse has the semiminor 
axis of L and the semimajor axis of d = 2L, and the cor-
responding lengths for the inner ellipse are a = 0.75L and 
b = 0.375L. The hot inner and the cold outer elliptical cyl-
inders are kept at constant temperature levels of Th = 315 K 
and Tc = 305 K, respectively. The gravity acts in the verti-
cally downward direction.

For the exertion of the external magnetic field, four dif-
ferent cases are considered in the present study includ-
ing: the absence of an external magnetic field (denoted by 
case 1), a non-uniform magnetic field generated by a wire 
which is located at the center of the enclosure elliptical 
walls (denoted by case 2), a non-uniform magnetic field 
generated by a wire which is located at the top of the outer 
elliptical cylinder with the vertical distance of dw = 0.5L 
(denoted by case 3), and a non-uniform magnetic field gen-
erated by a wire which is located at the bottom the outer 
elliptical cylinder with the vertical distance of dw = 0.5L 
(denoted by case 4). All these cases with their relevant 
measures are presented in Fig. 1. The cavity is assumed 
to be filled with a non-Newtonian power-law ferrofluid 
containing Fe3O4 magnetic particles dispersed into a base 
non-Newtonian liquid. The thermophysical properties of 
the nanoparticles and the base liquid are given in Table 1.
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Mathematical modeling

The steady laminar flow of a non-Newtonian ferrofluid in 
a porous enclosure is governed by mass, momentum, and 
energy conservation equations as follows [44, 45]:

(1)∇ ⋅ V⃗ = 0

where 𝜌, V⃗ ,P,Cp, 𝛽 , and λ represent density, velocity, pres-
sure, specific heat, thermal expansion coefficient, and ther-
mal conductivity, respectively. Subscripts “nf” and “eff” 
denote ferrofluid and effective thermal properties of the 
porous zone, respectively. τ is the extra stress tensor and ɛ 
is the porosity of the porous material. In Eq. 2, the drag force 
exerted by the solid matrix of the porous zone on the fer-
rofluid is modeled by the accurate Darcy–Brinkman–Forch-
heimer model in which K and cd are the permeability of the 
porous and the inertia coefficient, respectively, and they are 
calculated from Carman–Kozeny relations as follows [22]:

(2)
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Fig. 1   The physical domain of the problem for different configurations

Table 1   Thermophysical properties of the base fluid and Fe3O4 nano-
particles [44]

Property Unit Base fluid Fe3O4

Specific heat (CP) J kg−1 K−1 4179 670
Density (ρ) kg m−3 997.1 5200
Thermal conductivity (λ) W m−1 K−1 0.628 6
Thermal expansion (β) 1 K−1 3.62 × 10−4 1.1 × 10−5
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Moreover, the effective thermal conductivity of the porous 
zone is calculated from Eq. 5:

where subscript “s” indicates the solid matrix. In the current 
study, the ferrofluid thermophysical properties are calculated 
from Eqs. 6 [46–48]: (“p” denotes the solid nanoparticles 
and “f” denotes the base fluid)

where φ is the volume fraction of Fe3O4 nanoparticles. In the 
present study, the base fluid is assumed to be a power-law 
fluid, and subsequently, the extra stress tensor and the base 
fluid viscosity can be written as follows:

where ( 𝛾̇  ) is the shear rate tensor, m is the consistency index, 

and n is the power-law exponent. The last term in Eq. 2 rep-
resents the magnetic body force also known as the Kelvin 
body force. To compute this source term in the momentum 
equation, itshould be noted that the magnetic field vector 
( H⃗ = Hx �ex + Hy �ey ) generated by a wire with an electrical 
current of I located at x0, y0 is given by:
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The external magnetic field of ( H⃗ ) magnetizes the mag-
netic nanoparticles and causes a magnetization vector ( M⃗ ) 
to emerge as follows [49]:

where ( �m ) is the total magnetic susceptibility and computed 
as follows [50]:

As a result, the magnetic induction vector ( ⃗B ) can be writ-
ten as:

Finally, the magnetic Kelvin body force is computed as 
[44]:

Non‑dimensional form of governing equations

The non-dimensional form of governing equations (i.e., 
Eqs. 1–3) can be obtained using the non-dimensional vari-
ables introduced in Eq. 13 as follows:

