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Abstract
Azo compounds (azos) are widely used as radical initiators in the polymerization industry. Nonetheless, due to the azo

group molecular structure, azos gravitate toward thermal decomposition and lead to thermal runaway accidents. In this

paper, the thermal decomposition behaviors of 2-(1-cyano-1-methylethyl)azocarboxamide (CABN) under the dynamic and

adiabatic environments were investigated using differential scanning calorimetry and accelerating rate calorimeter. Several

safety assessment parameters such as time to maximum rate under adiabatic condition (TMRad), temperature of no return,

and self-accelerating decomposition (SADT) temperature were calculated based on thermokinetic analysis as well as curve

fitting. The results indicated that CABN decomposes at low temperatures (90.0–100.0 �C) and releases huge volumes of

gaseous products, which may set off a fire, deflagration, or even explosion if the decomposition occurs uncontrolled in a

confined space. Compared with commonly used azos, the shorter TMRad, lower SADT, and more heat from thermal

decomposition reflect the potential thermal explosion hazards of CABN. To investigate emergency response procedure in

terms of industrial applications, the oxygen-balance method was further used to evaluate the explosion hazard of CABN,

and several recommendations on alleviating the thermal hazards of CABN were established to prevent catastrophic

accidents.

Keywords 2-(1-Cyano-1-methylethyl)azocarboxamide � Differential scanning calorimetry � Accelerating rate calorimeter �
Safety assessment parameter � Thermal hazard

List of symbols
A Pre-exponential factor (min-1)

Cp Heat capacity of the reactant (kJ kg-1 K-1)

Ea Apparent activation energy (kJ mol-1)

k Rate constant (mol1-n Ln-1 s-1, n is reaction

order)

m Mass of CABN in different packaging

specifications (kg)

mT Self-heating rate at arbitrary temperature

(�C min-1)

M Molecular weight (g mol-1)

n Reaction order

OB Oxygen-balance

Pmax Maximum pressure (bar)

R Universal gas constant (J mol-1 K-1)

S Wetted surface area (m2)

SADT Self-accelerating decomposition temperature (�C)
T Temperature at arbitrary time (K)

T0 Measured initial exothermic temperature (�C)
TD24 The temperatures at which the TMRad is 24 h (�C)
TD8 The temperatures at which the TMRad is 8 h (�C)
Tf Measured final exothermic temperature (�C)
Tm Temperature at maximum rate (K)

Tmax Maximum temperature (�C)
TMRad Time to maximum rate under adiabatic conditions

(min)

TNR Temperature of no return (K)

Tonset Onset temperature (�C)
Tp Peak temperature (K)
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U Heat transfer coefficient (kJ min-1 m-2 K-1)

X Number of atoms of carbon

Y Number of atoms of hydrogen

Z Number of atoms of oxygen

b Heating rate (�C min-1)

DHd Heat of decomposition (J g-1)

DTad Measured adiabatic temperature rise (�C)
s Time constant (min)

Introduction

Azo compounds (azos) are widely used as radical initiators

in the polymerization industry, such as acryl resins for

paints, water-absorbent resins, polymer coagulants, adhe-

sives, and paper finishing agents. Compared with other

initiators, the thermal degradation of most azo initiators

can be regarded as the first-order reaction, and the impurity

has little effect on its thermal stability [1–3]. Nonetheless,

the unique properties of azo initiators bring not only the

necessary chemical trait for the industry but also series

potential thermal hazards to the storage and reaction sys-

tem. Due to the presence of the azo group in its molecule

structure, azos gravitate toward thermal decomposition and

release considerable amounts of heat in production, stor-

age, and transportation [4]. Hence, the thermal hazard and

thermokinetics of azo initiators have attracted much

attention. For example, Chen et al. [5] investigated the

coupling effect of azobisisobutyronitrile decomposition,

and developed two decoupling methods for nonisothermal

DSC results. Liu et al. [6] built up a thermokinetic-based

numerical simulation approach to evaluate the thermal

hazards of four commonly used azos. Zhu et al. [7]

explored the decomposition mechanism of 1,2,4-triazolone

using FTIR-TGA-MS. Although the special decomposition

mechanism and thermal hazards of azos have attracted the

interest of researchers and attention of the industry, the

investigation of thermal behavior for new-type azos is still

rare in the literature.

