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Abstract
In the present research, an artificial neural network model was developed to predict the pool boiling heat transfer

coefficient (HTC) of refrigerant-based nanofluids based on a large number of experimental data (1342) extracted from the

literature. Diverse training algorithms, e.g., Bayesian regulation backpropagation, Levenberg–Marquardt (LM), Resilient

backpropagation and scaled conjugate gradient were utilized. Besides, several transfer functions like log-sigmoid (logsig),

radial basis (radbas), soft max transfer function (softmax), hard-limit (hardlim), tan-sigmoid (tansig) and triangular basis

(tribas) were applied for the hidden layer, and their influences on model correctness were surveyed. The effects of heat flux,

saturation pressure, nanoparticle thermal conductivity, base fluid thermal conductivity, nanoparticle concentration

(mass%), nanoparticles size and lubricant concentration (mass%) on the pool boiling HTC of refrigerant-based nanofluids

were determined over wide ranges of operating conditions. A network possessing one hidden layer with 19 neurons using

tansig and purelin as transfer functions in hidden and output layers in a row was introduced as a model having the best

performance. In addition, LM was known as a much more efficient train algorithm in comparison with others resulting in

extremely precise prediction. The outcomes indicated the present model could accurately estimate the pool boiling HTC of

refrigerant-based nanofluids with a correlation coefficient (R2) of 0.9948 and overall mean square error of 0.01529.
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List of symbols
ANN Artificial neural network

MLFNN Multilayer feed-forward neural network

MLP Multilayer perceptron

FFANN Feed-forward artificial neural network

BP Backpropagation

R2 Correlation coefficient

MRE Mean relative error

MSE Mean square error

N Number of experimental data points

Epoch Number of iteration in training process

h Relative pool boiling heat transfer coefficient

(HTC) (W m-2 K-1)

P Pressure (kPa)

q Heat flux (kW m-2)

dp Particle size (nm)

k Thermal conductivity of nanoparticles

(w m-1 k-1)

X Input variable

CNT Carbon nanotube

RI Relative importance (%)

Super/subscripts
Exp Experimental

min Minimum

max Maximum

N Number of experimental data points

p Nanoparticle

bf Base fluid

sat Saturation

Greek letters
up Particle concentration (mass%)

ulub Lubricant concentration (mass%)
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Introduction

The process of surface heat transfer into a large body of

stagnant liquid is called pool boiling. In fact, pool boiling is

a type of boiling process in which the temperature of the

surface is slightly hotter than the saturated temperature of

the fluid. This process is specified by the nucleation and

subsequent growth of vapor bubbles of the fluid on the

surface and then rising from the surface. Generally, bub-

bles growth in pool boiling is highly related to temperature,

surface type, thermodynamics properties of the fluid and

surface tension of the fluid. Pool boiling as an important

way of heat transfer is applied in heat transfer equipment in

the process and refrigeration industries [1]. In refrigeration

industries, this heat transfer route is used in flooded

refrigerant evaporators, where refrigerants boil on external

zone of a tube bundle, thereby cooling the tube side fluid.

The value of HTC on the shell side is a well-known

parameter for evaluating the applicability of these evapo-

rators [2–5]. In a refrigeration operation, optimal layout of

the evaporator entails the exact estimation of the pool

boiling HTC of the refrigerant [6].

As mentioned before, according to massive ability of

boiling heat transfer in heat removal, it has been appointed

as building air-conditioning equipment capacity. During

recent decades, many types of research were performed to

further enhance the boiling HTCs [7]. Recently, environ-

mental interests about the CFC application have con-

tributed to the growth of appropriate fluids to substitute

CFC refrigerants [8]. Accordingly, various nanofluids

mainly containing Cu and Al nanoparticles were devel-

oped. From the theoretical point of view, these particles

possessing high thermal conductivity ought to enhance the

overall heat transfer by turbulence near the laminar sub-

layer [7, 9]. Furthermore, refrigerant-based nanofluids are

among the nanofluids, in which the base fluid is a con-

ventional refrigerant. Experiments illustrated that thermal

conductivity of the refrigerant-based nanofluids is larger

than that of the pure refrigerant [10], and the refrigeration

system exerting refrigerant-based nanofluid possesses a

higher efficiency compared with those using conventional

refrigerants [11–14].