In Eq. 13, αf is the thermal diffusivity of the base fluid 
and H0 is the characteristic magnetic field strength which is 
defined by Eq. 14:
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In Eqs. 15–17, Mn is the magnetic non-dimensional 
number, Da is the Darcy number, Ra is the Rayleigh num-
ber, and Pr is the Prandtl number defined as follows:

Finally, the local (Nulocal) and average ( Nu ) Nusselt 
numbers are calculated by:
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Fig. 2   The numerical grid of the elliptical enclosure

Table 2   Effect of different grids on averaged Nusselt number on the 
hot wall (Ra = 105, Da = 10−2, n = 0.8, Mn = 3.56 × 106)

Grid Size 100 × 100 200 × 200 300 × 300 350 × 350 450 × 450

Nu 51.14 53.28 53.38 53.41 53.42

Error/% 4.27 0.26 0.07 0.02 0

Table 3   Comparison between the average Nusselt number in the pre-
sent simulations and Khezzar et  al.’s study [51] (Ra = 105, Pr = 100, 
AR = 1, n = 1.4)

Inclination angle/° Nu
Present

Nu[51]
||||
Nu[51]−NuPresent

Nu[51]

||||

0 3.32 3.23 2.7%
30 3.77 3.80 0.7%
45 3.85 3.94 2.2%
60 3.89 4.02 3.2%
90 3.84 3.80 1%
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Numerical method

In the present work, the finite volume method on a struc-
tured grid was used to discretize the steady governing 
equations of ferrofluid natural convective heat transfer 
inside a porous medium (Eqs. 15–17). A schematic of the 
generated numerical mesh is depicted in Fig. 2. A uniform 
numerical grid was generated throughout the flow domain. 
The convective fluxes were approximated by the second-
order upwind scheme, and the well-known central differ-
encing was used for the calculation of diffusive fluxes. The 
pressure correction method of SIMPLE was used for the 
pressure–velocity coupling. The convergence criteria were 
set for all the discretized equations at 10−6.

A mesh size study was undertaken to find the proper 
grid size for our problem. Table 2 shows the calculated 
averaged Nusselt number using five different numerical 
grid sizes. As can be seen, the grid-independent numerical 
results could be achieved for numerical grids finer than 
300 × 300, and therefore, this structured grid was used 
throughout the present study.

Being done with the mesh size study, three relevant 
validation test cases were presented to ensure our readers 
about the accuracy and reliability of the numerical approach 

adopted in the present study. Here are our three validation 
cases,

•	 Natural convection of a power-law fluid inside an inclined 
cavity:

	   Khezzar et al. [51] numerically studied the natural 
convection of a power-law fluid in an inclined rectangu-
lar enclosure. The comparison between our numerical 
results and the published data of Khezzar et al. [51] is 
presented in Table 3 for the average Nusselt number on 
the hot wall. As can be seen, our numerical simulations 
were able to predict the average Nusselt number with a 
maximum error of 3%. Moreover, in Fig. 3, a desirable 
agreement between the streamlines predicted by two sets 
of simulations is observed, which further corroborated 
the accuracy of our numerical approach.

Present simulation Khezzar et al. [51]

Fig. 3   Comparison between streamlines in the present simulations 
and Khezzar et  al.’s study [51] (Ra = 105, Pr = 100, AR = 1, n = 1.4, 
θ = 90∘)

Table 4   Comparison between the streamlines in the present simula-
tion and Nithiarasu et al.’s study [45] (Pr = 1, ɛ = 0.6)

Darcy num-
ber (Da)

Rayleigh num-
ber (Ra)

Nu
Present

Nu[45]
||||
Nu[45]−NuPresent

Nu[45]

||||

10−6 107 1.068 1.079 1%
10−4 105 1.065 1.071 0.5%
10−4 107 8.381 8.183 2.4%
10−2 103 1.001 1.015 1.3%

Present simulation Nithiarasu et al [45]

01

0.
1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.

9

Fig. 4   Comparison between isothermal curves in the present simu-
lation and Nithiarasu et  al.’s study [45] (Pr = 1, ɛ = 0.8, Da = 10−6, 
Ra = 108)
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•	 Natural convection of a Newtonian liquid in a porous 
medium:

	   Nithiarasu et al. [45] simulated the natural convection 
heat transfer of a Newtonian liquid in a porous rectangu-
lar cavity. They calculated the average Nusselt number 
on the hot wall. A comparison was made between our 
numerical solutions and the corresponding data provided 
by Nithiarasu et al. [45] in Table 4. As can be seen, the 
maximum error was about 2%, which confirmed the 
accuracy of the present simulations. Moreover, a strik-
ing resemblance between isothermal lines predicted by 
these two numerical studies is reported in Fig. 4.

