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Abstract
The purpose of the present work is to investigate humidification–dehumidification desalination system and to explore the

effect of pertinent parameters on the overall performance of the process taking in account the irreversibilities and energy

losses. The system has been inspected using first and second laws of thermodynamics, and an optimization of the

performance along with design development has been performed based on mathematical calculation and modeling for the

fundamental equations associated with mass, energy, exergy and salinity balance incorporating the effects of irre-

versibilities and thermal losses which in turn helps in establishing an efficient desalination system by reducing these losses.

The results show a good improvement compared to previous studies. The model target is to increase heat exchange in

humidifier and dehumidifier compartment as well as augmenting pure water capacity and lessening energy consumption.

Results expose that the inlet water temperature and flow rate represent the main factors affecting the system performance. It

is found that the heater has the main part of exergy losses. Increasing the temperature of the water in the dehumidifier

outlet allows minimizing the exergy losses in the dehumidifier.

Keywords Humidification–dehumidification � Mathematical programming � Optimization � Irreversibilities �
Performance � Design

List of symbols
A Area (m2)

a Specific area (m2/m3)

Cp Specific heat at constant pressure (Jkg-1 K-1)

Cv Specific heat at constant volume (Jkg-1 K-1)

H Enthalpy (kJ kg-1)
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h Heat transfer coefficient (W m-2 K-1)

k Mass transfer coefficient (kg m-2 S-1)

_m Mass flow rate (kg s-1)

N Mole fraction

QL Latent heat evaporation (J kg-1)
_Q Heat flux (kW)

T Temperature (�C)
P Pressure (kPa)
_Sgen Rate of entropy generation (J K-1)

X Salt concentration (TDS)

z Elevation (m)

e Heat exchanger efficiency

Subscripts
a Air

con Condenser

e Evaporator

f Feed water

hex Heat exchanger

in Inlet

out Outlet

pur Pure water

bra Brackish water

s Salt

vap Vapor

i Interface

m Mass

n Number of effect

Loss Losses

w Water

Introduction

Desalination systems are widely used in several industries,

and the multi-effect distillation MED and multi-stage MS

used to investigate the thermodynamic application of sec-

ond law could lead to improving the performance of pro-

cesses. Designers and engineers extract from

thermodynamic laws to find out the exergy analysis. The

motivation behind this research work is because

potable water is becoming more scarce, which means it is

imperative to find solutions to better manage and produce

clean water at low cost. The second motivation is that

water desalination processes involve huge amounts of

energy and the reduction in thermal consumption, along

with higher performance representing a challenge for many

engineers and researchers.

The humidification–dehumidification desalination sys-

tem is a promising process technology that is combined

with solar energy for small production plants. The most

recent studies have discussed ways to improve the distillate

production and enhance the desalination system’s perfor-

mance. The novelty of the present study is that it can be

compared with recently published research, as the purpose

of this study is to design and optimize a humidifier–de-

humidifier desalination system with higher performance

and lower energy consumption, and that could run on solar

energy.

The present research approach involves several

researchers treating the humidifier–dehumidifier desalina-

tion system from different perspectives; however, to the

authors’ best knowledge, no previous studies have included

both irreversibilities, exergy and heat losses through main

compartments, and the results obtained in this study are the

closest to experimentally when compared to other studies.

System productivity is mostly influenced by the airflow

rate and water temperature, although a minor influence is

from the level of water. The humidifier’s productivity and

the desalination system’s thermal productivity are aimed at

maximum efficiency [1]. Humidification–dehumidification

(HD) desalination cycles have been used to define in what

way cycles and mechanisms can be enhanced. It has been

found that the cycle minimized specific entropy generation

and then increased the output ratio (GOR) [2].

Muthusamy et al. observed that the energy and exergy

analysis construed the energy’s effective utilization quan-

tity with the changed HDH desalination system. The

improved system resulted in a 45% productivity enhance-

ment when compared to a 0.340 kg h-1 conventional

system [3].

Humidification–dehumidification (HD) desalination

system’s productivity improved by modifying the behavior

of the flow in its mechanisms using a modern type of

insertion for supplements and packing material; this was

performed with two different types of humidifier [4]. This

study’s results show that the system yield was maximized,

with a maximized flow rate for water and air [5]. This

study’s results show that this component has good pro-

ductivity and performance because of the latent heat re-

utilization of vapor condensation between the two system

loops during desalination [5]. Xu et al. compared the per-

formance between open/close cycles and found that the

open cycle yielded the most, with a cooling seawater flow

rate increase, which differed to that of the closed cycle [6].