Indeed, an innovative method to increase heat transfer is

the dispersion of the nanoparticles in a base fluid known as

‘‘nanofluid’’ introduced by Choi for the first time [15–20].

Primitive announced essays on this topic reported the

pivotal thermal conductivity enhancement. On account of

the fact that nanofluids possess a larger thermal conduc-

tivity compared with base fluids, their heat transfer char-

acteristics are anticipated to be greater than those of the

base fluids leading to much more efficient alternatives for

heat transfer purposes, including pool boiling heat transfer

[8, 21].

Das et al. [22, 23] conducted an experimental study for

evaluating pool boiling heat transfer employing a hori-

zontal heater tube with nanofluids containing 1, 2 and 4%

vol%. Al2O3 nanoparticles were dispersed into water. The

outcomes were stunning: nanofluids were foreseen to pro-

mote the heat transfer features during pool boiling;

nonetheless, the nanofluids boiling curves revealed that the

water boiling heat transfer had diminished through the

adding of nanoparticles. This was attributed to the tube

roughness and the increment in particle vol%. Moreover,

the reduction in pool boiling heat transfer of Al2O3–water

nanofluid was reported in the study of Bang and Chang

[24]. Controversial outcomes were published [25] related

to usage of electrostatic stabilizers as surfactant. Pool

boiling heat transfer of Al2O3–water nanofluids on a hori-

zontal flat surface developed up to 40% at the mass percent

of 1.25% mass% [8]. Investigations on the pool boiling of

nanofluids which made by dispersion of 47 and 150 nm

Al2O3 nanoparticles in water as base fluid, on a smooth

tube (average surface roughness was 48 nm) proved that

the fewer number of large particles is in the scale of the

average surface roughness, and the nanofluid having larger

particles gives higher HTC [26, 27].

In fact, a few researches were based on the heat transfer

features of refrigerant-based nanofluids [8, 28, 29].

Nanoparticles addition to pure refrigerants has known as a

unique heat transfer augmentation method to advance the

performance of refrigeration systems [12–14]. As far as the

working fluid in the most vapor compression refrigeration

systems is combined with lubricating oil, nanoparticles

could be dispersed in the mentioned fluid to form the

nanoparticles/oil suspensions [30]. The existence of

nanoparticles/oil suspension might influence significantly

the efficiency of the refrigeration operation since

nanoparticle/oil suspensions alter thermophysical charac-

teristics of refrigerants such as thermal conductivity, den-

sity, viscosity. So as to evaluate the impact of

nanoparticles/oil suspensions on the efficiency of the

refrigeration operation, the boiling heat transfer features of

refrigerant/oil mixtures including nanoparticles must be

investigated [31]. Lately, Park and Jung [7, 32] surveyed

pool boiling heat transfer utilizing a CNT-halocarbon

refrigerant nanofluid. The experiment was conducted at just

1 vol% of nanoparticle and 7 �C pool temperature, and

notable pool boiling heat transfer augmentation was

obtained. Data on the pool boiling properties of refrigerant-

based nanofluids are yet restricted. Further, there are

opportunities for additional examination in particular on

the position at which the existence of nanoparticles could

increase or decline heat transfer and how the nanoparticle
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content influence pool boiling heat transfer at diverse sat-

uration pressures [8]. Researches that are relevant to the

pool boiling heat transfer of blend of R113/oil containing

diamond nanopowder depicted that nanopowder con-

tributed to heat transfer promotion as the augmentation of

diamond nanopowder on pool boiling heat transfer is

greater than that of CuO nanopowder at similar conditions

[31]. Experiment on pool boiling heat transfer of R141b–

TiO2 nanofluid revealed that the pool boiling heat transfer

plunged by nanopowder concentration raising, chiefly at

high heat fluxes [8]. Nanopowder type is an important

factor on the pool boiling heat transfer of refrigerant-based

nanofluids. Pool boiling heat transfer characteristics of

refrigerant/oil mixtures with nanoparticles are reported by

Kedzierski and Gong [30] for CuO–R134a/oil nanofluids,

and the outcomes indicated that CuO-oil suspensions

enhance the heat transfer. For pool boiling heat transfer

characteristics of refrigerant-CNTs nanofluids, the experi-

mental outcomes revealed CNTs could increase the pool

boiling HTCs of pure refrigerants (R22, R123 and R134a)