•	 Convective heat transfer of a ferrofluid under the effect 
of a non-uniform magnetic field

	   Ghasemian et  al. [44] studied the laminar forced 
convection heat transfer of Fe3O4/water ferrofluids in a 
two-dimensional channel under the effect of an external 
magnetic field generated by a current-carrying wire. We 
simulated the same problem and compared our results 
with the previously published data of Ghasemian et al. 
[44] in Fig. 5. As can be seen, for the local temperature 
profile, the deviation between two sets of data is less 
than 2.5%, and as a result, our numerical code was well 
capable of predicting the interaction between an external 
magnetic field and a ferrofluid under a non-isothermal 
condition.

Results and discussion

In this section, the natural convection heat transfer of a non-
Newtonian ferrofluid in a porous enclosure formed between 
two elliptical cylinders was addressed. The effects of four 
dimensionless parameters such as Rayleigh number, Darcy 
number, magnetic number, and the non-Newtonian power-
law index were thoroughly investigated. In our simulations, 
the Prandtl number was set at Pr = 6, and the ratio of effec-
tive thermal conductivity and thermal conductivity of the 
base fluid was assumed to be keff∕kf = 8 . Moreover, the 
porosity of the porous medium was considered to be ɛ = 0.7, 
and the volume fraction of the magnetic nanoparticles was 
φ = 0.04.

Effect of wire positioning

In the present section, the effect of the position of the cur-
rent-carrying wire as the source of a non-uniform magnetic 
field was examined. This study aimed at finding the most 
suited position for the wire, which resulted in the high-
est heat transfer augmentation inside the elliptical porous 
enclosure saturated by a non-Newtonian ferrofluid. As it is 
previously stated in section “Problem description,” besides 
the base case (i.e., case 1) in which no external magnetic 

field was present, three different positions for the wire were 
assumed including: the center of the elliptical cylinders (i.e., 
case 2) and the top and the bottom of the outer cylinder (i.e., 
case 3 and case 4, respectively).

Figure 6 depicts the variation of the average Nusselt 
number on the hot wall for different positions of the wire 
as a function of the Rayleigh number. Firstly, according to 
Fig. 6, regardless of the wire positioning in the range of 
( 104 ≤ Ra ≤ 106 ) the presence of an external non-uniform 
magnetic field increased the heat transfer rate inside the 
porous enclosure. Moreover, case 2 in which the wire was 
fixed at the center of cylinders possessed the highest Nusselt 
number. The maximum heat transfer enhancement occurred 
at ( Ra = 105 ), and for this case, the increase in the Nusselt 
number was around 150%. The lowest level of heat transfer 
augmentation occurred at ( Ra = 106 ) for case 3, which was 
17%. Moreover, case 3 and case 4 showed similar thermal 
performances.

The trends mentioned above (see Fig.  6) could be 
explained by investigating the flow pattern and temperature 
contours inside the elliptical enclosure as shown in Fig. 7. 
For case 1, a pure buoyancy-driven flow was observed in 
the enclosure. In low Rayleigh number flows (Ra ≤ 105), the 
fluid circulation was weak inside the enclosure, and a single 
vortex was resolved. Moreover, the isotherms inside the cav-
ity were smooth and elliptically shaped. Hence, the conduc-
tion heat transfer was the dominant heat transfer mechanism. 
By increasing the Rayleigh number, the primary recircula-
tion zone inside the enclosure became stronger, and conse-
quently, the thermal boundary layer on the inner cylinder 
notably shrank. As a result, the convective heat transfer and 
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Fig. 6   Effect of different positions of the wire on the averaged 
Nusslet number for different Rayleigh numbers (Da = 10−2, n = 0.8, 
Mn = 3.56 × 106)
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the average Nusselt number increased as the Ra increased. 
Moreover, for Ra = 106, the isotherms became highly dis-
torted, and their horizontal symmetry was lost. Nevertheless, 
case 1 had the lowest heat transfer rate in comparison with 
other cases for which an external magnetic field was present.

