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Abstract
Nanofluids are employed in different thermal devices due to their enhanced thermophysical features which lead to

noticeable heat transfer augmentation. One of the major reasons of the heat transfer improvement by using the nanofluids is

their increased thermal conductivity. Several methods have been applied to estimate this property of nanofluids such as

correlations and artificial neural networks (ANNs). In the present paper, group method of data handling (GMDH) and a

mathematical correlation are proposed for forecasting the thermal conductivity of nanofluids containing CuO nanoparticles.

The inputs of the both models are the base fluids’ thermal conductivities, concentration, temperature and nanoparticle

dimension. Comparison of the forecasted data by these two approaches revealed more favorable performance of GMDH.

The values of R-squared in the cases where polynomial and ANN were utilized were 0.9862 and 0.9996, respectively.

Moreover, the average absolute relative deviation values were 5.25% and 0.881% for the indicated methods, respectively.

According to these statistical values, it is concluded that employing the ANN-based regression leads to more confident

model for forecasting the TC of the nanofluids containing CuO nanoparticles.
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List of symbols
ai ith coefficient

x Input vector

x1 Temperature of nanofluid (�C)
x2 Volume fraction of solid phase (%)

x3 Size of particles (nm)

x4 Thermal conductivity of the base fluid

(W m-1 K-1)

y Output vector

y
experimental
i

Measured data in experiment

y
predicted
i

Predicted value by the model

Abbreviations
AARD Average absolute relative deviation

ANN Artificial neural network

GMDH Group method of data handling

MSE Mean square error

RD Relative deviation

Introduction

Nanofluids have attracted the researchers’ attention in the

field of thermal engineering due to their ability in

improvement of heat transfer [1–4]. Their ability in aug-

mentation of heat transfer is attributed to some reasons

such as increment in thermal conductivity (TC) in single

phase and nucleation site increase in boiling heat transfer

[5–7]. For instance, Ramezanizadeh et al. [8] added nickel

nanoparticles into the working fluid of a thermosyphon and

observed reduction in its thermal resistance. Improvement

in the performance of the thermosyphon was mainly

& Akbar Maleki

akbar.maleki20@yahoo.com; a_maleki@shahroodut.ac.ir;

a_maleki@ut.ac.ir

1 Department of Civil, Geo and Environmental Engineering,

Technical University of Munich, Munich, Germany

2 School of Mechanical Engineering, Purdue University,

West Lafayette, IN, USA

3 Faculty of Mechanical Engineering, Shahrood University of

Technology, Shahrood, Iran

4 Department of Renewable Energies, Faculty of New Science

and Technologies, University of Tehran, Tehran, Iran

5 CORIA-UMR 6614—Normandie University, CNRS

University and INSA of Rouen, 76000 Rouen, France

123

Journal of Thermal Analysis and Calorimetry (2020) 139:2679–2689
https://doi.org/10.1007/s10973-019-08838-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-5830-4934
http://crossmark.crossref.org/dialog/?doi=10.1007/s10973-019-08838-w&amp;domain=pdf
https://doi.org/10.1007/s10973-019-08838-w


attributed to the increment in both TC and nucleation sites.

Similar conclusion was drawn by Nazari et al. [9] in the

case of using graphene oxide nanofluid in a pulsating heat

pipe. In addition to two-phase thermal mediums, nanofluids

have shown the ability of heat transfer augmentation in

single-phase devices [10–12]. For instance, Shirzad et al.

[13] numerically investigated the performance of a pillow

plate heat exchanger filled with various nanofluids and

concluded that applying nanofluids can increase the heat

transfer coefficient. In addition to the cooling appliances,

nanofluids are used in different energy systems as shown in

Fig. 1. Employing nanofluids in renewable energy tech-

nologies leads to higher energy extraction, size reduction

and reliability improvement [14–16].