by a 36.6% enhancement at the CNTs volume percent of

1% [7, 32, 33]. Henderson et al. [34] studied the heat

transfer characteristics of pure R134a and R134a/poly-

olester contained nanopowder in a horizontal tube during

boiling flow conditions. The R134a/SiO2 nano-refrigerants

with 0.5 vol% and 0.05 vol% were examined to estimate

the influence of nanopowder on boiling heat transfer. At

both concentrations, the convective boiling HTC plum-

meted in comparison with pure R134a due to weak scat-

tering. Additionally, they carried out tests with R134a/POE

blends possessing CuO nanopowder with 0.02, 0.04 and

0.08 vol%. It had been seen that R134a/CuO/POE nano-

refrigerant at a 0.02 vol% particle concentration depicted a

minor growth in the heat transfer characteristics. CuO with

0.04 vol% and 0.08 vol% led to an average heat transfer

augmentation of 52% and 76% in a row. Next studies

endorsed that this enhancement was not merely because of

thermal property alterations, but also surface modifications

caused by CuO particles. Sun and Yang [35] investigated

Cu–R141b, Al–R141b, Al2O3–R141b and CuO–R141b as

nano-refrigerants for 0.1 mass%, 0.2 mass% and 0.3

mass% in a test section to examine the impacts of material

nature and vapor quality on the flow boiling heat transfer in

a flat tube. At the similar mass fraction, Cu–R141b nano-

refrigerant owned the greatest average HTC, more than Al–

R141b which was the next on the list. Besides, Al2O3–

R141b had the minimum HTC. Tang et al. [36] studied

impacts of nanopowder and surfactant volume fraction on

pool boiling of R141b/d-Al2O3. The results revealed that

R141b/d-Al2O3 with SDBS enhanced the pool boiling heat

transfer in comparison with pure R141b. [37]. For evalu-

ation of the pool boiling HTC of refrigerant/oil blend with

nanopowder, Peng et al. [31] suggested a correlation, in

which the impacts of nanopowder kinds (CuO and dia-

mond) and base fluids (R134a/RL68H and R113/VG68

blends) were displayed. Nevertheless, the influence of

nanopowder average size is ignored in the aforementioned

correlation [26]. Moreover, a small amount of lubricating

oil is necessary to seal the compressor as well as lubri-

cating the sliding parts [33].

Lately, artificial intelligent-like ANN has grabbed

attention more and more as a foreseen means because of

their individual merits. ANNs are nonparametric models

that could manage the enormous number of data sets and

are qualified to do nonlinear regression [38]. ANN model

could be easily assembled without the requirement for

complete information of the fundamental system. These

particular characteristics have presented it appropriate in

various disciplines of science [39–41]. Indeed, a number of

pure refrigerants properties have been modeled accurately

using ANN so far. Chouai et al. [42] investigated the

applicability of ANN to estimate the compressibility factor

of diverse pure refrigerants in the 240–340 K temperature

range. Furthermore, ANN was used for PVT representa-

tions of refrigerants at various pressures up to 20 MPa.

Results on three refrigerants (R134a, R32 and R143a) were

presented. The outcomes revealed that multilayer percep-

tron (MLP) network would be a proper model to anticipate

compressibility factor depended to pressure and tempera-

ture. Laugier and Richon [43] proposed an ANN model to

evaluate PVT data of refrigerants from 240 up to 340 K

and up to 20 MPa. Outcomes of six refrigerants were

presented (R134a, R32, R125, R290, R143a and R227ea).

