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Abstract
Nanofluids have attracted much attention of researchers during the past years due to its excellent properties. Albeit many

theoretical and experimental examinations were conducted to evaluate the thermophysical properties of dissimilar

nanofluids, researchers are not successful to find good theories for determining the viscosity and thermal conductivity of

nanofluids. Although experimental approaches are more reliable compared to theoretical methods, they are usually difficult

to do due to the need for specific equipment. The goal of this study is to review summaries of the most important work

performed in the field of various nanofluid properties. In addition, the neural network application in predicting the

nanofluid properties in different equipments has been studied. Artificial neural networks (ANNs) are one of the artifact

intelligent branches that are inspired by the human brain function in identifying phenomena. They can be used to predict

and model the phenomena. One of its applications is to predict and model the nanofluid thermophysical properties. This

paper introduces the development of neural networks initially. Then, a summary of recent studies on the prediction

modeling of nanofluid physical properties based on ANNs is reported. According to enough samples, it seems that ANN is

an operational method to predict the nanofluid thermophysical properties. Finally, a general model for all nanofluids and

the effect of all conditions on the nanofluid properties are proposed for future research.
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List of symbols
A, B, C, D Constant values

a, b Vectors with the length S

d Diameter (nm)

Cp Specific heat (J kg-1 K-1)

g Gravitational acceleration (m s-2)

h Coefficient of convective heat transfer

(W m-2 K-1)

k Thermal conductivity (W m-1 K-1)

Nu Nusselt number

P Input vector

Pred Predicted value

Pr Prandtl number

R Correlation coefficient

R, W Weight matrix with the dimensions S 9 R

T Temperature (K)

wi Weight matrix

Greek symbols
x Magnetic field angle (�)
a Thermal diffusivity (m-2 s)

u Solid volume fraction

c Shear rate (1 s-1)

kb Boltzmann constant (m2 kg s2 K)

l Dynamic viscosity (W m-1 K-1)

# Kinematic viscosity (m2 s-1)

q Density (kg m-3)

r Electrical conductivity (X m)

s Shear stress (Dyne cm-2)

Subscripts
c Cold

h Hot

f Pure fluid

nf Nanofluid
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Abbreviations
ANN Artificial neural network

BF Base fluid

MAPE Mean absolute percentage error

MSE Mean square error

NP Nanoparticles

NF Nanofluid

Introduction

Nanofluids (NFs) are prepared by the dispersion of

nanoparticles (NPs), nanotubes, metallic and nonmetallic

nanosheets in the base fluid (BF). The NP dispersion in the

BF can improve the thermophysical properties of the BF

[1–5]. Thermal conductivity (TC) and the viscosity are of

great importance among the thermophysical properties.

Adding the NPs into the BF improves TC and the viscosity.

High TC coefficient improves heat transfer, while in most

studies, increasing the viscosity reduces heat transfer.

Studies show that these properties are function of the

shape, size, diameter and amount of the NPs, temperature

and type of the BF. The importance of the NF properties is

more evident for numerical simulations. In numerical

simulations of NFs in enclosures [6–15], channels [16–20],

heat exchangers [21–27] and many other devices, the

researchers have used the relations for the NF properties.

There are many relationships between the viscosity and

TC, but they are different for different NFs [28–33].

Therefore, various methods are used to predict the NF

properties in order to achieve a comprehensive relation-

ship. ANN is one of these methods [34–38]. Artificial

neural networks (ANNs), which predict the NF properties

using the human brain function, are of particular interest to

the researchers in the past few decades [39–42]. ANNs are

one of the approaches to data modeling and have nonlinear

ability to communicate between different factors and pro-

vide an accurate mathematical relationship. Today, ANNs

are widely used in various fields, including prediction of

thermophysical properties, prediction of flow behavior and

heat transfer [43–47].

Here, a brief review on the history of ANNs is pre-

sented. Artificial intelligence is a completely young sci-

entist. Many believe that artificial intelligence has begun in

1395, when Alan Turing wrote his article on how to make

an intelligent car (which later became known as the Turing

test). In that paper, he proposed a method for intelligence

recognition. This method was more like a game. Suppose

you are on one side of a wall, curtain or any other obstacle

and you are connected to the other side of the wall, and

someone from the other side of the wall is in contact with

you in this way. Naturally, a conversation can take place

between you and the person on the other side of the wall.

Now, if after the end of the conversation, one told you that

there was not a person in the other side of the wall (you do

not know the identity of the one over the wall), a car

answered you, it will be smart. Otherwise (i.e., if you

recognize that the conversation is artificial), the car on the

other side of the wall is not smart and has not passed the

Turing test. It should be noted that Turing chose this type

of the communication (text communication instead of the

audio) for two very precise reasons: First, it eliminates the

perceptual issue entirely from the problem, and this intel-

ligence test does not engage in discussions on audio

reception and processing. The second is to emphasize the

orientation of artificial intelligence toward a kind of natural

language processing. Although several efforts have already

been made to implement the Turing test, such as the Eliza

program or the AIML language program, to write programs

that are capable of automated chatting, no machine has yet

succeeded in passing such a test [48–56]. As it is known,

this test also contains two basic assumptions:

1. The complete sample of intelligence is human.

2. The most important feature of intelligence is the ability

to process and understand natural language.

The fact that the ability to understand language is a sign

of intelligence has a background in the philosophy. From

the earliest days of epistemology investigation, language

has always been at the forefront of cognitive activity. From

the ancient Greeks that used Logos as the language and the

truth together to now that the philosophers assume the

language is their home or the root of philosophical issues,

language has always maintained itself as the most privi-

leged ability of the most intelligent beings. The earliest

scientific application of neural networks was introduced in

the late 1950s, when Frank Rosenblatt introduced the

perceptron’s network in 1958. Rosenblatt and his col-

leagues created a network that could identify patterns. At

the same time, in the 1960s, Bernard Widrow introduced

adaptive ADALINE linear neural network with a new

learning law that was structurally similar to the percep-

tron’s network [57–60].

The progress of the neural networks continued until the

twentieth century. In 1972, Teo koohonen and James

Anderson independently introduced new neural networks

that were able to act as ‘‘storage elements.’’ Stephen

Grossberg worked on self-organization networks during the

decade. The idea of using a random mechanism to explain

the function of a wide range of backward networks that can

be used to store the information was introduced by

American physicist John Hopfield in 1982. The second

most important idea that was the development key of

ANNs in the 1980s is the backpropagation algorithm error,
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which was introduced by David Ramhallard and James

Mackland in 1986. With the emergence of these two ideas,

neural networks have evolved [61–65].

In this study, based on previous studies, we introduce

different types of neural networks and how to use them to

predict the NF properties. Then, a general overview of the

application of ANNs and the prediction of the NF prop-

erties by neural networks is carried out.

Artificial neural network (ANN)

ANNs are a pattern for processing information that is made

by imitation of biological nerve networks like the human

brain. The important point is the new construction of its

information processing system that consists of many neu-

rons with strong local connections working together to

solve specific issues. ANNs transfer information or rule

over the data to the network construction that is called the

learning by treating on experimental results. Fundamen-

tally, the learning capability is the most significant property

of an intelligent scheme. A system that can be learned is

more flexible and more focused, so it can better respond to

new issues and equations. Human always wanted to

understand the bio-physiology of the brain, because human

intelligence and the ability to learn, generalization, cre-

ativity, flexibility and parallel processing in the brain are

interesting to human beings. It is very desirable to use these

features in machines. Algorithmic methods are not suit-

able for the implementation of these features in machines.