TC, specific heat and dynamic viscosity are among the

factors with noticeable impact on the heat transfer ability

of the fluids [23, 24]. Due to the importance of TC in the

enhancement of heat transfer, it is crucial to distinguish the

factors influencing this property. According to the literature

review, size and concentration of solid particles, tempera-

ture and the type of base fluid are among the most

important factors [25–27]. In addition to the mentioned

ones, method of preparation, shape of the solid structures

and the pH of the nanofluids affect their thermophysical

and rheological features [25]. Generally, temperature and

concentration increment results in improved TC. More-

over, nanofluids with the more conductive base fluids have

higher TC. In the majority of previous researches con-

ducted in the TC modeling of nanofluids, concentration and

temperature have been used as inputs [28]. In some recent

studies, size of particles is added as another variable to

achieve more comprehensive regression [29, 30]. Accord-

ing to the study performed by Ahmadi et al. [31], although

using the temperature and concentration as the inputs leads

to acceptable forecasting in some cases, considering the

size of particles leads to the increase in the accuracy of the

proposed model.

Different mathematical approaches are used in order to

forecast and model the properties of nanofluids [32, 33].

Artificial intelligence is a powerful tool for various goals

such as optimization and modeling the complex systems

[34–37]. Intelligence models are applicable for predicting

the dependent values by using appropriate inputs with

perfect precision [38–41]. These models are useful for wide

variety of applications such as predicting the thermal per-

formance of heat exchangers and energy systems

[10, 42, 43], energy consumption prediction [44], carbon

dioxide emission [45], weather forecasting [44], etc. In

addition, these approaches are able to forecast nanofluids’

TC and dynamic viscosity with acceptable precision

[33, 46, 47]. Ahmadi et al. [48] employed LSSVM-GA

method to estimate the TC of Al2O3/EG nanofluid. The

forecasted values by the proposed model were very close to

the measured TCs, and the R-squared was 0.9902. In

addition to the SVM-based methods, artificial neural net-

works (ANNs) are appropriate tools for prediction of

nanofluids’ TC. In a study [29], TC ratio of CuO/EG was

predicted by utilizing GMDH and LSSVM-GA. The R-

squared values of the mentioned approaches were 0.994

and 0.991, respectively. In addition to the high accuracy of

the GMDH approach in forecasting the behavior of com-

plex system, it has some features such as no requirement

for predefinition of numbers of layers, neurons in hidden

layer and active neurons [49] which make it favorable for

predictive models. In addition, GMDH networks do not

suffer from the training data overfitting [50].

The majority of the models represented for estimating

the TC are applicable for the nanofluids with a single type

of base fluid [51]. Proposing a model with the ability of

forecasting the TC for various base fluids would be very

useful for the researchers. In the current article, GMDH

ANN, as an efficient algorithm, and a mathematical cor-

relation, as an easy-to-use method, are employed to model

the TC of nanofluids with dispersed CuO particles to pro-

vide applicable models. In addition, the confidence of the

proposed models is compared on the basis of different

statistical criteria to produce detailed insight into the

employed forecasting models. The base fluids of the

models nanofluids are water, ethylene glycol (EG) and

engine oil. The inputs of the models are concentration and

size of solid phase, TC of the base fluid and the tempera-

ture. All the data utilized for modeling are extracted from

experimental studies.

Applica�ons 
of nanofluids 

in energy 
systems

Solar 
collectors

Fuel cell 
cooling

Geothermal 
facili�esPV cooling

Solar water 
heater

Fig. 1 Main applications of nanofluids in energy systems [14, 17–22]
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Methods

Mathematical correlations are employed to model the

systems and features of the materials. These types of

models have some advantages including simple structure

and ease of utilization; however, due to their weakness in

considering the interaction of variables affecting the out-

puts, they are not appropriate for complicated systems.

ANNs are presented as intelligence approaches for mod-

eling the systems with complex relationship between the

inputs. In general, Voltera–Kolmogorov–Gabor (VKG)

polynomials (Eq. 1) can be used in order to model complex

systems containing set of data with multiple inputs and one

output [52].

y ¼ a0 þ
Xn

i¼1

aixi þ
Xn

i¼1

Xn

j¼1

aijxixj þ
Xn

i¼1

Xn

j¼1

Xn

k¼1

aijkxixjxj

þ � � �
ð1Þ

In Eq. 1, x ¼ x1; x2; . . .; xnð Þ are input vectors, y is model

output, and ai are coefficients of polynomial. VKG poly-

nomials are approximated by second-order polynomials.

These second-order polynomials are constructed based on

the dual combinations of network inputs. GMDH algorithm

is proposed based on this idea as the learning method for

modeling complex systems [52, 53].