He et al. detected that a minor temperature difference of

a lower value for the condenser produced higher values

both for humidification and dehumidification and was

effective in examining the production of water and the

consistent efficiency of the thermal system [7–12].

Saeed et al. applied a mathematical model and examined

the system’s performance under different working condi-

tions, including the humidifier and dehumidifier’s effi-

ciency through theoretical modeling [13]. They proposed a
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model using a mathematical system that is more effective

for forecasting distillate production than the existing

research results at preserving sensible temperature calcu-

lations [14–18].

Sharshir et al. used a theoretical model to compare the

average hourly fresh water accumulative variations in

productivity from 9 a.m. to 5 p.m. It is initiated that the

accumulated distillate amount for wick solar still with and

without film cooling is maximum than that of pre-

dictable solar remain continuously, where the typical every

hour freshwater productivity is maximum for wick remain

with and without mat cooling [19]. This theoretical study is

in agreement with the experimental data, with the highest

percentage deviation at 5% from the investigational data,

and the cycle of improved obtained approximately 100%

improvement in the performance of energy completed the

basic cycle because with heat process recovery connected

with the cycle of improvement [20–23].

Huifang et al. compared with the existing multi-effect

humidification–dehumidification desalination system, it

recycles the concentration the heat of latent and recycles

the heat of residual in the saline successfully [24]. The

numerical model is applied to examine the performance of

this installation type exposed to the control parameters

differences [25]. HDH desalination process is a promising

system for producing new water to meet limited water

demand. In general, thermal energy required to run the

HDH system can be found from the sources of renewable

similar the geothermal energy and solar permit temperature

process performed [26, 27]. The maximum change in the

enthalpy rates of either stream exchanging energy is

equivalent and characterizes the balancing in the thermal

state for an immediate mass exchange and heat system

[28]. The mass rate ratio studies the effect on the fixed-size

system performance, and they study its conclusion on the

generation of entropy and the driving forces for heat and

mass transfer. Likewise, they describe energy effectiveness

generalized for mass exchangers and the temperature

[29–38].

The desalination system operation is consuming the

highest performance after the heat rate ratio roughly

reaches value one. In this situation only, the water source

one is heated, if the Intel of energy is minimum, the heating

of water is a much good result for an effective system,

nevertheless after the heat inlet is maximum; the heating of

air is further operative [39–49]. Humidification–dehumid-

ification desalination process with the double-stages solar

multi-effect has maximum energy improvement rate than

the single-phase preforms [50–56]. Recovery ratio con-

gregates to determine as the extractions/injections number

upsurges and the closed loop-air model, HDH open loop-

water systems with the extractions/injections of the air, the

rate ratio of the mass flow variations because of

condensation and evaporation within a single stage can be

avoided [57–66]. In this present research work, the authors

provide the best solution to some existing problems with

the humidifier–dehumidifier desalination system with

higher performance and lower energy consumption that

lead to save some energy and reduce the pollution in the

environment. Compared to previous published works, the

improved humidification–dehumidification model taking

into account energy losses and irreversibility has been

developed and studied in this paper.

Mathematical formulation

The proposed model of the humidification–dehumidifica-

tion system incorporates three major compartments which

are heater, humidifier and dehumidifier as exposed in

Fig. 1. The humidification–dehumidification system is

characterized by two types of flow with open or closed air

cycle. Some researchers [8–15] reported that thermal effi-

ciency increases and reaches in case of closed air cycle;

however, in case of open air cycle, pure water production

augments meaningfully. In the dehumidifier section, the

vapor or the humid air produced in the humidifier will be

condensed in contact with cooled surface which led to

produce pure water, and the feed water temperature will

increase by latent heat of condensation in the dehumidifier

section. While in the humidifier section, amount of vapor

will be removed by air. Finally, heater supply air or water

or both of them with amount of heat.

Air flow

Rejected water Salt water

Distilled water

Dehumidifier

Heat source

Humidifier

Humid air

Fig. 1 Humidification–dehumidification desalination system

configuration
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The established mathematical model based on the

models of the components led to governing equations

related to mass, energy and exergy balance which are used

to define the rate of heat transfer and heat balance in three

all major section humidifier, dehumidifier and heater

according the following assumption:

• Steady state natural air flow.

• Water distribution over the humidifier is uniform.