Furthermore, Sozen et al. [44] proposed the ANN to esti-

mate the thermodynamic features (specific volume,

enthalpy and entropy) of an alternative refrigerant (R508b)

in both saturation and superheated regions. The most

appropriate algorithm with suitable number of neurons in

the hidden layer was obtained as LM algorithm. The out-

comes obtained the value of R2 in the 0.93–0.97 range,

whereas they altered in the range of 0.97–0.99 where ANN

was used. A novel method for the auto-design of a neural

network dependent upon genetic algorithm (GA) was

applied by Mohebbi et al. [45] for calculation of 19 pure

and 6 mixed refrigerants’ saturated liquid density. The

experimental data including reduced temperature, reduced

saturated liquid density and Pitzer’s acentric factor were

applied to make a GA-ANN model. A generalized corre-

lation based on neural network for boiling HTC of R22 and

R407C, R410A and R134a considered as its alternative

refrigerants within horizontal smooth tubes was developed

by Wang et al. [46]. They selected four dimensionless

parameter using existing correlations as the input of neural

networks, while Nusselt number was considered as the

target. The average, mean and root-mean square deviations

of the trained neural network were 2.5, 13.0 and 20.3%,
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respectively. Balcilar et al. [47] investigated pool boiling

heat transfer performance of TiO2 nanofluids to estimate

the effect of various factors on heat transfer. They chose

nanofluids with different contents of nanopowder such as

0.0001, 0.0005, 0.005 and 0.01 vol%. The ANN training

data sets originated from the results of pool boiling

experiments, such as the difference between the average

temperature of surface of the heater and the liquid satura-

tion temperature from 5.8 up to 25.21 K as well as heat

fluxes from 28.14 up to 948.03 kW m-2. Pool boiling HTC

was estimated by applying the values of current, voltage

and temperatures. Input of the ANNs is 8 dimensionless

and dimensional values of test section, including physical

properties of the fluid, particle size, thermal conductivity,

concentration rate of nanoparticles, surface roughness and

wall superheating, where the outputs are experimental pool

boiling HTC and heat flux. Pool boiling heat transfer of

TiO2 nanofluids was modeled to select the most practical

approach, using different ANN methods such as general-

ized regression neural network (GRNN), radial basis net-

works (RBF) and multilayer perceptron (MLP). Recently,

Zendehboudi et al. [6] have used radial basis function

(RBF) neural network to anticipate nucleate pool boiling

heat transfer properties of refrigerant blends in which

mixture of R113 and ester oil VG68 had been chosen as

base fluid, whereas CuO and diamond were selected as

various nano-additives. Despite this study, in their study,

only 360 experimental data had been gathered restricted to

particular materials.

In this study, according to the importance and necessity

of investigation of pool boiling heat transfer process for

different industrial applications, a FFANN model with

different learning algorithms is analyzed and optimized for

the first time to estimate the relative pool boiling HTC of

different refrigerant-based nanofluids. Moreover, data sets

used in this work not only include abundant nano-refrig-

erant experiments but also contain data of diverse

nanoparticles and base fluids (1342 experimental data). The

outcomes of this study could play an important role on the

understanding and usage of nano-refrigerant for HTC

enhancement in pool boiling heat transfer processes. Fur-

thermore, based on the ‘‘relative importance’’ calculation

in this study, the effective operating conditions on HTC

including heat flux, saturation pressure, nanoparticle ther-

mal conductivity, base fluid thermal conductivity,

nanoparticle concentration (mass%), nanoparticles size and

lubricant concentration (mass%) were compared to each

other and the most important feature of the nanofluid was

introduced for practical application of nanofluids.

Acquiring experimental data sets

The chief purpose of this work is to introduce a convenient,

efficient and agile model, for first time that can calculate a

large range of nano-refrigerant and dispel previous model

problem. As mentioned in this study, for the first time a

FFANN model with different learning algorithms is

designed and optimized for calculation of the relative pool

boiling HTC of different refrigerant-based nanofluids as a

function of the saturation pressure, thermal conductivity of

nanoparticle, heat flux, thermal conductivity of the base

fluid, nanoparticle concentration (mass%), nanoparticle

size and lubricant concentration (mass%) based on a large

number of experimental data (1342) extracted from the

literature. The major objectives of the current study were to

propose a model to minimize the MRE for both predicted

and experimental data. Some salient researches on the pool

boiling HTC of different refrigerant-based nanofluids

applied in this study and conditions of the experiments are

given in Table 1. Reviewing the mentioned reports showed

that thermophysical properties of various nanoparticles

suspended in various pure refrigerants were investigated in

diverse research studies.