GMDH neural network has a structure of a multilayered

and feed-forward network containing set of neurons created

from linkage of different input pairs via second-order

polynomial. Each layer in this network is established from

one or more processing units that each of them has two

inputs and one output. These units actually play the role of

components constructing the model and are assumed as a

second-order polynomial as given in Eq. 2 [52].

ŷn ¼ a0 þ a1x1 þ a2x2 þ a3x1x2 þ a4x
2
1 þ a5x

2
2 ð2Þ

Unknown parameters of GMDH algorithm are coefficients

of the polynomial in Eq. 2. In order to calculate the output

ŷi for each input vector x ¼ x1; x2; . . .; xnð Þ based on Eq. 2,

the average of squared error (Eq. 3) must be minimized

[54].

e ¼
Xn

i¼1

ŷi � yið Þ2 ð3Þ

To find the minimal of the error, partial derivative of Eq. 3

is used. By employing Eq. 2 in this partial derivative, a

matrix equation (Aa ¼ y) is achieved. In this equation,

a ¼ a0; a1; a2; a3; a4; a5f g, y ¼ y1; . . .; ymf gT, and matrix A

is given in Eq. (4) [54].

A ¼
1 x1p x1p x21p x21p x1p x1p

1 x2p x2q x22p x22q x2p x2q

1 xnp xnq x2np x2nq xnp xnq

2
64

3
75 ð4Þ

One method to solve this matrix equation (Aa ¼ y) is using

singular value decomposition (SVD) method. By using

SVD method, the unknown coefficient a is calculated by

Eq. 5 [52].

a ¼ AT A
� ��1

ATy ð5Þ

In Eq. 5, AT is the transpose of the matrix A. With this

method, unknown coefficient, a; can be calculated in most

of the cases. If the matrix AT Að Þ is non-invertible,

Tikhonov method is applied to solve the equation.

In the design of GMDH neural network, the aim is to

prevent the divergence of the network and relate shape and

structure of the network to one or some numerical

parameters in a way that by changing these parameters, the

network structure changes as well. Evolution methods such

as genetic algorithm have a vast application in different

steps of designing the neural networks due to their unique

capabilities in finding the optimum values and investigat-

ing the possibility in unpredictable spaces. In this paper,

the genetic algorithm is used to design the shape of the

neural network and determine its coefficients [53]. In order

to make the GMDH neural networks widely recognized,

the constraint of using adjacent layer in constructing the

next level must be excluded. This type of neural networks

is called GS in which to build new levels all the previous

layers (as well as the input layer) are used [52, 53].

The criteria used in the current study for the evaluation

of the regressions are R-squared, relative deviation (RD),

mean square error (MSE) and average absolute relative

deviation (AARD) which are defined as [55, 56]:

R2 ¼ 1�
Pi¼n

i¼1 y
experimental
i � y

predicted
i

� �2

Pi¼n
i¼1 y

experimental
i � yexperimental

� �2

RDi ¼
y
experimental
i � y

predicted
i

y
experimental
i

� 100

MSE ¼ 1

n

Xi¼n

i¼1

y
experimental
i � y

predicted
i

� �2

AARD ¼ 1

n

Xi¼n

i¼1

y
experimental
i � y

predicted
i

y
experimental
i

� 100

�����

�����

where y
experimental
i and y

predicted
i refer to the values of the data

obtained in experimental studies and determined by the

model, respectively.
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Results and discussion

Since the performance of a model in forecasting the output

significantly depends on the input data, the variables used

as inputs must be carefully defined. The majority of the

researches carried out to model the TC of nanofluids have

focused on a single type of nanofluid [57]. In these types of

studies, the temperature and volume fraction of solid phase

have been used as the inputs due to the noticeable depen-

dency of TC on them [58, 59]. As shown in Fig. 2, incre-

ment in both of these factors leads to TC enhancement.

Another factor considered in the recent studies, in order to

reach more favorable precision and comprehensiveness, is

the dimension of particles suspended in the base fluid. In

addition, since the present models are designed to be

applicable for different nanofluids, the TC of the base fluids

must be considered as another input. Generally, for the

same concentration, temperature and size of particles, the

nanofluids would have higher TC in the cases where the

particles are suspended in more conductive fluids (as

shown in Fig. 3).