Consequently, methods should be based on the same bio-

logical models. Similar to the humans, they teach using

examples, just as a kid that can detect the animals by

watching them. In other words, the ANN is a data pro-

cessing system that is brought from human brain. It sends

the information to large and small processors that are

connected with each other as a parallel continuous network

to solve a problem. In ANNs, the structure of data is

designed by programming knowledge to act as a neuron

(Fig. 1).

This data structure is called a node. Then, they will

educate the network by making a link between the nodes

and exerting an educational algorithm on it (Fig. 2). There

are two active modes for each node including: on or 1 and

off or 0 in this neural network. Moreover, there is a weight

for each edge. Inactive nodes are activated by previous

positive-weight edges, while the next connected node will

be disable or inhibit by negative-weight edges [65–70].

Structure of neural networks

A neural network involves layer and weight modules. The

behavior of the network is also dependent on the connec-

tion between the data. Generally, there are 3 types of

neuronal layers in neural networks [48, 69] (Fig. 3):

1. Input layer: This receives the raw data that have been

given to supply network.

2. The functions of hidden layers are controlled by the

connection between inputs and the hidden layers.

3. Output unit performance is a function of the hidden

unit action and the connection weight between the

hidden unit and the output one.

There are several types of connection or weight bonding

in the neural networks:

Forward: Most of the connections are forward in which

the signals move in one way only. There is no feedback

(loop) from the input to the output. Each layer output does

not affect the same one.

Backward: Data are retrieved from top layer nodes to

low layer nodes.

Side: The output of each layer nodes is used as input of

the same layer nodes.

Neural networks in comparison
with the conventional computers

A neural network generally differs from a computer as

follows:

1. Nervous networks do not execute commands in series;

they do not include memory for storing data and

instructions.

Axon Terminals

Soma

Axon

Nucleus

Dendrites

Fig. 1 A schematic of the neuron [55]
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Fig. 2 Graph of neural math function [55]
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2. Parallel response to a set of inputs.

3. It deals with transformations and mappings than

algorithms and methods.

4. It does not include complicated computing tools. It

consists of a large number of tools and often performs a

little bit more than a weighed summation.

ANNs have a different method to solve a problem. Formal

computers use an algorithmic method to solve a problem

that is followed by a series of unambiguous instructions to

solve the problem. These commands are converted into

high-level languages and then into the machine language

that the system can recognize. If the solution steps are not

known and there is no specific algorithm, the system will

not be able to solve the problem. Computers have more

advantages if they can do things that we do not have a

background about them. Neural networks and computers

have not a competition; they can be applied complemen-

tary. There are some problems that should be solved

algorithmically, and there are also ones that cannot be

solved except through the ANN. Of course, a combination

of the above methods can be used to obtain a maximum

efficiency. Typically, a formal computer is employed to

display the ANN. Neural networks do not miracles. If they

are tangibly used, they do strange things. ANNs with their

considerable ability to deduce results from complex data

can be applied for extracting patterns and identify different

styles that are very difficult for humans and computers to

identify. The benefits of neural networks are as follows:

1. Adaptive learning: This is the capability for learning

how to perform your tasks based on given information

or the initial experience.

2. Self-organization: An ANN automatically is organized

the data obtained during the learning. The neurons are

adapted to the learning law and the reply to the input

variations.

3. Real-time operators: Neural network calculations can

be done in parallel using special hardware that are

designed and constructed to obtain optimal results for

ANN capabilities.

4. Error tolerance: Failure in the network reduces its

performance, but some features are kept despite major

problems.

5. Classification: ANNs are able to categorize the inputs

to obtain suitable outputs.

6. Generalization: This one enables the network to obtain

a general rule by dealing with a limited number of

instances, and generalize the results of these learning to

previewing views. In the absence of this, the system

should remember the infinite facts and relationships.

7. Sustainability and flexibility: A neural network is also

sufficiently stable to maintain its information. It has a

flexibility and adaptability and can accept new infor-

mation without losing previous one [68].

Neural network classification

They are divided into four categories based on the teaching

method [70]:

1. Fixed weight: Training does not exist and weighing

values are not updated. Its application is in optimiza-

tion of information, reduction in the volume, separation

and compression.

2. Unprotected learning: Weights are corrected only by

inputs. There is no optimal output to compare with the

network output and determine the error value of the

weights. Weights are only updated based on the input

pattern data. The purpose is to extract the character-

istics of the input patterns based on the clustering

strategy or classify and recognize the similarities

(generation of groups with similar patterns). The

output or classes corresponding to the input patterns

are not identified. The learning is usually based on the

best practices. A non-organized network changes its

weights based on the output results in the input to have

a good response to this input for further interaction. As

a result, the network learns how to respond to the input.

Basically, the goal is to select a neuron that has the

most stimulus using the dominant neuron technique.

Hidden layer

Output layerInput layer

Fig. 3 Multi-layer neural network diagram [55]
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Therefore, finding the dominant neuron is one of the

most important tasks in unprotected networks.

3. Protected learning: For each category of inputs, the

conforming outputs are also presented to the network

and the weight changes are done pending the net output

discrepancy for the learning forms from the favorite

results is as suitable as the error.

4. Boost training: The quality of the system’s perfor-

mance is improved step by step over time. There are no

learning patterns, but it is created using a signal called

expression critique of the good or bad behavior of the

system (a state between the protected earning and

unprotected earning).

Neural network capabilities

Among the features of neural networks, the following ones

are considered [48]:

• Calculation of a definite function

• An approximation of an unknown function

• Pattern identification

• Signal processing

• Learning

Application of neural networks

Neural networks are quantitatively and qualitatively

growing in terms of structural analysis and hardware

implementation. Various neural calculation techniques are

increasing from the point of view of numbers. ANNs have

a wide range of applications such as electronics, aerospace,

oil and gas, defense, transportation and finance [48].

Types of neural networks

Neural network types are as follows (Fig. 4):

• Perceptron neural network

• Hopfield neural network

• Hamming neural network

• Backpropagation neural network

• Time delay neural network

• ANN mathematical model

During the modeling of nerves, the intricacies are

neglected and only the simple concepts are considered;

otherwise, the modeling approach will be very difficult.

The model or nerve should contain inputs that act as a

synapse. The inputs are multiplied by weights to specify

the strength of signal. Finally, a mathematical operator

decides whether the neuron becomes activate or not. Fig-

ure 5 illustrates a simple model for describing a neuron.

There are many variations in the model presented in Fig. 5.

For example, the weights of a neural network, which

transmit the output value, can be positive or negative.

Moreover, the functions used for threes holding can vary.

The most famous functions include sigmoid, Arctan and

Arcsin. Also, the number of input nodes can vary. Of

course, as the number of nodes rises, the determination of

the weights will be difficult [63, 71–73].

A layer of neurons

A network layer with input R and S neuron is presented in

Fig. 6. In this network, each input P is linked to all neurons

by the weight matrix wi. The neuron has net value equal to

the sum of all weighted inputs to this neuron and the

neuron bias. Finally, each neuron output has the value of a,

which is obtained after passing through the function f.

Usually, the number of layer inputs varies with the neuron

number in that layer and there is no relation for the neuron

number in a layer. The input matrix P is entered into the

network by the weight matrix given from Eq. 1

[59, 60, 63]:

W ¼
w1;1 � � � w1;R

..

. . .
. ..

.

ws;1 � � � ws;R

2
64

3
75 ð1Þ

It should be noted that the first index of the matrix W

indicates the number of target neuron, and the second index

represents the input number. So w1;2 shows the ratio of the

second input weight and the first neuron. As shown in

Fig. 6, P is the input vector with the length R, W is the

weight matrix with the dimensions S 9 R, and a and b are

vectors with the length S [59, 60, 63].

Perceptron neural network

This is made on the basis of a computational unit named

perceptron. This takes inputs with actual amounts and

computes a linear combination of inputs. If the result is

higher than the threshold value, the perceptron output

would be equal to 1; otherwise, it would be equal to -1.