In case 2, adding a current-carrying wire at the center of 
the enclosure resulted in the appearance of four new eddies, 
two larger eddies at the central region of the enclosure, and 
two smaller ones near the outer cylinder. As a result, the 
isotherms lost their smooth shapes in comparison with case 
1. These new vortices intensified the fluid circulation inside 
the enclosure and increased the heat transfer rate comparing 
to the base case where the magnetic field was absent. The 
formation of these new fluid recalculation zones could be 
attributed to the Kelvin body force which was proportional 
to the gradient of the induced magnetic field. This gradient 
grew as the current-carrying wire was approached, and as a 
result, new vortices were formed in the middle of the enclo-
sure, and due to symmetric nature of the Kelvin body force, 
the formed vortices are almost symmetric with respect to 
the semimajor axis of the enclosure. However, as Rayleigh 
number increased over (Ra > 105), the intensification of the 
natural convective flow weakened the fluid vortices located 
at the bottom half of the enclosure, and the flow pattern 
inside the enclosure lost its symmetry, as a result, the over-
all Nusselt number reduced on the hot cylinder as shown in 
Fig. 6. This trend justified the occurrence of a peak in the 

average Nusselt number profile when it was depicted for 
different Rayleigh numbers.

Similar to case 1, for case 3, also a single large eddy was 
present inside the enclosure, but its center was shifted toward 
the location of the wire at the top of the outer cylinder where 
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the Kelvin body force peaked. This new flow pattern inside 
the enclosure resulted in the formation of a dead zone at 
the bottom of the elliptic enclosure. By increasing the Ray-
leigh number, the primary eddy inside the enclosure became 
stronger, and the superposition of the buoyancy force and 
the magnetic Kelvin body force shrunk the above-mentioned 
dead zone, and subsequently, it increased the convective heat 
transfer rate. As a result, the average Nusselt number mono-
tonically increased as shown in Fig. 6 as the Rayleigh num-
ber increased for case 3. In case 4, at low Rayleigh numbers 
(Ra = 104–105), there were only an eddy near the bottom 
of the cavity and a large dead zone near the outer cylinder. 
The non-uniformity of the Kelvin body force stretched this 
primary vortex in the vertical direction and distorted the iso-
thermal lines near the hot solid surface. But, increasing the 
Rayleigh number to 106 decomposed the primary eddy into 
two eddies. One smaller eddy, which formed due to magnetic 
effects in the bottom half of the enclosure and a larger one, 
resulted from the intensified natural fluid circulation in the 
top half of the enclosure. These two eddies enhanced the liq-
uid mixing, and meanwhile, the magnetic field supports the 
effect of these two eddies and reduces the thermal boundary 
layer thickness. As a result, the Nusselt number increases 
by increasing the Rayleigh number for case 4 (see Fig. 6).

Effect of the strength of the magnetic field

As it is concluded in the previous section, the maximum heat 
transfer enhancement for a non-Newtonian ferrofluid flow-
ing through a porous medium in the presence of an external 
magnetic field could be obtained in case 2. Therefore, in 
the present section, the effect of magnetic number (i.e., the 

strength of the magnetic field) on the heat transfer and fluid 
flow is investigated for this case. As shown in Fig. 8, as the 
magnetic number increased, the average Nusselt number 
of the hot elliptical cylinder increased subsequently for all 
Rayleigh numbers. As can be seen, increasing the magnetic 
number by one order of magnitude resulted in a more than 
400% rise in the value of the average Nusselt number for all 
the values of the Rayleigh number studied here.

In Fig. 9, the effect of the magnetic number is investigated 
on the flow and temperature fields. As can be seen, by the 
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Fig. 9   Effect of the magnetic number on the streamlines and isotherms for different Rayleigh numbers for case 2 (Da = 10−2, n = 0.8)

– 1
0

50

100

150

200

– 0.5 0
Y

N
u

0.5 1

Mn = 0

Mn = 3.56 × 106

Mn = 1.43 × 107

Mn = 3.21 × 107

Fig. 10   Effect of the magnetic number on the local Nusselt number 
on the hot wall in different Rayleigh numbers for case 2 (Da = 10−2, 
n = 0.8, Ra = 105)



2137Natural convection of a non‑Newtonian ferrofluid in a porous elliptical enclosure in the presence…

1 3

exertion of a more powerful magnetic field, the fluid circula-
tion intensified in the porous enclosure. This trend notably 
reduced the thickness of the thermal boundary layer on the 
solid surfaces, which increased the heat transfer rate inside 
the enclosure. The shrinkage of the low-temperature region 
in the vicinity of the outer elliptical cylinder was the direct 
result of heat transfer augmentation caused by the elevation 
of the magnetic field intensity.