In the present research, the data are extracted from

several experimental studies. The ranges of the inputs and

the base fluids are given in Table 1. The base fluids of the

investigated nanofluids are ethylene glycol (EG), water and

engine oil. In order to consider the impact of the base

fluids’ TC on the outputs of the model, their values for each

fluids at 20 �C are used as one of the inputs. Moreover,

temperature, volume fraction and the size of solid phase are

the other inputs. In the first step, a model is proposed by
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Fig. 2 Effects of concentration and temperature on the TC of a CuO/water, b CuO/EG, and c CuO/engine oil nanofluids [60]
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applying a polynomial. The structure of polynomial is

shown in Eq. 6.

TC ¼ A � x1 þ B � x2 þ C � x3 þ D � x4 þ E � x21
þ F � x22 þ G � x23 � H � x24 þ I � x1 � x2 þ J � x1x3
þ K � x1 � x4 þ L � x2 � x3 þM � x2 � x4
þ N � x3 � x4 þ O

ð6Þ

where x1, x2, x3 and x4 are temperature, volume fraction,

size and the TC of the base fluids, respectively. In this

equation, the value of O, as the constant of the proposed

model, is equal to 0.31859. The obtained coefficients of the

abovementioned correlations are given in Table 2.

One of the conventional criteria used for the assessment

of regression is R-squared value. The closeness of this

value to 1 means high accuracy of the model. In Fig. 4, the

R-squared of the polynomial regression is represented by

comparing the outputs and the measured TC in the exper-

imental studies. As shown in Fig. 4, the value of the R-

squared in the case where polynomial is utilized is equal to

0.9862. The majority of the predicted TC values are located

in the vicinity of the actual data, which means accept-

able accuracy of the regression.

In order to gain deeper insight, the relative deviation

(RD) of the regression for each data is shown in Fig. 5. As

it is can be observed, the maximum absolute RD (ARD) is

approximately 22.5%; however, most of the data are well

predicted and their ARD is lower than 5%. The high value

of the maximum ARD can be due to the weakness of the

proposed polynomial regression in considering the com-

plex interactions of the inputs. This problem can be solved

by employing ANNs which have more advanced structure

and are able to more accurate forecasting.

As indicated in the previous sections, the mathematical

regression is not as accurate as the ANNs in modeling the

systems. In this regard, GMDH shell software is applied for

modeling the TC of the nanofluids with various base fluids

based on GMDH ANN approach. The obtained relation-

ships between the inputs and the TC of the considered

nanofluids are given in ‘‘Appendix’’. In Fig. 6, the data are

compared to determine the R-squared. In this case, the R-

squared is equal to 0.9996. Comparing the R-squared

determined in the cases where polynomial regression and

GMDH are employed reveals the higher accuracy of the

regression by using the ANN.

Similar to the regression obtained by the polynomial, the

values of RD are determined for each data index in the case

of employing GMDH ANN for the regression, as shown in

Fig. 7. The outputs are closer to the actual data when the

GMDH ANN is used in comparison with the polynomial.

More favorable precision of the model by using the ANN

can be due to its more complex structure, which leads to

better consideration of inputs interaction. In this case, the

maximum ARD is approximately 6.3% which is much

lower than the similar value when the polynomial regres-

sion is used. Moreover, the RD for the majority of the data

is in the bound of ± 2%. These values of RD reveal the

reliability and appropriate precision of the GMDH in

forecasting the TC values of the nanofluids with CuO

nanoparticles.

In order to assess the overall performance of the pro-

posed regressions in modeling the TC of the nanofluids,

average absolute relative deviation (AARD) values of the

models are compared. As shown in Fig. 8, AARD values
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Fig. 3 TC of the nanofluids with various base fluids. a 10 �C, b 50 �C

Table 1 The variation ranges of the inputs [60–67]

Inputs Range

Base fluids Engine oil, water and ethylene glycol

Temperature/�C 10–70

Volumetric concentration/% 0–14.725

Size/nm 18.6–55
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for the correlation and the ANN are approximately 5.25%

and 0.881%, respectively. These values reveal much more

perfection of the GMDH ANN in forecasting the TC of the

nanofluids, which is similar to the results of the previous

studies focused on the other nanofluids. In addition to

AARD, MSE values for both regressions are calculated to

evaluate the models based on this criterion. The calculated

MSE values in the cases where the mathematical correla-

tion and GMDH ANN are employed are approximately

9:28� 10�4 and 2:36� 10�5, respectively. According to

all of the considered statistical criteria, it is demonstrated

that applying the GMDH method results in more accurate

regression compared with the correlation. This means that

the predicted data by the ANN are closer to the values

determined by the correlation as shown in Fig. 9. The

accuracy of the ANN-based models is more obvious for the

nanofluids with higher TC values.