Perceptron neural networks, in particular, multi-layer per-

ceptron, are the most useful neural networks. These net-

works are able to carry out a nonlinear mapping with the

desired accuracy by selecting the appropriate number of

layers and neuronal cells, which are often not too high [74].
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Backfed input cell
A mostly complete chart of neural networks

Noisy input cell

Input cell

Probablistic hidden cell

Spiking hidden cell

Hidden cell

Match input output cell

Output cell

Memory cell

Different memory cell

Recurrent cell

Convolution or pool

Kernel

Marcov Chain
(MC)

Hopfield
network (HN)

Boltzmann
machine (BM)

Restricted BM
(RBM)

Deep belief network (DBN)

Perceptron (P) Feed forward
(FF)

Radial basis network
(RBF)

Deep feed forward
(DFF)

Recurrent neural network

Auto encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Long/Short term memory
 (LSTM)

Gated recurrent unit
 (GRU)

Fig. 4 Types of neural networks [48]

General neuranInput

n
f

b

1

a

a = f (Wp + b)

P1

P2

P3

PR
W1,R

W1,1

R = number of elements in input vectorΣ

Fig. 5 Schematic of a neuron

[59, 60, 63]
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Multi-layer perceptron

Even though the modeling of neurons is one of the most

important points in the performance of neural network,

network relations and their layouts (topology) are also very

important parameters. It should be noted that human brain

topology is consequently intricate that it cannot be applied

as a model for using in the neural network, because this is a

simplified model, while the brain layout utilizes numerous

components. One of the easiest and the most effectual

suggested layouts for real modeling is the multi-layer

perceptron (MLP) model. This model includes all three

types of layers. In this model, all layer’s neurons are linked

to all subsequent layer neurons. This organization is a

network with full connections. Figure 8 shows a schematic

of a three-layer perceptron network. It can effortlessly be

founded that the neurons number in each layer is inde-

pendent of those in the other layers. It should be noted that

in Figs. 7 and 8, each circle is the summation operator and

thresholding (crossing the nonlinear sigmoid function). In

fact, any circle is a model of the gatherer and threshold

block presented in Fig. 9, which is shown in this form for

the simplicity [75].

Perceptron law

Generally, for a learning example X ¼ ðx1; x2; . . .; xnÞ), the
learning algorithm changes according to the perceptron law

as follows:

1. Determine the weight coefficients and threshold values

randomly.

2. Present an input to the model.

3. Calculate the output value by comparing the total

weight of the inputs and the threshold value.

4. Change the weight coefficients according to the

following relationships to strengthen the correct deci-

sions and incorrect decisions (reduce the error).

4:1 wi t þ 1ð Þ ¼ wi tð Þ if the output is correct.

4:2 wi t þ 1ð Þ ¼ wi tð Þ þ gxi tð Þ if the actual output is

zero and the desired output is 1.

4:3 wi t þ 1ð Þ ¼ wi tð Þ � gxi tð Þ if the actual output is 1
and the desired output is zero. 1 B g B 0 is a

positive review factor that controls the modera-

tion rate.

5. Provide the next input to the model [75, 76].

Hopfield neural network

The Hopfield network has a special architecture that dis-

tinguishes it from other networks. Generally, these types of

networks have a layer of input neurons. The input neurons

are the same output ones. Unlike other networks, this

network does not specify its weights in the learning algo-

rithm, but it does it by a special formula. In the identifi-

cation algorithm, the input will be changed by repeating

and reaches a definite form. In these networks, at any time,

only one neuron is active, and the other neurons are inac-

tive. In other words, because a neuron takes the inputs from

other neurons, the neuron is changing and the other neurons

are constant. These types of networks are usually used to

eliminate noise of the images or other patterns [77–79]

Input Layer of logsin neurans

R = number of elements in input vector
S = number of neurons in input layer

a = logsin (Wp + b)

S

a
S × 1n

+
S × 1

S × 1

S × R
R × 1

R

1

p

Fig. 6 Input vector with the

length of R [60]

Input
layer

Hidden
layer

Output
layer

Fig. 7 Block diagram of a neuron network with a hidden layer [75]
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Hamming neural network

This network was first presented by Steinbuch in 1961 and

has been revisited by people like Lippman in recent years.

This network is mainly used for solving the problem of

identifying binary patterns (vector patterns whose element

contains only 1 or - 1 values). This network relies in the

neural network frame, since it consists of a series of neu-

rons as nodes and a series of arithmetic weights between

nodes. Each node has an active level that makes the output

of the neuron. The Hamming network contains both the

feed-backward and feed-forward structures. The main

purpose of the Hamming network is to determine that

which reference pattern is most closely related to the input

pattern, and then, it appears on the network output [79, 80].

The Hamming network consists of three layers:

Feed-forward layer: The first layer of Hamming network

that is represented by the weight matrix, bias vector and

linear transformation function calculates the internal mul-

tiplication between reference vectors with input vectors.

The storage of reference patterns in the network is per-

formed by the weight matrix.

Feed-backward layer (WTA): The middle layer of the

Hamming network has a backward structure. This structure

is known as a competitive structure. Hence, the middle

layer of the Hamming network is also called a competitive

layer. Once the number of reference vectors or storage

capacity of the network is computed by the first Hamming

layer, the second subset is activated and the output values

of the first layer are considered as initial values. Then, it

subtracts its value from the inputs value and repeats this

operation until the outputs in all cells become zero except

the winning cell (indicating the most similar pattern of

reference with the input vector). In such conditions, the

middle layer, in other words the entire Hamming network,

is in its steady state and the continuation of the repetition in

the middle layer is useless. Under this condition, the

operations are called the WTA type. Then, in the middle

layer, the competition between the neurons begins. A

neuron is won, and the rests are lost.

Third layer: This layer in the Hamming network is a

feed-backward matrix with a weight matrix and a sym-

metric two-valued threshold transform function. The third

layer’s task is that after the second layer converges, the

reference vector stored will appear on the network output.

For example, if the second layer indicates that the apple

reference model is identified for input, then the third layer

takes it as input and creates the vector P in the network

output.

Time delay neural network (TDNN)

This network is a kind of multi-layer neural network which

has the ability to encounter the dynamic nature of sample

data and input signals. Multi-layer neural networks have

the following characteristics:

Input Hidden layer Output layer

2

1

2 × 1
4 × 2

4 × 1

4 × 1

3 × 1

1
3

3 × 4 3 × 1

3 × 1
+

4 × 1
4

b1

+

p1

IW1,1

a1 = tansig (IW1,1p1 + b1)

n1

a1

b2

a3 = y

n2

a 
2 = purelin (LW2,1a1 + b 

2)

LW2,1

Fig. 8 Block diagram of a neuron network with a hidden layer [75]

Hidden layer Output layer

OutputInput

2

W

b

11

W

b

1

1

Fig. 9 Sample of a block

diagram [75]
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It has several layers and each layer has enough con-

nections between neurons, so that the network has the

ability to learn complex nonlinear decision levels.

The behavior of the network is sensitive to the time

transmission of samples.

The learning method is sensitive to the exact timing of

the input samples

TDNN was first used by Weibel in 1988 and still

remains the same. It consists of three layers whose weights

are paired with delayed cells. The TDNN stimulus is a

function of the sigmoid function and has weighted input

[80]. The neuron structure in this network is illustrated in

Fig. 10.