2-(1-Cyano-1-methylethyl)azocarboxamide (CABN) is

a newly developed azo initiator mainly used in living

radical polymerizations [8]. Table 1 lists several com-

monly used organic-solvent soluble type and water-soluble

type azo initiators. Compared with commonly uses azo

initiators, the asymmetric structure (Fig. 1) makes CABN

dissolvable in both oil and water. This trait enables the

polymerization industry to improve polymerization effi-

ciency and narrow down production costs [9]. Neverthe-

less, as a type of azo, CABN shares the self-reactive

property found in other azos. To forestall accidents and

take full advantage of the unique structure and properties of

CABN, thermal hazard evaluation for CABN is salient.

In this paper, differential scanning calorimetry (DSC)

and accelerating rate calorimeter (ARC) were used to

analyze the thermal behaviors of CABN under dynamic

and adiabatic conditions. A few safety assessment param-

eters, such as time to maximum rate under adiabatic con-

dition (TMRad), temperature of no return (TNR), maximum

temperature (Tmax), the temperatures at which the TMRad is

8 or 24 h (TD8 or TD24) [10], and self-accelerating

decomposition temperature (SADT) were obtained based on

thermokinetic analysis and curve fitting. The research

results would provide references for the further study of

azos, the development of new azo initiators, the opti-

mization of production processes, and the establishment of

feasible emergency response plans.

Experimental and theoretical methods

Material

Powdered crystal CABN (98.00 mass%) was purchased

from Beijing Hwrk Chemical Co., Ltd., and stored at a low

temperature (4.0 �C) to prevent its degradation.

Nonisothermal tests by differential scanning
calorimetry (DSC)

From the guideline for the transportation of dangerous

goods set out by the United Nations (UN), DSC was rec-

ommended as a technique for determining the thermal

hazards of energetic materials [11–14]. Experiments were

carried out with approximately 3.0 mg samples by Mettler

Toledo’s high pressure DSC 2? (Switzerland), and the

results were evaluated using Mettler Toledo’s STARe

software. Alumina crucibles with 70.0 lL volume were

used for all DSC experiments using pure N2 as a purge gas

at a flow rate of 80.0 mL min-1. The heating rates (b) were
set at 0.5, 1.0, 2.0, 4.0, and 8.0 �C min-1 with the heating

range of 30.0 to 300.0 �C.

Adiabatic analysis by accelerating rate
calorimeter (ARC)

The worst case scenario was simulated by ARC under

adiabatic conditions, which means there is no heat

exchange between bomb and the environment, the heats

generated from the thermal decomposition of the sample

are all used to heat up itself [15, 16]. Thus, ARC can be

used to evaluate the thermal hazards of materials more

accurately in extreme environments. The ARC from
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Thermal Hazard Technology Co., Ltd. (United Kingdom)

was used for the adiabatic test. Roughly, 1.0 g of sample

was placed in a 1/4-inch Hastelloy bomb and sealed with

an air atmosphere. A standard heat-wait-search (H-W-S)

procedure was selected to implement the adiabatic test.

According to the results of DSC test, the experimental

conditions for ARC tests were as follows: The heating step

was regulated at 5.0 �C intervals with start and end tem-

perature were set at 80.0 and 450.0 �C, respectively, and

waiting time was set to 15.0 min with the slope sensitivity

at 0.02 �C min-1.

Determination of apparent activation energy
by Flynn–Wall–Ozawa method

Flynn, Wall, and Ozawa (FWO) proposed the isoconver-

sional method using DSC curves to obtain kinetic param-

eters of thermal decomposition reactions [17, 18]. On the

basis of the Doyle approximation [19], the FWO equation

can be given as Eq. (1):

lgðbÞ ¼ lg
AEa

R

� �
� lg½gðaðTÞ��2:315�0:4567

Ea

RT
ð1Þ

where T is the temperature at the arbitrary time, g(a(T)) is
the conversional function, A is the pre-exponential factor,

Ea is the apparent activation energy, and R is the universal

gas constant.