Table 2 Coefficients of the correlation

A = 0.012691 B = -0.01054 C = 0.008593 D = 0.728172 E = 1.75 9 10-6 F = -0.00035 G = 4.7 9 10-5

H = 0.13926 I = 0.00045 J = -0.00025 K = 0.004144 L = 0.000441 M = -0.00029 N = 0.002965

R² = 0.9862
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Conclusions

Due to the crucial role of nanofluids’ thermal conductivity

(TC) in their thermal behavior, it is important to propose

models with reliable performance in predicting this ther-

mophysical feature. In this article, the accuracies of group

method of data handling (GMDH) artificial neural network

(ANN) and a polynomial correlation in modeling the TC of

nanofluids, containing CuO nanoparticles with three types

of base fluids, were evaluated and compared. The

employed inputs for the both models were temperature, TC

of the base fluids, size and volume fraction of the nano-

sized solid phase. According to the values of statistical

criteria, including AARD and R-squared, employing

GMDH ANN resulted in much more accuracy. The deter-

mined values of R-squared for the ANN and polynomial

were 0.9996 and 0.9862, respectively. The values of

AARD for the mentioned methods were approximately

0.881% and 5.25%, respectively.

Appendix

N156 ¼ 0:0638187þ N250 � 2:30293
þ N250 � N264 � 23:5634� N250ð Þ2�13:7886
� N264 � 1:68318� N264ð Þ2�9:33539

N264 ¼ 0:0432462þ N377 � 0:0323191
þ N377 � N315 � 0:403573 þ N315 � 0:482274
þ N315ð Þ2�0:363301

N315 ¼ �0:806049þ N345 � 0:801919
þ N345 � N380 � 0:592981 � N345ð Þ2�0:0493165
þ N380 � 3:74782� N380ð Þ2�4:28298

N250 ¼ �0:00466728� N335 � 0:446895
� N335 � N357 � 27:6001þ N335ð Þ2�15:9285
þ N357 � 1:43754þ ðN357Þ2 � 11:6728
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N323 ¼ 0:00163454� N350 � 5:08638
� N350 � N353 � 32:6077þ N350ð Þ2� 32:5894

þ N353 � 6:08958
N350 ¼ 0:293485� ffiffiffiffiffi

x43
p � 1:64301þ ffiffiffiffiffi

x43
pð Þ2�; 2:37782

þ N377 � 0:182398
N60 ¼ 0:0214562� N197 � N77 � 4:09698

þ N197ð Þ2�2:28313þ N77 � 0:854643
þ N77ð Þ2�1:96742

N77 ¼ �0:0235764 � N332 � 0:243521
� N332 � N185 � 54:0984
þ ðN332Þ2 � 26:1746þ N185 � 1:40135
þ N185ð Þ2�27:7079

N185 ¼ 0:000925156 þ N266 � 0:717883
þ N266 � N284 � 9:61885
� N266ð Þ2�5:14743þ N284 � 0:272103
� N284ð Þ2�4:43229

N284 ¼ 0:0131173þ ffiffiffiffiffi
x23

p � 0:0105856
þ ffiffiffiffiffi

x23
p � N320 � 0:0680691

þ N320 � 0:782995þ N320ð Þ2�0:140752
N320 ¼ �1:18285þ ffiffiffiffiffi

x33
p � 0:809801

þ ffiffiffiffiffi
x33

p � N334 � 0:122827
� ffiffiffiffiffi

x33
pð Þ2�0:13057þ N334 � 0:458137

þ N334ð Þ2�0:0931282
N266 ¼ 0:740175� ffiffiffiffiffi

x43
p � 4:94909

� ffiffiffiffiffi
x43

p � N335 � 14:4033þ ffiffiffiffiffi
x43

pð Þ2�7:61967
þ N335 � 6:04715þ N335ð Þ2�6:09104

N335 ¼ �0:878954þ N356 � 1:16337
� N356 � N380 � 0:405506
þ N356ð Þ2�0:0176024þ N380 � 3:83443
� N380ð Þ2�4:01012