For designing the neural networks, especially the

TDNN, the designer faces the issue of selecting a suit-

able network for his design. In general, a network that has

minimum complexity and minimum parameters with the

highest degree of accuracy in identifying input patterns is

called a suitable network. If a problem can be resolved by a

particular network theoretically, it can also be solved by

larger networks. But because there is not a unique answer

for the optimal weights of the learning algorithms for the

larger network, the opposite weights are obtained. Hence, it

is difficult to identify a smaller-sized network for solving

the problem. If the neurons number in the network layers

used in a particular problem is low, the network cannot

learn because the number of pages and, as a result, the

volumes needed to divide the input into different classes is

not enough. Conversely, the large neuron number in hidden

layer is also not suitable due to the increase in the volume

of computations and, consequently, the prolongation of the

network’s learning time. In addition, since network learn-

ing is according to a limited set of learning patterns, if the

network is very large, it tries to maintain the patterns of

learning, which reduces the power of generalization and

network interpolation to identify new patterns outside of

the learning set. Thus, there are a critical number of hidden

layers that should be found for any particular application.

The neuron number in hidden layer is determined by

simulating different networks and measuring the accuracy

and interpolation of these networks on patterns that were

not in their learning set. The neuron number in the network

output layer (the type of coding in the output) should also

be appropriate for to solve a specific problem. The best

way to coding the output classes is to use primitive vectors.

Backward propagation network

Unlike previous networks, this network consists of several

layers. It includes a layer called hidden layer plus to the

output and input layers. The network works as an oversight

and is not self-organizing. One of the prominent features

that distinguish this network from other ones is that the

values of input neurons are continuous. This means that

non-binary values can be entered as inputs to the network.

This network is one of the most utilized networks because

it can solve nonlinear problems [70, 80].

Network learning using backpropagation
error

In general, ANNs are twofold in terms of learning: fixed

weight networks and variable weight networks (learner

networks). The learners’ networks are divided into pro-

tected and unprotected. In protected networks, samples are

used in the learning phase that are known to be the ideal

output of the corresponding one. In other words, in these

networks, the input data samples have labels. In unpro-

tected networks, the output is placed in a separate class

based on a criterion (for example distance) and type of the

competition [70, 80].

Since the neural network is a simplified nerve of body, it

is just as capable of learning. In other words, the network is

able to learn the process in the patterns using the infor-

mation received by its administrator and input. Therefore,

in a similar way to humans, the learning process in the

neural network is also inspired by human models, in which

many samples have to be presented to the network so that it

can follow the desired output by changing the network

weights. Providing the sample data input to the neural

network is possible by two methods:

1. Batch mode: In this method, all samples are presented

to the network, and finally, the network error is

calculated relative to all samples and the weight

change is based on the error. In the next step, all data

are retransmitted to the network once again, and the

process is repeated until the error eventually reaches an

f

Σ

W 1Dij

a1

P1(t)

DD D1 DD D1 DD D1

PJ(t) PN(t)

Fig. 10 Neuron structure in time delay network [80]
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acceptable value. Definitely, this is a complicated and

time-consuming process and requires a lot of memory.

There is also the possibility of applying the algorithm

to local minima.

2. Pattern mode: In this method, the samples are given

individually to the network and the corresponding error

with the same data is immediately calculated and the

network weights change based on the error. Then, the

next samples are presented to the network and the trend

is done similarly. Because the weights are corrected

based on each sample in each step, the algorithm has a

good convergence. Based on the random nature of the

single presentation of the data, the local minimum risk

is eliminated. There are many methods available to

train the network and modify the weights to achieve a

meaningful error. One of the most well-known

approaches is error backpropagation algorithm that is

defined as follows:

Error backpropagation algorithm

This algorithm, proposed in 1986 by Romelhart and Mak

keleyland, is used in feed-forward neural network. Feed-

forward means that artificial neurons are placed in suc-

cessive layers and forward their output (signal). The term

‘‘backpropagation’’ also means that the errors are fed back

to the network to correct the weights and then reenter the

path to the output again. The method of error backpropa-

gation is a protective method in the sense that the input

examples are tagged and the predictable output of each of

them is already recognized. Therefore, the output of net-

work is compared with these perfect outputs and the error

of network is computed. It first assumed in this algorithm

that network weights are accidentally selected. In each

step, the output of the grid is calculated and the weights are

corrected based on its difference with the desired output to

eventually minimize the error [70, 80].

Artificial neural network learning

Once the weights and bias of the network are initialized, it

is ready to be trained. To do this, a series of data are

required as inputs and a series of data as the optimal output.

During the training, the weights and network biases are

trained to minimize the operation function of the network.

Usually the operation function is the mean square differ-

ence between the network output and the desired output

[70, 81, 82]. Programming was used in the MATLAB

environment for designing and training an ANN. To write a

program in the MATLAB software for neural network, the

following points should be considered:

1. Maximum and minimum input and output values are

defined.

2. The input and output outputs are normalized (between -

1 and 1).

3. The amount of neurons in hidden layers is defined.

4. Transfer function associated with the each base neuron

is determined.

5. The technique of learning the network.

6. Technique of network training is identified.

7. Error function is determined according to the

standards.

The points mentioned are necessary to design the appro-

priate neural network. After performing the previous steps

and entering data in the MATLAB software, the network

learning begins. In general, the learning steps can be

summarized as follows:

1. Initial value for weights is determined.

2. Training output data is obtained for the input vector.

3. The actual output is compared with the test output.

4. The network weights are modified according to the

error value.

5. This process is repeated until the error is minimized.

An error function is used using the MSE method men-

tioned in Eq. (2). Tj is the output of jth neuron of the neural

network and Oj is the predicted amount of the jth neuron.

The total number of network training has been noted by

N (it is epoch in the MATLAB software). Moreover, m

denotes the number of output parameters of network [80].

MSE ¼ 1

2mN

XN
i¼1

Xm
j¼1

ðTj � OjÞ2 ð2Þ

All operations performed on this technique selected

based on the trial and error approach to attain the minimum

error [70]. The error is gained by to Eq. (3):

The error percentð Þ ¼
Actual value� The value obtained fromANNð Þ

Actual value
� 100

ð3Þ

The time for taking the weight and the bias toward the

outputs and returning the outputs to correct the weight and

bias toward the inputs is an epoch.

Nanofluids

With the advent of the science, nanofluids preparation

using various materials has been potential. One of the

physical appearances of NFs is their high ratio of surface-

to-volume, which has given them superior capabilities.
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Nanofluid has begun as a novel category of nano-technol-

ogy established on heat transfer fluids and has developed

extremely over these years. Researchers are attempting to

realize the governing rules of the thermo-physical proper-

ties of NFs. Accordingly, they have proposed novel

instruments and provided uncommon models for clarifying

their behaviors. The ‘‘nanofluid’’ is a phrase used by Choi

[5] as a novel type of working fluid for heat transfer that

has a small amount of nano-particles. In fact, nano-parti-

cles were dispersed permanently and homogeneously in the

incessant phase. The main NF technology development

showed their high potential for use in heat transfer, which

led to that the industries and universities work on this

research field. The average particle size of nano-particles is

usually between 1 and 100 nm. The introduction of NFs in

the heat transfer has created a novel approach with its

challenges and benefits. The full understanding of NFs

rheological behavior is essential for the scientists. There-

fore, this section examines the past researches on the

thermophysical NFs properties.

Properties of the nanofluids

The TC of NFs has attracted the main attention of

researchers. However, this is the most important issue for

static fluids, but the NF heat transfer coefficient is the most

important issue for NF flow. Other important properties

that affect the heat transfer include the density, specific

heat and NF viscosity. By assuming the uniform dispersion

of NPs into the BF, some thermal and physical properties

of the NFs are as follows:

Dynamic viscosity

The viscosity is the fluid resistance against the deformation

due to longitudinal stresses or shear stresses. Due to the

suspension structure of NFs, the viscosity plays an

important role in the design of nanofluidic systems, as its

direct effects on the pressure drop in the convection flows

are evident. Therefore, for practical applications, the NF

viscosity increase relative to its BF must be fully evaluated.