Kinetics under adiabatic conditions

The extensively used thermokinetic method under adia-

batic conditions was suggested by Townsend and Tou [20].

Table 1 Molecular structures of

commonly used azo initiators
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Fig. 1 Molecule structure of CABN
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For n-order reaction with a single reaction, the self-heating

rate can be defined as Eq. (2):

mT ¼ dT

dt
¼ DTad

Tf�T

Tf�T0

� �n
k ð2Þ

where mT is the self-heating rate at the arbitrary tempera-

ture, T0 and Tf is the measured initial and final exothermic

temperatures, DTad is the measured adiabatic temperature

rise, n is the reaction order, and k is the rate constant which

can be expressed as Eq. (3).

k ¼ mT

DTad
Tf�T
DTad

h in ð3Þ

Based on the Arrhenius equation, Eq. (4) was obtained

to determine the value of Ea and A.

ln k ¼ �Ea

R
� 1
T
þ lnA ð4Þ

Time to maximum rate under adiabatic
conditions (TMRad)

TMRad indicates the time taken for a reaction at the given

temperature from the initial reaction to the maximum rate.

This means an interposing measure is still possible within

this period. For a thermal decomposition reaction with high

Ea, the chief part of reaction time is TMRad [20]. By

employing the boundary condition that beyond the tem-

perature at the maximum rate (Tm), the reaction rate

decreases rapidly, TMRad can be expressed as Eq. (5)

[20, 21]:

TMRad ¼
Z Tm

T

1

mT

dT ð5Þ

Self-accelerating decomposition temperature
(SADT)

SADT is characterized as the lowest temperature at which a

self-accelerating decomposition will take place in sub-

stance in different packaging specifications within 1 week

[22, 23]. Adiabatic kinetics parameters from the ARC test

were used for the computation of SADT for CABN in

different packing conditions. Initially, the time constant (s)
is obtained by Eq. (6) [21]:

s ¼ mCp

US
ð6Þ

where Cp is the heat capacity of the reactant, S is the wetted

surface area, and U is the heat transfer coefficient.

Then, the no return temperature (TNR) can be obtained

by feeding s into the fitted function of TMRad and T

(Eq. 7). Afterward, the SADT for various packaging spec-

ification can be determined through Eq. (7) [21].

SADT ¼ TNR�
RT2

NR

Ea

ð7Þ

Perimetry explosion hazard evaluation
by oxygen-balance (OB) method

The oxygen-balance (OB) method is invariably used to

estimate the explosion hazard of organic compounds which

mainly contain C, H, N, and O in their molecule structure,

and extensively applied in the explosive industry [24]. To

estimate the explosion hazards for CABN, the OB method

was adopted in this paper. The following formula was

recommended for calculating OB [25]:

OB ¼
�1600 2X þ Y

2
�Z

� �
M

ð8Þ

where X is the number of atoms of carbon, Y is the number

of atoms of hydrogen, Z is the number of atoms of oxygen,

and M is the molecular weight.

Results and discussion

Preparative thermal analysis by DSC

An elementary thermal hazard analysis of CABN by DSC

was established under dynamic conditions. Figure 2 shows

the DSC curves of CABN. Taking the result at the heating

rate of 4.0 �C min-1 as an example: From 75.0 to 90.0 �C,
an endothermal peak appears due to the melting of the

CABN. With the increase in system temperature, an

exothermic signal distributed across 110.0 to 190.0 �C is
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Fig. 2 DSC curves of CABN at different heating rates
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detected, which is caused by the thermal decomposition of

the CABN, and the corresponding heat of decomposition

(DHd) is 1244.0 J g-1 (Table 2). Compared with com-

monly used azos (2,20-azobis(2-methylpropionitrile)

(AIBN), 2,20-azobis(2-methylbutyronitrile) (AMBN), and

dimethylvaleronitrile (ABVN) are 1035, 781, and

786 J g-1, respectively) [26, 27], the preponderant DHd of

CABN indicated that CABN will be more destructive and

dangerous once a runaway reaction occurred.