N197 ¼ �0:947113þ N380 � 4:34746
þ N380 � N302 � 0:391864
� N380ð Þ2�4:90199þ N302 � 0:896456
� N302ð Þ2�0:0559059

N302 ¼ 0:00439602� N339 � 1:49386
� N339 � N357 � 67:8386
þ N339ð Þ2�37:3589þ N357 � 2:47456
þ N357ð Þ2�30:4492

N339 ¼ 0:00924584þ N345 � 0:716211
þ N345 � N375 � 0:256732
þ N345ð Þ2�0:179385þ N375 � 0:0486508

N129 ¼ �0:0617473 � N344 � N217 � 27:9366
þ N344ð Þ2�13:1372þ N217 � 1:40366
þ N217ð Þ2�14:3235
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N217 ¼ 0:0372683� N298 � 2:21564
� N298 � N299 � 3:82076
þ N298ð Þ2�3:83466þ N299 � 2:97188
þ N299ð Þ2�0:242383

N298 ¼ �0:00461328� N338 � 0:605155
� N338 � N357 � 37:0172
þ N338ð Þ2�20:7828þ N357 � 1:65003þ N357ð Þ2�16:1369

N357 ¼ 0:224904 � ffiffiffiffiffi
x43

p � 1:55475� ffiffiffiffiffi
x43

p � N375 � 0:51028
þ ffiffiffiffiffi

x43
pð Þ2�2:47322þ N375 � 0:443408

N375 ¼ �1:3152þ ffiffiffiffiffi
x23

p � ffiffiffiffiffi
x33

p � 0:0459091
þ ffiffiffiffiffi

x33
p � 1:11126� ffiffiffiffiffi

x33
pð Þ2�0:186381

N338 ¼ 0:0129124þ N345 � N356 � 43:7902� N345ð Þ2�21:8442
þ N356 � 0:911248 � N356ð Þ2�21:7936

N344 ¼ �0:477016þ N353 � 1:12265� N353 � N379 � 0:265719
þ N379 � 2:10893� N379ð Þ2�2:25038

N353 ¼ �0:0220018þ N356 � 0:994495þ N377 � 0:0584774
N48 ¼ �0:000454786� N69 � N71 � 0:870543

þ N69ð Þ2�0:868246þ N71 � 1:00227
N71 ¼ 0:0109597� N139 � N214 � 50:1732þ N139ð Þ2�25:6696

þ N214 � 0:921561 þ N214ð Þ2�24:5636
N214 ¼ �0:0144738þ N331 � 1:08299� N331 � N269 � 19:656

þ N331ð Þ2�7:87523þ N269ð Þ2�11:6828
N269 ¼ �0:285722þ N380 � 1:126� N380 � N303 � 0:586986

� N380ð Þ2�1:0272þ N303 � 1:25418
N303 ¼ 0:00379619þ ffiffiffiffiffi

x23
p � 0:0252342þ ffiffiffiffiffi

x23
p � N334 � 0:0472854

þ N334 � 0:771192 þ N334ð Þ2�0:17568
N69 ¼ �0:0119576þ N273 � 1:07403� N273 � N139 � 29:6595

þ N273ð Þ2�13:7071þ N139ð Þ2�15:8416
N139 ¼ 1:31772� ffiffiffiffiffi

x43
p � 7:24065� ffiffiffiffiffi

x43
p � N268 � 15:7399

þ ffiffiffiffiffi
x43

pð Þ2�9:82624þ N268 � 6:84983þ N268ð Þ2�6:10165
N268 ¼ �0:9162þ N380 � 4:16699þ N380 � N336 � 0:265379

� N380ð Þ2�4:69022þ N336 � 0:98972� N336ð Þ2�0:0976737
N336 ¼ 0:0171419þ ffiffiffiffiffi

x23
p � 0:0106666þ ffiffiffiffiffi

x23
p � N345 � 0:0751379

þ N345 � 0:748366 þ N345ð Þ2�0:170354
N273 ¼ �0:0680299þ N380 � 0:191049� N380 � N304 � 0:643235