Since the viscosity of the working fluid in the heat transfer

device plays a noteworthy role in the power of the pump,

and it is required for numerical solution of the governing

equations, it is necessary to know the viscosity. Many

researchers investigated the NF viscosity [31, 83–91].

Table 1 summarizes some of the correlations presented for

the NF viscosity.

Thermal conductivity (TC)

The main reason of addition of NPs into the BF is to

increase its TC. Therefore, it can be stated that the most

important property of the NFs that needs to be known is the

TC coefficient. Many researchers have been used experi-

mental methods to measure the TC of NFs [102–109].

These researches were performed at various temperatures

and volume fractions, and thermal conductivity of NFs for

many NPs and BFs was reported. Some of these

researchers have expressed a correlation for TC coefficient

of NPs using the effective parameters on the TC of the NPs,

such as the volume fraction of the NPs, the temperature and

size of the NPs. Some other researchers have also reported

the correlations TC using theoretical relations and physical

phenomena affecting TC such as Brownian motion, ther-

mophoresis and clustering. Table 2 presents a selection of

correlations is presented for the TC coefficient of the NFs.

These correlations include basic theoretical relations and

some relationships obtained from experimental data. The

correlations provided by experimental data are only

applicable to a specific NF.

Application of neural networks in predicting
flow and heat transfer properties

The heat exchangers are under vibrational conditions and

vibrate. Therefore, the operating conditions are quite dif-

ferent from traditional design conditions. Hence, it is not

possible to directly determine the relationship between the

various parameters on the heat transfer of these heat

exchangers [118–120]. As a result, the use of neural net-

works was presented by Rahman and Zhang [121] for

vibrating heat exchangers (Fig. 11) to predict convection

heat transfer coefficient. They obtained good results using

the neural network (Fig. 12) and experimental data of a

heat exchanger. They used a three-layer neural network

model with a 2-10-1 configuration, an input layer with two

neurons that shows both the input parameters of the

oscillation frequency and the average pressure. The output

was the heat transfer coefficient. Finally, they showed that

the neural network is able to predict the heat transfer

coefficient of heat exchangers by comparing their results

with previous results and experimental data.

Naphon et al. [122] used the neural networks to evaluate

the pressure drop and heat transfer of pulsed NF in a spiral

tube (Fig. 13) exposed to a magnetic field experimentally

(Fig. 14). They investigated four neural network algo-

rithms that include Levenberg–Marquardt backward prop-

agation (LMB), Resilient Backpropagation (RB), Bayesian

regulation backpropagation (BRB) and scaled conjugate
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gradient backpropagation (SCGB) to characterize the ANN

network error. They compared neural network outputs with

the experimental data. Their results showed that the

Levenberg–Marquardt backpropagation algorithm

(Fig. 15) has minimum MSE (mean square error) and

maximum R (correlation coefficient) compared to other

algorithms. Based on the ANN, the maximum error was for

friction coefficient for the majority of data and Nusselt

number (Nu) was 2.5 and 5%, respectively. Finally, they

used the neural network to predict the performance of a

spiral heat exchanger in the presence of magnetic field.

Ebrahimi-Moghaddam et al. [123] studied the opti-

mization of minimum entropy using the neural network.

They presented optimal conditions using an Al2O3/EG–W

hybrid NF inside an absorber tube of a parabolic trough

solar collector (PTSC). They considered a neural network

whose inputs were three parameters, and provided optimal

conditions, including volume fraction of NPs, NP diameter

and fluid temperature for inputs. Their results showed that

the amount of entropy generation decreases by decreasing

the volume fraction of NPs and increasing the diameter of

the NPs and the average fluid temperature. In fact, they

Table 1 Correlations presented

for the viscosity of nanofluids
Refs. Correlation

Einstein [92] leff ¼ 1þ 2:5uð Þ
Brinkman [93] leff ¼ 1

1�uð Þ2:5

Batchelor [94] leff ¼ 1þ 2:5uþ 6:5u2ð Þ
Lundgren [95] leff ¼ 1þ 2:5uþ 25:4u2 þ O u3ð Þð Þ
Graham [96] leff ¼ 1þ 2:5uþ 4:5� h=dp

� �
2þ h=dp
� �

1þ h=dp
� �2h i

Hemmat Esfe and Esfandeh [97] lnf ¼ Aþ uð Þ= Bþ CTð Þ
A = 0.03264, B = 0.006214, C = 0.0005517

Namburu et al. [98] log leffð Þ ¼ Ae�BT

A ¼ 1:8375u2 � 29:643uþ 165:56

B ¼ 4� 10�6u2 � 0:001uþ 0:0186

Masoumi et al. [99] leff ¼ 1þ qpVbd
2
p

72Nd

d ¼
ffiffiffiffiffiffiffiffiffiffi
p
6u dp

3

q
;Vb ¼ 1

dp

ffiffiffiffiffiffiffiffiffi
18kbT
pqpdp

q

Putra et al. [100] leff ¼ 0:034� 2� 10�4T þ 2:9� 10�7T2

Hemmat Esfe et al. [101] lnf ¼ 1731:14þ 245:35u� 88:14T � 0:028 _c� 8:94uT

� 0:00078u _cþ 0:00094T _c� 8:77u2 þ 1:65T2 þ � � �

Table 2 Some correlations for

predicting the effective thermal

conductivity of different

nanofluids

Refs. Correlation

Maxwell [110]
keff ¼ kf

kpþ2kfþ2u kp�kfð Þ
kpþ2kf�u kp�kfð Þ

Wasp [111]
keff ¼ kf

kpþ2kf�2u kp�kfð Þ
kpþ2kfþu kf�kpð Þ

Bruggeman [112] u kp�keff
kpþ2keff

h i
þ 1� uð Þ kf�keff

kfþ2keff

h i
¼ 0

Hamiltonn and Crosse [113]
keff ¼ kf

kpþ n�1ð Þkfþ n�1ð Þu kp�kfð Þ
kpþ n�1ð Þkf�u kp�kfð Þ

Koo and Kleinstreuer [114, 115]
keff ¼ kf

kpþ2kfþ2u kp�kfð Þ
kpþ2kf�u kf�kpð Þ þ 5� 104hqfCpfuf T ;uð Þ

ffiffiffiffiffiffiffi
KBT
qfdp

q

f T ;uð Þ ¼ �6:04uþ 0:4705ð ÞT þ 1722:3u� 134:63

Xuan et al.[116]
keff ¼ kf

kpþ2kfþ2u kp�kfð Þ
kpþ2kf�u kf�kpð Þ þ 1

2
qpCpu

ffiffiffiffiffiffiffiffiffiffiffi
KBT

3plfRcl

q

Hemmat Esfe et al. [33] keff ¼ 0:14314� Exp �1:506
u þ 0:024656T

� �
þ 1:0664

Gupte et al. [117] keff ¼ kfð0:0556Peþ 0:1649Pe2 � 0:0391Pe3 þ 0:0034Pe4

Hemmat Esfe et al. [108] keff ¼ 1þ 49:25u� 3287u2 þ 87740u3
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showed that the addition of NPs into the BF leads to an

increase in the friction entropy and a reduction in the

entropy generation and an increase in the heat transfer.

Hemmat Esfe [124] predicted the pressure drop and heat

transfer in a heat exchanger saturated with NF using the

neural network. He modeled his results in terms of Nu and

pressure drop in a heat exchanger filled with Ag/water NF.

Their results indicated high ability of the neural network to

predict the pressure drop and heat transfer. The data

regression coefficient for Nu and relative pressure drop was

99.76% and 99.54%, respectively, which shows the high

accuracy of the method.