Moreover, at a low magnetic number of Mn = 3.56 × 106, 
increasing the Rayleigh number slightly subdued the enhanc-
ing effect of the magnetic field. However, for higher mag-
netic numbers (Mn ≥ 1.43 × 107), the enhancing effect of 
the magnetic field was almost independent of the Rayleigh 
number. Figure 10 shows the local Nusselt number on the 
hot wall for different magnetic numbers. In the upper half of 
the enclosure, the magnetic forces acted in accordance with 
the buoyancy-driven fluid flow, and as a result, the local 
Nusselt number significantly increased in this region as the 
magnetic number increased.

However, in the lower half of the enclosure, the local 
Nusselt number was higher when there was no external mag-
netic field, because the magnetic forces and gravity acted in 
opposite directions. As a final note, it should be mentioned 
that for Mn = 0 under the pure effect of gravitational forces, 
the profile of the local Nusselt number was asymmetric 

and almost decreasing from the bottom to the top of the 
hot cylinder. On the contrary for Mn > 0, the effect of the 
magnetic forces made the Nusselt profile almost symmetric 
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with a local maximum located at y = 0 where the effect of 
the magnetic field was most severe.

Effect of Darcy number

In this section, the effect of Darcy number is investigated 
on the flow patterns and temperature distributions inside 
the elliptical enclosure. As shown in Fig. 11, by increas-
ing the Darcy number, the ferrofluid was able to flow more 
easily inside the porous enclosure due to a lower level of 
solid matrix resistance toward fluid motion. As a result, 

more vigorous eddies were formed in the flow domain for 
larger Darcy numbers. This trend intensified the fluid mixing 
inside the enclosure and resulted in a notably thinner thermal 
boundary layer on the hot elliptic cylinder. Subsequently, the 
heat transfer rate increased inside the porous enclosure as the 
Darcy number elevated. Figure 12 justifies this line of rea-
soning in which the variation of the average Nusselt number 
is drawn within the enclosure. As can be seen, a monotonic 
increase in the value of the average Nusselt number with 
Darcy number was reported. The reason was that for higher 
Darcy numbers the permeability of the porous medium was 
larger as well. As a result, the solid matrix exerted lower 
drag forces on the ferrofluid. This trend increased the fluid 
velocity magnitude in the enclosure under identical thermal 
conditions and raised the convective heat transfer rate inside 
the enclosure.
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Effect of the power‑law index

Since the considered ferrofluid in the present study had a 
non-Newtonian power-law viscosity function, it was impor-
tant to examine the effect of viscosity variation on the 

thermal performance of the ferrofluid. As shown in Fig. 13, 
by the increment in the power-law index, the heat trans-
fer rate decreases. As an example, for the case presented 
in Fig. 13, increasing the power-law index form 0.8 to 1 
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Fig. 17   Effect of the diameter of the inner cylinder on the streamlines and temperature contours in different Rayleigh numbers for case 2 
(Da = 10−2, Mn = 3.56 × 106, n = 0.8)
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2140	 M. R. Daneshvar Garmroodi et al.

1 3

and from 1 to 1.4 resulted in 29% and 41% reduction of the 
Nusselt number, respectively. According to streamlines and 
isotherms depicted in Fig. 14, for the shear-thickening fluid 
(n = 1.4), the eddies became weak, and consequently, the 
natural convection heat transfer was suppressed. As a result, 
the temperature distribution inside the cavity tended to the 
corresponding shape for the case of pure conduction inside 
the elliptic enclosure.

On the contrary, for the shear-thinning liquid (n = 0.8), 
the fluid circulation intensified which yielded a notable 
heat transfer enhancement with respect to the case of a 
Newtonian fluid (n = 1). To justify these trends, in Fig. 15, 
the apparent viscosity contours are drawn for both shear-
thinning and shear-thickening fluids. As can be seen, in the 
vicinity of the inner elliptical cylinder where the shear rate 
was significant, a high-viscosity zone was detectable for the 
shear-thickening fluid which suppressed the fluid convection 

and reduced the heat transfer rate. The opposite trend was 
reported for the shear-thinning fluid for which extremely 
low-viscosity levels were recognized around the inner solid 
surface, and the viscosity increased as the outer solid wall 
was approached. The maximum fluid viscosity for this case 
occurred at the end of the semimajor axis of the outer ellipse 
where the fluid circulation was the weakest.