• Gradient of humidity and temperature is vertical in both

humidifier and dehumidifier.

• Humid air is considered as gas perfect.

• The mathematical model considers atmospheric

pressure.

• Kinetic and potential energy variations were neglected.

Figure 2a–c illustrates the control volume in all three

part water, interface and humid air.

Exergy losses

Bejan [47] established the Standard chemical exergy of

ideal gas mixture which is defined by:

e�CH ¼
Xn

xke
�CH
k þ RT0

X
lnNk ð1Þ

where Nk represent the mole fraction.

Exergy losses due to mass transfer are defined by:

EXLoss;m ¼ EXin � EXout ð2Þ

The following equation gives input and output exergy,

EXin ¼ RT0 nAiLn NAið Þ þ nBiLn NBið Þ½ �
¼ RT0Ln NnAi

Ai � NnBi
Bi

� �
ð3Þ

EXout ¼ RT0 nAeLn NAeð Þ þ nBeLn NBeð Þ½ �
¼ RT0Ln NnAe

Ae � NnBe
Be

� �
ð4Þ

Therefore, the exergy losses due to concentration

change are presented below by:

EXLoss ¼ RT0Ln
NnAi
Ai � NnBi

Bi

NnAe
Ae � NnBe

Be

� �
ð5Þ

The second law of thermodynamics proves that the

greater temperature heat sources cannot transfer all the

entire heat to the lesser temperature heat source; therefore,

exergy losses appear in this transfer of heat and expressed

as follows:

EXLossDT ¼ DEXsourceDT � DEXsin kDT ð6Þ

The minor and greater temperature heat sources are,

respectively, exergy sink and source.

Where DEXsin kDT and DEXsourceDT represent, respec-

tively, the sink and source exergy variation.

Consider, the environment temperature T0, exergy

source temperature is T1, the exergy sink temperature is T2
and the heat transfer rate among them are _q; therefore, the

exergy variation for sink and source is, respectively

Water
dz

Twc – dTwc

Twc

Tic

Tac

Tac – dTac

Wall Condensate film

Humid air

ω ic

mwc
.

md+
.

md
.

mvc
.

mvc –
.

mac
.

dmvc
.

mac
.

dmd
.

mwc
.

(a) Control volume water zone

(b) Control volume interface zone

(c) Control volume humide air zone

Fig. 2 a Control volume water zone, b control volume interface zone,

c control volume humide air zone
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DEXsinkDT ¼ _q 1� T0

T2

� �
ð7Þ

DEXsourceDT ¼ _q 1� T0

T1

� �
ð8Þ

Consequently, an exergy loss due to temperature varia-

tion is defined as follows:

ELDT ¼ _qT0
T1 � T2

T1T2

� �
ð9Þ

Finally, the total energy variation due to both mass and

heat transfer is:

DEXDC;DT ¼ DEXDTð ÞDC¼0þ DEXDCð ÞDT¼0 ð10Þ

To conclude the total exergy losses for humidification–

dehumidification system is as follow

ELoss;total ¼ ELoss;H þ ELoss;D þ ELoss;HE ð11Þ

where ELoss;H is the humidifier exergy losses, ELoss;DH is the

dehumidifier exergy losses and ELoss;HE is the dehumidifier

exergy losses.

Energy analysis

The application of mass balance for the control volume

exposed in Fig. 2 can be presented as follows:

d _mwe ¼ d _mve ¼ _maedxe ð12Þ

The heat balance for the same control volume con-

cerning water area

dTwe

dz
¼ hweaHe Twe � Tieð Þ

_mweCwe

ð13Þ

However, for the air region, both mass and heat balance

are presented, respectively, as follows:

dxe

dz
¼ kaeaMe xie � xeð Þ

_mae

ð14Þ

dTae

dz
¼ haeaHe Tie � Taeð Þ

_mac Cae þ xeCveð Þ ð15Þ

Finally, the heat balance for border is presented:

HweaHe Twe � Tieð Þdz ¼ hacaHe Tie � Taeð Þdz
þ LvekacaMc xie � xcð Þdz ð16Þ

The interface is considered a layer of saturated air;

consequently, the absolute humidity xint,H depends on

interface temperature Tint,H. An experimental research [ ]

presents this relation as follows:

xie ¼ fexpðTieÞ
¼ 2:19� 10ð�6ÞT3

ie � 1:85� 10ð�4ÞT2
ie þ 7:06

� 10ð�3ÞT3
ie � 0:077 ð17Þ

In the second main part related to dehumidifier

(Condenser).