Moya-Rico et al. [125] studied the use of neural net-

works in predicting the heat transfer coefficient and pres-

sure drop in a three-pipe heat exchanger with a corrugated

and simple internal tube. They studied the length and epoch

of the corrugations in the heat exchanger. They developed

a neural network with a database of 181 experimental data.

They introduced the best Bayesian regulation algorithm for

the neural network. The neural network consisted of two

Water out

59 mm

M65

Water in

0.15 mm

0.95 mm

6.6 mm

Fig. 11 Finned-tube ambient heat exchanger [121]

Input
layer

Hidden
layer

Output
layer

WeightWeight

Cummulative
network error

Set of
target
output

Error back propagation and weight
updating mechanism (BPL)

Fig. 12 A multi-layer feed-

forward ANN with a

backpropagation algorithm

[121]

Fig. 13 The schematic of spirally coiled tube equipped with magnetic bar arrangements [122]
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hidden layers with 15 and 21 nodes in the first and second

layers. Finally, their results showed that the neural network

is in good agreement with the experimental data, and the

absolute average relative deviation is less than 1.91 for the

heat transfer coefficient and 3.82 for the pressure drop.

Romero-Méndez et al. [126] used neural networks for

predicting the heat transfer coefficient in evaporative mini

tubes. They predicted natural convection heat transfer

coefficient of a refrigerant into very low diameter tubes

using neural networks. Their experiments were performed

on the basis of the Rankine refrigeration cycle to gain data

of heat transfer from constant heat flux tubes. They used 75

percent of their data to predict the neural network model

and 25 percent to predict predetermined goals. They

selected several neural networks to predict the heat transfer

coefficient. Finally, they found that neural networks are

powerful tools for accurately predicting the amount of heat

transfer in evaporative mini tubes.

Ghritlahre and Prasad [127] studied two different solar

heating systems (Fig. 16) using neural networks. They used

the feed-forward neural network (FFNN) model (Figs. 17,

18) to predict the heat transfer coefficient. They used sur-

face roughness to test and obtained 50 samples for the

neural network input. They used multi-layer neural net-

work using feed-forward backpropagation (FFBP) of

parameters that include five surface roughness, relative

surface roughness heights, surface roughness epoch,

roughness size and Reynolds number to predict the Nu.

They also used the Levenberg–Marquardt (LM) model to

find optimal conditions. Their results showed that the

model of neural network is very effective in predicting the

heat transfer coefficient.

Many researchers have found that neural networks are

very suitable to predict the heat transfer coefficient and

pressure drop and the properties of some fluids [128–134].

Naphon et al. [135] studied the NF jet in a micro-channel

heat sink numerically and experimentally. They used

Levenberg–Marquardt Backward propagation (LMB)

model to predict the heat transfer coefficient using the

neural networks. Their results obtained from numerical

simulations and neural network were very consistent with

experimental results. Finally, they found that the use of

neural networks and numerical simulations is very efficient

in predicting the heat transfer coefficient of micro-channel

heat sinks.

Neural network application to predict
thermophysical nanofluid properties

The TC coefficient is a special characteristic of NF.

Addition of NPs into the BF leads to an increase in the TC

and heat transfer. In addition to the experimental mea-

surements of this property, theoretical methods are used to
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Fig. 14 Schematic diagram of experimental apparatus [122]
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predict the TC of the NFs. The results of research carried

out by 34 organizations [136] around the world on com-

pletion and determination of the pattern to study the TC of

NFs show that the Maxwell-modified model, which was

carried out by Nen, yields acceptable results in advance in

agreement with the experimental results.

Papari et al. [43] used ANN for determining the TC of

NFs containing multi-layer carbon nanotubes as NPs in oil,

distilled water, decane and ethylene glycol. It was shown

that the use of model was more accurate than the theoret-

ical models of Zu 2005, Zu 2006, and Yu and Choi, which

was 3.26 percent in the mean error absolute index. The

correlation between the measured value and the experi-

mental data was 0.991.

Hojjat et al. [41] showed the TC of three types of NFs

containing aluminum oxide, copper oxide and titanium

Input layer
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transfer function

Linear transfer
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Fig. 15 Proposed optimal ANN model configuration [122]
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oxide using ANNs. Their proposed model is in good

agreement with the experimental data. Its accuracy was

more than the Hamilton–Croser model that has not the

possibility to investigate the effect of BF temperature and

the volume fraction.

Languot et al. [137] showed that the TC of titanium

oxide/water and alumina oxide/water NFs by selecting four

input parameters that include the volume fraction, the NF

temperature, the TC of the NPs and the size of the NPs for

the training of the network leads to more appropriate

Dact (A) Dact (B)

Glass coverAbsorber plate
Glass coverAbsorber plateFig. 16 Detail schematic

diagram of duct. a One-sided

roughened absorber plate duct.

b Three-sided roughened

absorber plate duct [127]
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Fig. 17 Basic structure of

artificial neurons [127]
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results compared to three parameters, regardless of the size

of the mass.

Hemmat Esfe et al. [138] studied the effects of tem-

perature, volume fraction and NP size on the TC of man-

ganese oxide/ethylene glycol NF using neural networks and

showed that NF temperature has less effect on the increase

in TC than the rest of the parameters. Hemmat Esfe et al.

[139] investigated the TC coefficient of DWCNTS–sio2/

EG and found that the TC coefficient increases by 38% by

adding NPs to the BF compared to the pure fluid.Hemmat

Esfe et al. [140] presented a high precision model for

predicting TC of zirconium oxide/ethylene glycol using a

neural network by considering NF temperature and volume

fraction as network inputs.

Shahsavar et al. [141] studied the TC and viscosity of

paraffin–Fe3O4 NF using neural network method. They

performed their research to evaluate the effects of volume

fraction of Fe3O4 NPs and temperature on the TC and fluid

viscosity of the BF. They used oleic acid as a surfactant to

increase the dispersion and stability of NPs. It was found

that NFs are shear thinning fluids. In addition, they showed

that TC and viscosity increase with the volume fraction of

NPs. In addition, they used the ANN to simulate TC and

viscosity. They used the experimental data to evaluate the

accuracy of neural network models based on well-known

statistical indices such as root mean square (RMS), root

mean square error (RMSE), mean absolute deviation

(MAE) and coefficient of determination (R2) evaluated.

Their results showed that RMS, RMSE, MAE and R2

outputs are less than 1% and the proposed model is a

suitable model for predicting paraffin-Fe3O4 NF

properties.

Rostmian et al. [142] used the neural network to predict

the TC of CuO–SWCNTs hybrid NF. They obtained

experimental results in the presence of the effects of tem-

perature and volume fraction of NPs. Their investigations

were carried out at a temperature range of 20–50 �C and

the volume fractions of 0.02–0.75%. The NPs were CuO

and SWCNTs (50:50), and the BF was water and ethylene

glycol (40:60). Finally, they presented a correlation to

predict the TC of CuO–SWCNTs–EG/water and showed

that the ANN could well predict the thermophysical NF

properties.

Hemmat Esfe and Arani [143] studied the dynamic

viscosity of MWCNT (40%)–SiO2 (60%)/5W50 NF

experimentally. The temperature range was between 5 and

55 �C, and the volume fraction range was 0–1%. They

studied the rheological behavior of the NF and found that

the NF experiences non-Newtonian behavior. They used

ANNs and mathematical relationships to provide the cor-

relations to predict the NF behavior. They used the multi-

layer perceptron (MLP) neural network. Their results

showed that neural networks could be more accurately

predicted for dynamic viscosity of NF.

In another study, Hemmat Esfe et al. [144] investigated

the dynamic viscosity of MWCNTs–ZnO (10–90%)/5W50

NF. They provided correlations using neural networks and

mathematical models and presented the minimum viscosity

under optimum conditions. The neural network model was

multi-layer with 3 neurons in the first layer and 3 neurons

in the second hidden layer. Finally, the neural network

error was less than 7%.