Implementation of ANN model

The novel standpoint on neural networks according to brain

administration arose in the 1940s. The earliest attainable

utilization of neural networks appeared in the late 1950s by

the introduction of perceptron network [48]. Recently, tons

of papers have been relevant to neural networks and its

wide application in various fields. A neural network using a

backpropagation learning algorithm called multilayer feed-

forward neural network (MLFNN) is the most trustworthy

among several types of ANN. These sorts of ANN for-

mations have hidden layer(s) and computational junctions

called hidden neurons. In these ANNs structures, data

progress is done in a progressive trend.

The interconnection design linking diverse neurons in

ANN has nominated the network ‘‘architecture.’’ One of

the most prevalent and functional architectures of ANN is

multilayer perceptron (MLP) network [49, 50]. The input

data in MLP network are given to the input layer to bring

forward inputs to the network and then moved about to

hidden layer(s) to be followed out. Ultimately, the terminal

hidden layer forwards prepared information to the output

layer and the outcomes are attained. The output and hidden

layer(s)’ neurons are joined to each previous layer neuron

via different masses expressing the relevant importance of

the different neuron inputs to different neurons. The

weighted summation of the inputs is shifted to the hidden
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neurons, where it is converted by applying an activation

function [51, 52]. So as to develop the network perfor-

mance to obtain a greater degree of exactness, one or extra

hidden layers would be combined. This could result in an

additional collection of synaptic contacts and neural

cooperation improved consequently [53–55]. The below

equation expresses the output MLP neural network:

Yj ¼ f
Xn

i¼1

Wijxij þ bj

 !
ð1Þ

where Y refers to the output, the bias mass for jth neuron is

shown by b, while xij represents the input signals of the ith

neuron to the jth neuron, n is the number of neurons linked

to the jth neuron and the mass quantifying the magnitude of

the relationship within the ith neuron in the former layer

and the jth neuron in the current layer is denoted by wij

[56].

The training algorithm, the transfer function, the number

of neurons per layer as well as the number of layers could

determine the structure of each ANN model [53, 57]. In

this investigation, many transfer functions including rad-

bas, tansig, logsig, hardlim, tribas and softmax were

examined within hidden layer and their consequences on

network accuracy were studied. In addition, several train-

ing algorithms such as LM, RP, BR and scaled conjugate

gradient (SCG) were utilized in this research The topology

of the MLFNN and the interconnection among layers are

depicted in Fig. 1.

Results and discussion

In order to examine the accuracy of the ANN studies,

regression and error analysis are the most prevalent factors.

Owing to determination of the ANN performance, error

analysis must be implemented.

Pre-processing

In the majority of cases that the ranges of input variables

are excessively distinct, variables ought to normalize to

possess similar order for calculation and training process

[58]. Furthermore, normalized input data strengthen

swiftness and rapidity of learning and performing data

processing much easier [6]. The whole data were normal-

ized into the range of (- 1, 1) using Eq. (2):

Yi ¼
ð2Xi � Xmax � XminÞ

ðXmax � XminÞ
ð2Þ

in which, Xmin and Xmax are the least and the greatest values

of Xi related to training, validation and testing steps.

Accuracy investigation using regression
and error analysis

For appraising the model accuracy and prediction capa-

bility of the relative pool boiling HTC of refrigerant-based

nanofluids, regression analysis was employed. Besides, the

correlation coefficient (R2) was employed to specify whe-

ther network outputs were in acceptable agreement with the

real data considering Eq. (3) or not. As remarked former,

the kind of both transfer function and training algorithm

and further the excellent number of neurons inside the

hidden layer is crucial circumstances in precision and

efficiency of the model. For this purpose, to specify the

accuracy, error analysis was implemented. Numerous sorts

of error exist to examine ANN model, among which MSE

Neural network

Input

Layer

19 1

17

Layer
Output

Fig. 1 Schematic topology of the most suitable ANN model

Table 1 Summary of experimental circumstances for applied data

Type of particles Base fluid Particle size/nm Heat flux/Kw m-2 Particle concentration/% Psat/kPa References

CNT R123

R134a

D = 20

L = 1000

10–80 1 vol% 44.5

374.6

[7]

TiO2 R141b 21 5–70 0.01–0.03–0.05 vol% 200–500 [8]

CNT R113/oil D = 15–80

L = 1500–10,000

10–80 0–5 mass% 101.3 [33]

Diamond R113/VG68 10 10–80 0–5 mass% 101.3 [31]