The main equations applied to the dehumidifier and

consider the same assumption as humidifier.

The application of mass balance for the control volume

exposed in Fig. 2 can presented as follows:

d _md ¼ d _mvc ¼ _macdxc ð18Þ

The heat balance for the same control volume con-

cerning water section

dTwc

dz
¼ hwcaHc Tic � Twcð Þ

_mwcCwc

ð19Þ

However, for the air section, both mass and heat balance

are presented, respectively, as follows:

dxc

dz
¼ kacaMc xc � xicð Þ

_mac

ð20Þ

dTac

dz
¼ hacaHc Tac � Ticð Þ

_mac Cac þ xcCvcð Þ ð21Þ

Finally, the heat balance for the interface is presented:

HwcaHc Twe � Ticð Þ ¼ hacaHc Tic � Tacð Þdz
þ LvckacaMc xic � xcð Þ ð22Þ

The absolute humidity relation is:

xint;deh ¼ fexpðTint;dehÞ
¼ 2:19� 10ð�6ÞT3

int;deh � 1:85� 10ð�4ÞT2
int;deh

þ 7:06� 10ð�3ÞT3
int:deh � 0:077

ð23Þ

The last main part related to heater represents an

important section in humidification–dehumidification sys-

tem which supply water with heat to reach certain tem-

perature required for the humidifier.

The heat rate transfer to water flow rate is given by:

_Q ¼ _mCPDT ð24Þ

For the optimization of humidification–dehumidification

system, the pure water production compared to feed water

should be maximized, therefore:

Max productivity ¼ _md

_mwc

ð25Þ

As well as in the dehumidifier, the heat recovery should

be maximized therefore:

Max HR ¼
Twc 1ð Þ � Twc mð Þ
Twe 1ð Þ � Twc mð Þ

ð26Þ

In the other hand, the supplier of specific thermal energy

should be minimized and is illustrated by:
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Min specific energy ¼
_Q

_md

ð27Þ

Result and discussion

The proposed model of desalination system was solved

using Matlab Software (R2012b, MathWorks limited,

London, UK) to evaluate the performances of the opti-

mized system. The thermal energy consumption versus the

fed water mass flow rate and the exergy losses in the three

main compartments versus the dehumidifier water outlet

were calculated. The obtained results of the optimization of

both evaporator and condenser surface’s are presented and

discussed in this section. As well known, the feed water

mass flow rate and the temperature have an important

effect on the HD desalination efficiency [16]. The variation

of specific thermal energy consumption versus the feed

water mass flow rate with Tfw = 25 �C and DTevp-
= DTcon = 5 �C, for the optimized cycle, is presented in

Fig. 3. The thermal energy consumption takes its minimum

for a feed water mass flow rate of 2 kg/s, when the feed

water mass flow is lesser than the finest rate that leads to an

exponential augmentation of the thermal energy

consumption.

The impact of the temperature of the dehumidifier water

outlet on exergy losses in the different compartments of the

desalination cycle is shown in Fig. 4. The exergy losses in

the heater declined from 3.5 kW for 60 �C to 2.4 kW for

68 �C. Increasing the temperature of the water in the

dehumidifier outlet allows also minimizing the exergy

losses in the dehumidifier as shown in Fig. 4. However, the

exergy losses in the humidifier increase slowly to reach of

weak value of 0.22 kW. In overall, the results show an

important improvement of desalination process by mini-

mizing the total exergy losses.

The results presented in Fig. 5 show the variation of the

gained output ratio (GOR) versus the feed water tempera-

ture for different TW;O;H. For different values of TW;O;H, the

GOH is maximum for a temperature of feed water equal to

31.5 �C. Increasing TW;O;H from 80 to 110 �C allows to

step up the GOR from 2.9 to 2.97. The presented results
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show the importance of working at high temperature in aim

to increase the GOR.

According to the results shown in Fig. 6, the exergy

losses in the heater represent about 95% of the total losses

for a temperature of water outlet heater of 70 �C. The

losses in the evaporator represent the less part of the total

losses. Increasing the temperature allows to minimize the

losses in the heater. The histogram shows that the exergy

losses in both evaporator and condenser increase with the

increasing of the temperature.