þ N304 � 1:20139þ N304ð Þ2�0:0835203
N304 ¼ �0:0193152þ N334 � 0:777182þ N334 � N377 � 0:252188

þ N334ð Þ2�0:109905 þ N377 � 0:0983817
N118 ¼ 0:0155467� N136 � 0:337627� N136 � N223 � 22:2581

þ N136ð Þ2�12:3103þ N223 � 1:23063þ N223ð Þ2�10:046
N223 ¼ �0:0208803� N286 � 2:33259þ N286 � N299 � 41:8394

� N286ð Þ2�15:7271þ N299 � 3:48829� N299ð Þ2�26:2913
N299 ¼ �0:0212474þ N331 � 0:802107þ N331 � N376 � 0:275152

þ N331ð Þ2�0:0724277þ N376 � 0:0897678

N331 ¼ �0:676945þ ffiffiffiffiffi
x43

p � 2:13489� ffiffiffiffiffi
x43

pð Þ2�0:948832
� N334 � 0:303469þ N334ð Þ2�0:92214

N286 ¼ 0:0171763 þ N332 � 0:675503þ N332 � N376 � 0:481898
þ N332ð Þ2�0:116863þ N376 � 0:0098905

N376 ¼ 3:96757 � 10�14 þ N377 � 1
N332 ¼ �0:254285þ N334 � 1:1415� N334 � N380 � 0:346046

þ N380 � 0:997576� N380ð Þ2�0:884078
N334 ¼ 0:665183� ffiffiffiffiffi

x13
p � 0:151091 þ ffiffiffiffiffi

x13
p � ffiffiffiffiffi

x43
p � 0:212101

þ ffiffiffiffiffi
x13

pð Þ2�0:00618198� ffiffiffiffiffi
x43

p � 1:99001þ ffiffiffiffiffi
x43

pð Þ2�2:16703
N136 ¼ 0:0109802 � N247 � 0:896005� N247 � N346 � 19:3321

þ N247ð Þ2�11:8366þ N346 � 1:81279þ N346ð Þ2�7:56095
N346 ¼ �0:483901þ N354 � 1:11989� N354 � N379 � 0:267761

þ N379 � 2:11768� N379ð Þ2�2:224
N379 ¼ �8:47397þ ffiffiffiffiffi

x33
p � 3:10228� ffiffiffiffiffi

x33
p � N380 � 2:08197

� ffiffiffiffiffi
x33

pð Þ2�0:336827þ N380 � 16:7518� N380ð Þ2�9:85072
N354 ¼ �1:37254 � 10�13 þ N356 � 1
N356 ¼ 0:325471þ ffiffiffiffiffi

x23
p � 0:0275276

� ffiffiffiffiffi
x43

p � 1:60857þ ffiffiffiffiffi
x43

pð Þ2�2:35855
N247 ¼ �0:818308þ N380 � 3:6748� N380ð Þ2�4:05446

þ N329 � 1:06662� ðN329Þ2 � 0:060733
N329 ¼ 0:0216857 þ N345 � 0:60242þ N345 � N377 � 0:531008

þ N345ð Þ2�0:173633þ N377 � 0:0189504
N377 ¼ 0:0244881 þ ffiffiffiffiffi

x13
p � 0:0503244

� ffiffiffiffiffi
x13

p � ffiffiffiffiffi
x23

p � 0:0191276 þ ffiffiffiffiffi
x23

p � 0:274573
N345 ¼ 1:09654þ ffiffiffiffiffi

x33
p � ffiffiffiffiffi

x43
p � 0:427947� ffiffiffiffiffi

x33
pð Þ2�0:0443035

� ffiffiffiffiffi
x43

p � 3:60702þ ffiffiffiffiffi
x43

pð Þ2�2:68179
N380 ¼ 0:967148� ffiffiffiffiffi

x13
p � 1:74116þ ffiffiffiffiffi

x13
p � ffiffiffiffiffi

x33
p � 0:435543þ

ffiffiffiffiffi
x13

pð Þ2�0:0204996þ ffiffiffiffiffi
x33

p � 1:57949� ffiffiffiffiffi
x33

pð Þ2�0:452209:
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