Effect of the inner cylinder diameter

In this section of the present work, the effect of the diameter 
of the inner cylinder (2a) on the heat transfer and the flow 
pattern inside the porous material is investigated. As shown 
in Fig. 16, by decreasing the diameter from 2a = 1.5L to 
2a = 0.5L, the average Nusselt number increased by more 
than a twofold. This behavior is examined in more detail in 
Fig. 17. For the case of 2a = 1.5L, four eddies were formed 
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Fig. 19   Effect of the outer cylinder orientation on the streamlines and temperature contours in different Rayleigh numbers for case 2
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inside the enclosure: two larger eddies and two smaller ones 
which were located near the outer solid wall. By decreasing 
the diameter, the two smaller eddies became stronger; this 
increment in the strength of the eddies enhanced the fluid 
mixing and led to a considerable rise in the average Nusselt 
number. This effect prevailed for all the Rayleigh numbers 
considered in the present work.

Effect of the outer cylinder orientation

In the last section of the present manuscript, the effect of 
the outer cylinder orientation on the flow patterns and heat 
transfer inside the porous enclosure is studied. As shown 
in Fig. 18, by decreasing the semimajor axis of the outer 
cylinder from 2d = 4L to 2d = 2L, the outer cylinder orienta-
tion changed from horizontal to vertical, and as a result, the 
average Nusselt number increased for all Rayleigh numbers 
considered here. To justify this trend, the contours of stream 
function and isotherms are shown in Fig. 19. As can be seen, 
for the vertical outer cylinder, four vortices with almost iden-
tical intensities were formed inside the enclosure, which 
enhanced the fluid mixing and increased the Nusslet number.

Conclusions

In the present work, the natural convection of a non-Newto-
nian ferrofluid inside a porous elliptical cavity in the pres-
ence of a non-uniform magnetic field was studied numeri-
cally. Numerical results were validated against pertinent 
numerical works in the literature. Based on the acquired 
results, the following conclusions were drawn:

•	 The presence of an external magnetic field increased the 
heat transfer rate of a non-Newtonian ferrofluid inside a 
porous elliptical enclosure.

•	 In the range of Ra = 104–106 from 17 to 150% heat trans-
fer enhancement was achieved for different wire positions 
at typical values Da = 10−2, n = 0.8, and Mn = 3.56 × 106.

•	 The maximum heat transfer enhancement was achieved 
when the source of the magnetic field was located at the 
center of the elliptical cylinders.

•	 When the wire was placed at the center of the cavity, 
increasing the Rayleigh number decreased the heat trans-
fer rate, but when the wire was placed on the top or the 
bottom of the cavity, increasing the Rayleigh number 
leads to an increment in the heat transfer rate.

•	 The exertion of an external magnetic field significantly 
altered the flow pattern and the temperature distribution 
inside the porous enclosure and new eddies were formed 
due to the magnetic Kelvin body force.

•	 Increasing the intensity of the magnetic field increased 
the heat transfer rate. Moreover, a maximum in the local 

profile of the Nusselt number was reported in the vicin-
ity of the current-carrying wire. Increasing the magnetic 
number by one order of magnitude resulted in a more 
than 400% rise in the value of the average Nusselt num-
ber for all the values of the Rayleigh number studied 
here.

•	 Using shear-thinning ferrofluids was recommended to 
obtain a more significant heat transfer enhancement. 
Increasing the power-law index form 0.8 to 1 and from 
1 to 1.4 resulted in 29% and 41% reduction of the Nus-
selt number, respectively.

To extend the scope of the present study, following 
directions could be recommended to address the heat 
transfer enhancement of nanofluids flowing through porous 
media:

•	 Regarding the present study, it was shown that using an 
electrical current-carrying wire can increase the heat 
transfer rate inside an elliptical enclosure. Hence, stud-
ying the effect of multiple wires on the heat transfer 
rate and the temperature distribution inside the porous 
enclosure is highly recommended.

•	 Since nanofluids in high nanoparticle volume fractions 
could exhibit viscoplastic behavior [52], investigating 
the heat transferring behavior of such fluids could be 
helpful.

•	 Studying the ferrofluid flow and heat transfer inside 3D 
porous enclosures with innovative geometries is highly 
enticing.
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