Ghasemi et al. [145] investigated the TC of the COOH–

MWCNTs antifreeze NF. They evaluated their results

using neural networks for the TC coefficient, depending on

the volume fraction of NPs and the temperature. They

considered 9 neurons for the hidden layer and obtained the

neural network outputs of TC coefficient. Their results

showed that the proposed correlation can be very valuable

in engineering applications, but the neural network is in

higher agreement with the experimental results.

Ahmadloo and Azizi [146] used 5 inputs for the neural

network (Fig. 19) to predict the TC coefficient. They used

15 NFs and 776 experimental data of 21 previous studies to

evaluate the neural networks in predicting the TC of NFs.

NP diameter, volume fraction, TC of NPs, temperature and

several other parameters of NPs and BFs were ANN inputs.

Eventually, they showed that the neural network error was

about 1.26 and 1.44 percent compared with experimental

results.

Khosrojerdi et al. [147] predicted the TC of graphene/

water NF using the multi-layer perceptron (MLP) neural

network. They used relationships (10–12) to evaluate the

mean square error (RMSE), coefficient of determination

(R2) and mean absolute percentage error (MAPE), where

KP is predicted TC coefficient and Ka is the actual TC.

Their results showed high accuracy of ANN modeling

compared to experimental results and theoretical models.

RSME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Kp � Ka

� �2
s

ð4Þ

MAPE ¼ 1

n

Xn
i¼1

Kp � Ka

� �
Kað Þ � 100 ð5Þ

R2 ¼ 1�
Pn

i¼1 Ka � Kp

� �2
Pn

i¼1 Ka � Ka

� �2 ð6Þ

Hemmat Esfe et al. [148] investigated and predicted the

dynamic viscosity of TiO2 NF using experimental results

and neural network. They presented a model for predicting

dynamic viscosity using the inputs of temperature and mass

flow rate of NPs. Their results provided a correlation for

dynamic viscosity of the TiO2 NF. They found that the
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neural network is accurate for predicting the dynamic

viscosity of TiO2.

Derakhshanfard and Mehralizadeh [149] used the radial

basis function (RBF) and experimental results of NiO,

WO3, TiO2, ZnO and FeO3 NPs in oil to study the effects

of temperature on viscosity. The morphology and stability

of NPs were analyzed by DLS and TEM analysis. Their

results showed that the mean diameter of NPs in a range of

10–40 nm for different NPs of the neural network is in

good agreement with experimental results. The viscosity

decreases by addition of TiO2, ZnO and FeO3 NPs into the

BF and increases for WO3 and NiO NPs.

Kanaaiyan et al. [150] studied the TC and density of

alumina–silica/water hybrid NF and the application of

neural networks. The hybrid NF was prepared by two-stage

method and analyzed using XRD, TEM, SEM–EDX and

zeta potential. Finally, they found that neural networks are

very effective in predicting TC coefficient of hybrid NFs

depending on the temperature and volume fraction of NPs.

The results showed that the neural network used for the TC

with the hidden two layers and 10 neurons has the mini-

mum error and the highest fitting coefficient, while the

neural network with a hidden layer of 4 neurons was used

for the density as the optimal structure.

Hemmat Esfe et al. [101] had experimental study on

rheological behavior of monograde heavy-duty engine oils

containing CNTs and oxide nanoparticles. They used RSM

(response surface method) to predict viscosity behavior of

nanofluids.

Vafaie et al. [151] obtained TC coefficient of MgO–

MWCNTs/EG hybrid NF experimentally by comparing

with the prediction of neural networks. They considered the

volume fractions of NPs in the range of 0.05–0.6 and the

temperatures between 25 and 50 and obtained the TC

coefficients. They designed four models as 6, 8, 10 and 12

hidden layers using multi-layer neural networks and found

that the best model is 12 neurons with an error of

approximately 0.8%.

Sedaghat and Yousefi [152] investigated the properties

and TC of graphene quantum dots (GQDs) in the BFs

water, ethylene glycol and water–ethylene glycol (60:40).

They found that the addition of GQD NPs into the BFs

increases the TC and viscosity while the viscosity decrea-

ses with the temperature. Eventually, they found that neural

network models are highly consistent with the experi-

mental results.

Many researchers have been investigated the prediction

of NF properties using neural networks. Among them,

Hemmat Esfe et al. [138] studied the TC of MgO/EG NF

using neural networks and experimental results. In another

study, Hemmat Esfe et al. [153] investigated the Al2O3-

water NF. Hemmat Esfe et al. studied the Ag–MgO/water

hybrid NF. He has conducted many studies

[32, 102, 103, 139, 154–160] to predict the NF properties

using neural networks. Their investigations showed that the

neural networks can be a very popular approach for pre-

dicting the NF properties and hybrid NFs.

Alrashed et al. [161] investigated the NFs with water BF

and diamond–COOH and MWCNT–COOH NPs without

surfactant or excess materials at temperatures ranging from

20 to 50 and the volume fraction of 0–0.2%. Based on their

experimental results, they obtained new correlations for

predicting NF properties using experimental data. The

results obtained from the experiments and the predictions
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suggested ANN model for
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of neural network showed that the neural network is in

good agreement with the experimental results. They

investigated the effect of NP types, volume fraction of NPs

and temperature on the thermophysical NF properties. In

another study, Safaei et al. [162] investigated the effect of

temperature and volume fraction of NPs on TC of ZnO-

TiO2/EG hybrid NF. They analyzed the data obtained from

the neural network. They considered several models of the

neural network to predict the TC coefficient. Finally, they

used a model for predicting the input temperature and the

volume fraction of NPs. Their results were in very good

agreement with the experimental results.

Karimi and Yousefi [163] presented the density corre-

lations using neural networks and the backpropagation

network algorithm (BPN) and genetic algorithm. Their

results presented in the BPN–GA method were in very

good agreement with the experimental results. They also

showed that the Pak and Choi models are very suitable for

prediction of the density of NFs.

Alnaqi et al. [164] used neural networks to predict the

heat transfer coefficient and the NF pressure drop of water

and multi-walled carbon nanotubes. They designed an

optimal neural network with 65 neurons, the inputs of

which were Reynolds number and volume fraction. In

addition, for modeling 78 data were used which included

62 data for training and 16 data for model testing. Their

results showed that the results of the neural network are in

great agreement with the experimental results and can be

used as models for predicting the thermal NF properties.

Al-rashed [165] predicted the heat transfer coefficient and

pressure drop in a horizontal pipe. He used the MWCNTS/

EG–water non-Newtonian NF as a working fluid and used

an empirical relationship to calculate the TC and viscosity

of the NF. His results showed that in the volume percentage

of 0.725% and temperature of 49.672 �C, the highest heat

transfer coefficient occurs at the same time with the least

pressure drop. This value is 2.73 times for the TC and is

2.41 times for the pressure drop compared with the BF.

Alsarraf et al. [166] introduced a new support vector

regression method as an alternative to the ANN to predict

the NF properties. They evaluated its performance based on

the experimental data for single wall carbon nanotubes in

ethylene glycol versus concentration of nanotubes and

temperature. Therefore, they trained both LS-SVM and

ANN models to evaluate the viscosity of this NFs. They

compared the accuracy of these two models. Finally, the

generalization of LS-SVM is much better than ANN. In

fact, the LS-LSM model has fewer parameters than ANNs.