Cu R113 20 10–80 0–1 mass% 101.3 [11]

Cu R113/oil 20–50–80 10–80 0–5 mass% 101.3 [26]
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and MRE are much more reputable options to ascertain the

ANN exactitude expressed according to:

R2 ¼
PN

i¼1 h
Exp
i � �h

� �2
�
PN

i¼1 h
Exp
i � hANNi

� �2

PN
i¼1 h

Exp
i � �h

� �2 ð3Þ

MRE ¼ 1

N

XN

i¼1

h
Exp
i � hANNi

h
Exp
i

�����

�����

 !
ð4Þ

MSE ¼ 1

N

XN

i¼1
h
Exp
i � hANNi

� �2
ð5Þ

where h depicts the average of experimental data for rel-

ative pool boiling HTC, hANNi shows predicted value for ith

as ANN model outcomes, h
Exp
i is the ith real value of rel-

ative pool boiling HTC, and N illustrates the number of

real data.

The training step of ANN

In this paper, the Neural Network ToolboxTM of Math-

Works MATLAB� [59] was applied to obtain the proper

MLFNN model. Besides, among various accessible learn-

ing algorithms LM, RP, BR, and SCG were tried to acquire

the relations between inputs and outputs. In fact for train-

ing, the Levenberg–Marquardt backpropagation (trainlm)

is one of the most reliable and agile algorithms [60, 61]. So

as to attain a reliable network upon training using trainlm,

ANN variables were set with the intention of decreasing

MSE as well as progressing of R2 up to 1.

Transfer function

Selection of each layer transfer function is the next step.

Tan-sigmoid, softmax, Log-sigmoid, Hard-limit, Triangu-

lar basis and Radial basis are known as instances of diverse

transfer functions. According to main aim of present

research, the suitable transfer function (f) for hidden layer

of the present investigation was selected as hyperbolic

tangent sigmoid function expressed as Eq. (6) and linear

function for output layer.

f ðxÞ ¼ ex � e�x

ex þ e�x
ð6Þ

It should be noted that x refers to weighted sum presented

in expressions of masses (w), bias (b) and output (y) with

regard to Eq. (1).

The most appropriate ANN arrangement

As shown in Fig. 1, one hidden layer just was investigated

in existing article. Tentatively, the number of neurons was

altered from 9 up to 29 in the first hidden layer, iteratively

and attitude of the network was checked by means of MSE,

MRE and R2. Optimal ANN was network with the minimal

Table 2 The influence of

different train algorithms as

well as the number of neurons

on the error values of networks

Algorithm All data set Test data set

R2 MSE MRE R2 MSE MRE

LM 12 0.9878 0.0358 1.26E-06 0.9852 0.0490 1.0496E-05

BR 12 0.9906 0.0276 6.13814E-07 0.9865 0.0399 1.4824E-05

RP 12 0.9739 0.0760 4.28495E-06 0.9782 0.0661 7.23789E-05

SCG 12 0.9825 0.0511 3.24207E-06 0.9826 0.0550 2.14546E-05

LM 14 0.9937 0.0184 9.62E-06 0.9934 0.0199 4.12479E-07

BR 14 0.992 0.0233 1.2754E-06 0.9884 0.0311 1.05E-06

RP 14 0.9623 0.10927 6.26139E-06 0.9620 0.1211 8.25157E-05

SCG 14 0.9823 0.0516 2.97E-06 0.9790 0.0629 2.22717E-05

LM 19 0.9948 0.0152 5.37E-09 0.9953 0.0150 2.17E-06

BR 19 0.993 0.0204 1.40056E-06 0.9851 0.0477 2.83597E-05

RP 19 0.9722 0.0811 6.17677E-06 0.9691 0.0957 8.45833E-05

SCG 19 0.9823 0.0516 3.11857E-06 0.9803 0.0515 2.67355E-05

LM 23 0.9915 0.0252 1.57299E-06 0.9822 0.0594 4.40316E-05

BR 23 0.9942 0.0171 1.78604E-06 0.9917 0.0291 3.25292E-05

RP 23 0.9686 0.0910 4.67069E-06 0.9621 0.1192 3.10082E-05

SCG 23 0.9848 0.0445 1.93969E-06 0.9860 0.0461 3.65423E-05

LM 28 0.9941 0.0173 2.64272E-06 0.9918 0.0240 3.43437E-05

BR 28 0.9938 0.0183 2.15171E-07 0.9904 0.0251 6.46031E-06

RP 28 0.9761 0.0696 4.30234E-06 0.9765 0.0757 1.98375E-05

SCG 28 0.9797 0.0594 3.75707E-06 0.9582 0.1297 5.94371E-05
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MSE and MRE and maximal correlation coefficient (R2)