Thermal runaway reaction by ARC

Self-heating rate, pressure rise rate, and initial exothermic

temperature are prominent parameters used to quantify

thermal risks of runaway reaction when handling energetic

materials. As shown in Fig. 3, after H-W-S periods, the

self-decomposition reaction of CABN occurred at 96.1 �C
after an elapsed time of 145.7 min, during which the

pressure rise rate and temperature rise rate maintained an

upward trajectory with the maximum rate approximately at

329.3 bar min-1 and 17,849.4 �C min-1. Subsequently,

the self-heating rate decreased with the consumption of

reactants (Fig. 4).

The high pressure and temperature rise rate indicated

that the released energy from the runaway reaction of

CABN will be eminently numerous, and may set off a fire,

deflagration, or even explosion if the decomposition occurs

uncontrolled in a confined space. The maximum tempera-

ture (Tmax) and maximum pressure (Pmax) of the runaway

reaction were 218.6 �C and 56.9 bar, respectively. Both the

pressure and temperature rise rates as a function of reaction

time are depicted in Fig. 4, which shows that the value of

self-heating rate and pressure rise rate was small at the

outset, but increased abruptly as the temperature exceeded

140.0 �C. The pressure rise rate stepped up slowly below

140.0 �C, this may be caused by the following reasons:

When the air in the bomb becomes hot, the pressure rise is

mainly due to the expansion of heated and compressed air,

gaseous products have little contribution to the pressure

rise. Nevertheless, when the temperature exceeds 140.0 �C,
the sample decomposes promptly, and yields large volumes

of gaseous products, thus leading to a sharp increase in

pressure.

Determination of thermokinetic parameters

The evaluation of the thermokinetics of an energetic

material, apparent activation energy (Ea) is one of the main

prerequisites for the determination of SADT. In this paper,

nonisothermal and adiabatic thermokinetics were both

applied to determine the value of Ea. According to DSC

tests, Ea determined by FWO equation (Eq. 1) is

134.7 kJ mol-1 from the line’s slope by plotting lg b
versus 1/T (Fig. 5). In the adiabatic kinetic analysis, the Ea

and A can be obtained by plotting lnk versus 1/T (Eq. 4).

When the reaction order is chosen correctly, the plot is

supposed to be a straight line [28]. As shown in Fig. 6, the

first-order reaction is selected for its highest linear corre-

lation coefficient (0.9983). Subsequently, Ea and A were

calculated from the plot.

It is noteworthy that the Ea calculated from the adiabatic

test (190.0 kJ mol-1) is higher than the value obtained

from the dynamic test (134.7 kJ mol-1), which may be

caused by the elevated pressure in the adiabatic test.

According to Wahl [29], Hammond [30], and Bickel et al.

[31], the thermal decomposition of CABN is set out at the

formation of free radicals. As shown in Fig. 7, nitrogen

was also released when two kinds of carbon radicals were

formed. This implied that the concentration and density of

nitrogen would be increasingly high in the airtight bomb.

From the viewpoint of collision theory [32], the increase in

the reaction products will result in a reduced reaction rate,

which is because the higher concentration of reaction

products will lead to fewer collisions of reactant. This

could be a suitable explanation for the huge gap between Ea

obtained under different experimental methods.

Table 2 Experimental results by DSC test at different heating rates

b/�C min-1 Sample mass/mg T0/�C Tp/�C DHd/J g
-1

0.5 3.0 ± 0.1 113 136 1230

1.0 119 142 1211

2.0 126 149 1285

4.0 132 156 1244

8.0 138 165 1225
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Evaluation of safety parameters

Prediction of TMRad with extrapolation method

From adiabatic thermokinetic analysis, the thermal

decomposition reaction for CABN is a first-order reaction.