Bagherzadeh et al. [167] used the new EANN method to

predict the thermal properties of F-MWCNTs–Fe3O4/EG

new hybrid NF. In addition, they used an appropriate

sensitivity analysis method, which included a new pro-

posed method for sensitivity analysis through ANNs. Their

results showed that the proposed method does not only

provide more understandable and accurate results, but also

requires less time and cost calculation. They showed that

the proposed method could be used for all ANNs with

different architectures, training algorithms and input–out-

put data sets. In another work, Bagherzadeh et al. [168]

predicted the properties of NPs CuO/liquid paraffin using a

combination of neural networks and genetic algorithms.

Bahrami et al. [169] used neural networks to predict the

properties of non-Newtonian hybrid NF. They provided 24

different ANN methods for introducing appropriate archi-

tecture and training algorithms. Finally, the average error

of the MSE square between the goals and outputs of the

ANN was evaluated in order to provide the best opti-

mization approach among them. Shahsavar et al. [170]

used the robust weighted least squares support vector

regression to predict the TC of water/graphene oxide–sili-

con carbide NF. In another study, Hemmet Esfe et al. [171]

examined the viscosity of MWCNT (10%)–Al2O3 (90%)/

5W50 nano-oil and compared the results of the experi-

ments with the results of neural networks. Moreover,

Karimipour et al. [172] predicted the TC of MWCNT–

CuO/water hybrid NF using neural networks.

Moradikazerouni et al. [173] also predicted the properties

of SWCNTs/EG–water nanbofluid. In another work,

Rouhani et al. [174] used neural networks to predict the

properties of ZnO–Ag (50%–50%)–water NF. Eventually,

all of these researchers concluded that the use of neural

networks saves time, and on the other hand, results will be

very precise.

Quality and comparison of predicted ANN
responses with the responses that can be
obtained from other technique

According to the studies, different methods have been used

to predict different properties. For example, a study by

Desai et al. [175] compared artificial neural networks and

response surface method. They found that the average error

for the artificial neural network method was 5.6% and for

the response surface method was 20%. The CC parameter

was 0.89 for response surface method and 0.99 for neural

networks, respectively, indicating the superiority of neural

network methods in predicting the behavior of nonlinear

systems. They also showed sensitivity analysis with 2%

predictive error in ANN method and 8% for response

method.

Karazi et al. [176] compared the ANN and DOE (design

of experimental) methods. Based on the results of these two

methods and comparing them with the experimental data, it

was found that the average error in the ANN method is two

percent greater than the DOE method. But the ANN
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method factor improved prediction was almost two times

better than the DOE. However, in another work,

Sadollah et al. [177] predicted and optimized the stability

parameter of titanium oxide nanofluid using RSM and

ANN method and they found that ANN method was in

better agreement with experimental results than RSM

method.

Hemmat Esfe et al. [90] investigated and compared

different ANN methods in predicting TiO2/SAE50 nano-

lubricant viscosity with non-Newtonian behavior. They

used three parameters of average correlation factor (R2),

absolute relative deviation (AARD) and root mean square

error (RMSE) to compare genetic algorithm–radial basis

function neural networks (GA–RBF), least square support

vector machine (LS-SVM) and gene expression program-

ming (GEP). They finally found that the GA–RBF model

showed the best accuracy.

As mentioned earlier, artificial neural network tech-

niques are used successfully in prediction problems. Arti-

ficial neural network methods have great ability to predict

nanofluid properties or other properties. Artificial neural

networks have a rich surface of different structures in

different applications. It also seems necessary to process

basic statistical data to obtain better results. In neural

networks, personal choice and experience are important in

choosing the optimal parameters and model. In fact,

choosing the best neural network structure does not have a

specific format and is done with trial and error. Based on

studies on the use of artificial neural networks in predicting

properties or other issues, we found that the predictions of

artificial neural network method are better than other

methods. According to the reports provided by the

researchers, also due to the similarity and proximity of the

predicted values, using different methods can increase the

reliability of the predicted values. One of the noteworthy

points in the literature on the methods used in recent

studies is the use of high number of observations. There-

fore, many observations should be used.

Conclusion and future works

In the present study, the neural networks, their types and

their applications in prediction were considered. In addition,

their applications in prediction of NF properties were men-

tioned. Based on the results obtained by the researchers for

TC, viscosity, etc., of NFs, many parameters, such as tem-

perature, volume fraction of NPs, NP size, temperature,

Brownian motion and the shape of NPs, are effective. Since

there is no general correlation that can be used for the

properties of different NFs, the use of methods to predict

these properties is of interest. Neural network method is one

of the most practical methods. All previous studies proposed

the use of neural network methods to predict the NF prop-

erties. The error rate was very low compared to experi-

mental results. Unfortunately, although many researchers

have shown that the use of neural networks is very effective

to predict the NF properties, it is still difficult to choose the

type of neural network and its input and output structure.

Thus, a comprehensive study was required to provide the

performance of neural networks and their applications.

Neural networks are a model for predicting NF proper-

ties or heat transfer coefficients in thermal equipment.

However, in previous studies, it was less likely to provide a

model for predicting the properties of all NFs. It is pro-

posed to present a model for predicting the properties of all

NFs for future research. In addition, studies on the effect of

temperature, volume and diameter of NPs have been

observed, but less research is concerned with the study of

most of the parameters affecting properties. Therefore, it is

suggested that future studies using neural networks provide

a model that there are effects of the effective parameters in

it. It is also suggested using the neural networks to predict

the efficiency and heat transfer rate of the thermal equip-

ment to avoid costly testing and save costs. On the other

hand, it is suggested to use predicted neural network

models to reduce their error.
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Ann Phys. 1906;324(2):289–306.

93. Brinkman H. The viscosity of concentrated suspensions and

solutions. J Chem Phys. 1952;20(4):571.

94. Batchelor G. The effect of Brownian motion on the bulk stress in

a suspension of spherical particles. J Fluid Mech.

1977;83(1):97–117.

95. Lundgren TS. Slow flow through stationary random beds and

suspensions of spheres. J Fluid Mech. 1972;51(2):273–99.

96. Graham AL. On the viscosity of suspensions of solid spheres.

Appl Sci Res. 1981;37(3–4):275–86.

97. Hemmat Esfe M, Esfandeh S. Rheological behavior of CuO/EG:

w (20: 80 v/v) nanofluid from a thermal perspective. J Therm

Anal Calorim. 2019;135(1):61–72.

98. Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of

copper oxide nanoparticles dispersed in ethylene glycol and

water mixture. Exp Therm Fluid Sci. 2007;32(2):397–402.

99. Masoumi N, Sohrabi N, Behzadmehr A. A new model for cal-

culating the effective viscosity of nanofluids. J Phys D Appl

Phys. 2009;42(5):055501.

100. Putra N, Roetzel W, Das SK. Natural convection of nano-fluids.

Heat Mass Transf. 2003;39(8–9):775–84.

101. Hemmat Esfe M, Arani AAA, Esfandeh S. Experimental study

on rheological behavior of monograde heavy-duty engine oil

containing CNTs and oxide nanoparticles with focus on vis-

cosity analysis. J Mol Liq. 2018;272:319–29.

102. Hemmat Esfe M, Esfandeh S, Alirezaie A. A novel experimental

investigation on the effect of nanoparticles composition on the

rheological behavior of nano-hybrids. J Mol Liq.

2018;269:933–9.

103. Vakili M, Karami M, Delfani S, Khosrojerdi S, Kalhor K.

Experimental investigation and modeling of thermal conduc-

tivity of CuO–water/EG nanofluid by FFBP-ANN and multiple

regressions. J Therm Anal Calorim. 2017;129(2):629–37.

104. Hemmat Esfe M, Zabihi F, Rostamian H, Esfandeh S. Experi-

mental investigation and model development of the non-New-

tonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant

for lubrication purposes. Journal of Mol Liq. 2018;249:677–87.

105. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Klein-
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