for all data. Table 2 shows the MSE, MRE and R2 quantity

for the network possessing diverse neuron number. It can

be comprehended that the best condition was in the net-

work with a hidden layer contained 19 neurons using LM

training algorithm as displayed in table. Figure 2 shows the

trends of R2 and overall MSE per the number of neurons

within hidden layer. As illustrated, when the number of

neurons in hidden layer was 19, the MSE and R2 for all

data sets in a row were attained to the least and the highest

values. Moreover, it could be determined that growing the

hidden layers number might not be beneficial undoubtedly.

The optimal configuration of network structure possesses

MSE, MRE and R2 of 0.01529, 5.37E-09 and 0.9948,

respectively.

In the next stage, transfer function was appointed by

examination. The transfer functions applied and considered

in this work to attain appropriate transfer function for the

neural network consisting of Hard-limit, softmax, Log-

sigmoid, Tan-sigmoid, Radial basis and Triangular basis.

Table 3 exhibits error contrasting of ANN employing

diverse transfer functions. Table 3 depicts that Tan-

sigmoid is more efficient in comparison with other transfer

functions.

The iteration progress and the iteration at which the

validation achievement reaches the smallest value are

represented in Fig. 3. As seen, when epochs of training are

progressed, the error is diminished. When the test curve

soared suddenly, whereas the validation curve did not, the

possibility of remarkable overfitting exists. Nevertheless, in

Fig. 3, the test and validation curves have had substantially

identical tendency, so it could be realized that there was no

overfitting.

The recommended network that is capable of antici-

pating meticulously the refrigerant-based nanofluids rela-

tive pool boiling HTC could be reused by mass, and bias

values have been shown in Table 4.

The outcomes gained via the proposed network versus

the real data are exposed in Fig. 4a–d. The solid line

exhibits a suppositive precise fit of the experimental and

the predicted values. The fine agreement between real and

calculated values was noticed, and it depicted that the ANN

was trained successfully. It must be declared that 70% of

data sets were allocated to the training procedure. With the

purpose of test and validate the perfect network, 50% of

whole data were designated to the testing section and the

residual data were dedicated to validation section. Testing

and validation data sets are of the notable importance, and

they were discrete from training data sets. The connection

between calculated and real data of validation step is given

in Fig. 4b. MSE, MRE and R2 values for validation data

sets were 0.01967, 3.02375E-05 and 0.99362 in a row.

The outcomes disclose that the calculated values were in

rational agreement with the real experimental values. Fig-

ure 4 part (c) depicts the connection between the calculated

and real data of test step. MSE, MRE and R2 are
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Table 3 The effect of various transfer functions on the error analysis

of the network possessing 19 neurons in the hidden layer

Transfer function All data set

R2 MSE MRE

Tansig 19 0.9948 0.0153 5.36863E-09

Hardlim 19 0.719 0.7125 3.51982E-05

Logsig 19 0.9634 0.1130 3.6245E-06

Radbas 19 0.9921 0.0232 1.75341E-06

Softmax 19 0.9884 0.0341 3.23249E-07

Tribas 19 0.9790 0.0614 4.90408E-06
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0.01504051225, 2.16884E-06 and 0.99528 in a row. The

connection between the calculated and real data of all steps

is illustrated in Fig. 4d. MSE, MRE and R2 are

0.01528921041, 5.36863E-09 and 0.9948, respectively.