The target of the developed model for the HD water

desalination process is to increase the production of pure

water. The 3D surface shown in Fig. 7 allows to quantify

the effect of the temperature variation in the humidifier and

the dehumidifier and the feed water mass flow rate on the

pure water production. It is clear that increasing tempera-

ture or the feed water mass flow rate allows increasing the

quantity of produced pure water. The 3D surface shows

that the optimum of production is obtained for maximum

values of both temperature and feed water mass flow rate.

The new modeling of the enhanced HD water desali-

nation system allows investigating the effect of the tem-

perature variation in the humidifier and the dehumidifier

and the feed water mass flow on evaporator surface. The

result of Fig. 8 shows that optimum evaporator surface is

Heater Evaporator Condenser
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Fig. 6 Exergy losses distribution through three main compartments
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obtained at higher temperature and lower feed water mass

flow rate. At the same temperature, increasing the feed

water mass flow conducts to a slow increase in the evap-

orator area. However, the effect of the temperature on the

evaporator area is more intense. Indeed, at constant feed

water mass flow rate, any variation of temperature is

accompanied with strong variation of the evaporator area.

The effect of the temperature variation and feed water

mass flow rate on the condenser surface is shown in Fig. 9.

The analysis of the 3D surface proves that an optimum

(minimum) of the condenser surface of 3.7 m2 kg-1 h-1 is

obtained for a temperature of 15 �C and a feed water mass

flow rate of 1.2 kg s-1. Expanding the feed water mass

flow rate for the same temperature corresponds to an

increase in the condenser surface. The effect of any vari-

ation of the feed water mass flow rate on the condenser

surface is stronger for lower temperature values.

The minimization of the specific thermal energy con-

sumption has important consequence of the overall system

efficiency. Usually, the objective is to produce the maxi-

mum pure water with minimum electrical power con-

sumption. In Fig. 10, it is perceived that the lowest specific

thermal energy consumption is achieved at lower temper-

ature variation and for evaporator area of 9.8 m2/kg/h.

According to the presented results, temperature variation of

both evaporator and condenser should be kept at minimum

values to minimize the specific thermal energy consump-

tion. On the other hand, increasing or decreasing the

evaporator area induces an increase in specific thermal

energy consumption.

For particular values of condenser surface and temper-

ature variation, the specific thermal energy consumption is

minimum. The conducted study analyzes the effect of

temperature variation, and the condenser surface is pre-

sented in the 3D surface given in Fig. 11. It is clear that the

specific energy consumption is minimum for just one

couple of condenser area–temperature variation. Increasing

the temperature variation increases the specific energy

consumption for all values of the condenser area. However,

the optimum specific energy consumption is obtained for

condenser area equal to 6 (Please check the value and the

unit). Increasing or decreasing the condenser area increases

the specific thermal energy consumption.

Conclusions

An improved humidification–dehumidification model tak-

ing into account energy losses and irreversibility has been

developed and studied in this paper. Compared to previous

published works, the developed model allows examining

effectively the effect of different parameters such as the

temperature variation and the feed water mass flow rate on

the efficiency of the desalination system. The simulation

results presented in the paper showed the efficiency of the

optimization of the HD desalination process considering

energy losses and irreversibility. Indeed, the results of this

investigation are more accurate compared to previous

research work.

The new modeling approach leads to the following

optimization results:
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• Through the new concept of analysis, exergy losses in

three main compartments of HD desalination system

can be calculated separately. The results show that the

heater has the main part of exergy losses. Increasing the

temperature of the water in the dehumidifier outlet al-

lows minimizing the exergy losses in the dehumidifier.

• The working at high temperature permits to increase the

GOR. The GOR is maximum for a temperature of feed

water equal to 31.5 �C. On the other hand, increasing

TW;O;H from 80 to 110 �C permits to increase the GOR

from 2.9 to 2.97.

• Increasing temperature or the feed water mass flow rate

improves the quantity of produced pure water. Pure

water optimum production is obtained for maximum

values of both temperature and feed water mass flow

rate.

• The optimum evaporator surface corresponds to higher

water temperature and lower feed water mass flow rate.

At the same temperature, increasing the feed water

mass flow conducts to a slow increase in the evaporator

area. However, at constant feed water mass flow rate,

the variation of temperature induces strong variation of

the evaporator area.

• For lower temperature variation and for evaporator area

of 9.8 m2 kg-1 h-1, specific thermal energy consump-

tion is optimum. Temperature variation of both evap-

orator and condenser should be kept at minimum values

to minimize the specific thermal energy consumption.
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