Thus, Eq. (9) is derived from Eq. (5) with n = 1:

TMRad ¼
1

A

Z Tm

T

e
Ea
RT

Tf � T
dT ð9Þ

Based on numerical integration and curve fitting by

Origin 2017 (Originlab Co., US), the extrapolated TMRad

versus temperature curve (Fig. 8) and fitted function

(Eq. 10) are obtained from Eq. (9):

TMRad ðhÞ ¼ 217;499 exp � T

8:01006

� �

þ 121;274:38 exp � T

8:00938

� �

þ 79;360 exp � T

8:00839

� �
� 0:00712

ð10Þ

As shown in Fig. 8, with an increase in ambient

temperature, the TMRad decreased exponentially. Taking

TMRad = 24 h (TD24) as an example, the corresponding

temperature was 78.2 �C, meaning that when the ambient

temperature reached 78.2 �C, the emergency program

should be taken within 24 h. Compared with other

commercial used azos, the TD24 of CABN is in the

middle of ABVN, dimethyl-2,20-azobis(2-methylpropi-

onate) (AIBME), AMBN, AIBN, and N,N0-dinitro-4,40-
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azobis(1,2,4-triazolone) (DNZTO) (30, 32, 44, 64, and

120 �C, respectively) [6, 7]. Nevertheless, the higher

DHd enables CABN to create greater temperature rise of

the reaction or storage system once the runaway reaction

occurs, which may induce more severe consequences to

both industry and society.

SADT of CABN at various packaging specifications

The packaging size is crucial for the determination of

SADT. According to Roduit [33] and Malow et al. [34], the

SADT mainly depends on the packaging size, once the

storage/transport environments are determined. In this

research, different packaging specifications including 55

gallon drum, UN 25 kg package, and 0.51 Dewar vessel

were selected for the SADT calculation with the required

heat transfer property-related parameters presented in

Table 3 [22]. From Eqs. (6) and (7), the calculated SADT

for 55 gallon drum, UN 25 kg package, and 0.51 Dewar

vessel are 77, 81, and 76 �C, respectively. It should be

noted that the lowest value of SADT comes from 0.51 L

Dewar vessel. This is due to the lower heat transfer coef-

ficient will bring the inefficient heat exchange between

system and the environment. From Liu [6] and Cao [35],

the SADT for CABN is higher than commonly used azos,

which demonstrates the good thermal stability of CABN.

Howbeit, the short TMRad at operation temperature, abrupt

temperature rise rate, and relatively high pressure rise rate

in adiabatic tests indicates that CABN could readily

decompose and release enormous amounts of heat and

gaseous products after prolonged exposure to elevated

temperatures.

Explosion hazard evaluation

According to the theory of spontaneous ignition put forth

by Frank-Kamenetskii [36], a sufficient temperature

increase would lead to a self-accelerating reaction front

propagating through energetic substances, the reaction

front can propagate in energetic substances at a velocity

less (deflagration) or more (detonation) than the speed of

sound. With the employment of oxygen-balance (OB)

method, the potential thermal explosion hazard of CABN

can be evaluated.

Figure 9 shows the calculated OB versus hazard for

selected substances. As shown, the OB of CABN is fairly

close to 2,4,6-trinitrotoluene (TNT). This does not mean

the explosive power of CABN is adjoin to TNT, but it does

indicate that the potential explosion hazard of CABN is

relatively high when compared with other commonly used

azos. To maximize safety, the potential explosion hazards

of CABN should be considered in the process design.

Explosion-proof devices are needed in the establishment of

safety facilities.

Conclusions

The thermal behavior and thermokinetic of CABN has

been investigated in this paper. Experimental results

showed that the initial exothermic temperature (T0), the

maximum temperature (Tmax) and pressure (Pmax) of

CABN were 96.1 �C, 218.6 �C, and 56.9 bar, respectively,

which indicates that CABN could readily decompose and

release enormous amounts of heat and gaseous products

after prolonged exposure to elevated temperatures. The

safety assessment parameters such as time to maximum
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rate under adiabatic conditions (TMRad), temperature of no

return (TNR), maximum temperature (Tmax), TD8, TD24, and

SADT of CABN for various packaging specifications

including 55 gallon drum, UN 25 kg package, and 0.51

Dewar vessel were predicted based on the adiabatic anal-

ysis. In addition, the explosion hazard of CABN was

evaluated by the oxygen-balance method. Compared with

other commonly used azos, the potential explosion hazard

of CABN is relatively high. To prevent a self-accelerating

reaction front propagating through CABN and touching off

a fire, deflagration or even explosion accident, strict safety

measures should be set and adhered in production, appli-

cations, storage, and transportation. In general, the thermal

parameters produced above can be used to determine some

of these measures.
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