Contribution analyses

There are numerous methods to ascertain the impact of all

input variables and their contribution on model output. In

the current study, the method for partitioning the joint

masses was supposed to estimate the relative importance

(RI) [62–64]. This approach was proposed by Garson [65],

and afterward it was applied by Goh [66]. The particularity

of the RI algorithm is expressed as:

%RI ¼
PnH

j¼1 ivj=
Pnv

k¼1 ikj
� �

Oj

� �

Pnv
i¼1

PnH
j¼1 ivj=

Pnv
k¼1 ikj

� �
Oj

h i� 100 ð7Þ

In this equation, nH and nm represent the numbers of

neurons in the hidden layer and the input layer, Oj is the

absolute amount of connection masses between the hidden

and the output layers and ij depicts the absolute amount of

connection masses between the input and the hidden layers.

Alteration of variables with greater RI would have a much

more significant influence on the outcomes of the network

than changing the variables of less RI [53, 62, 64]. As

shown in Fig. 5, the thermal conductivity and size of

nanoparticles which have a slight difference are known as

the most effective factor influencing the outcomes of the

proposed ANN model.

Comparison of the results of model in this study
and Peng correlation

As previously discussed, there is just one approach for the

prediction of the pool boiling HTC. Peng et al. [31]

developed a new correlation for predicting the pool boiling

HTC of refrigerant/oil blend with nanopowders based on

Rohsenow equation [67]. As can be recognized, the sug-

gested ANN in this study possesses a much more reliable

performance compared with Peng correlation and conse-

quently it could be suitably applied to evaluate pool boiling

Table 4 Masses and biases values related to the optimal network

Neuron Hidden layer Output layer

Masses(i, j) Biases(j) Mass(i, 1) Bias(1)

W(1, j)

(h)

W(2, j)

(Psat)

W(3, j)

(up)

W(4, j)

(dp)

W(5, j)

(ulub)

W(6, j)

(kp)

W(7, j)

(kbf)

bj W(i, 1) b1

1 0.1138 - 0.7409 3.1415 0.0927 - 0.7709 - 0.3068 4.1016 - 1.5174 1.9173 0.3142

2 - 0.0509 1.2385 0.5629 0.0934 2.3475 - 2.5464 0.4429 - 2.4077 2.4367

3 4.4477 1.3453 1.5869 - 2.4504 - 1.0191 - 0.5260 1.7826 - 0.2948 0.0463

4 - 0.0073 0.1628 - 3.5088 2.6509 - 1.4778 - 3.3919 - 0.1914 - 3.4236 2.2278

5 0.1288 - 0.4751 1.3572 2.6786 - 1.8142 0.7421 2.7540 1.2375 - 1.3844

6 0.0151 - 0.1398 3.5476 - 0.0717 - 2.0691 - 1.6330 - 1.1112 0.7115 2.5954

7 0.4000 - 0.3701 - 0.2965 - 2.5977 0.3121 0.4575 - 1.1858 0.9158 - 2.5050

8 - 0.9354 1.1217 - 0.4501 0.5177 - 0.4172 1.3877 2.3284 - 0.1679 - 0.2474

9 - 0.0066 - 1.6462 - 3.4458 - 0.3953 6.0682 - 3.6203 - 1.0649 2.6795 - 2.6273

10 - 0.0547 0.3236 - 0.5653 - 1.2481 - 0.3447 1.7015 - 0.3250 0.3202 1.4419

11 1.3297 0.1095 - 0.0464 - 0.6923 - 0.2484 0.0456 - 0.2088 0.7172 - 1.6312

12 - 0.0367 0.1756 - 3.0785 1.4964 - 2.6661 - 3.8401 - 0.1978 0.4032 0.8440

13 0.0170 1.7918 3.7651 - 0.9596 - 2.0579 3.0276 1.6777 - 0.2968 - 2.3595

14 - 0.0055 - 0.1199 - 2.2472 2.0338 2.5943 1.2347 1.8607 2.8171 2.8907

15 - 0.0144 0.3805 2.9156 - 2.3524 0.5971 1.2255 - 0.6115 0.7597 2.9193

16 1.8468 0.1524 0.0303 0.7724 - 0.8138 - 0.1664 0.1659 0.9656 - 0.1282

17 - 0.1900 - 0.7893 - 0.4361 - 0.1651 - 1.4048 - 0.4700 - 1.6364 1.0198 1.6371

18 1.0293 0.3238 0.0086 - 0.7873 - 0.2227 0.0560 - 0.0250 0.9634 2.6854

19 - 1.3749 0.4601 0.4070 0.6318 - 0.0564 - 2.7575 1.2034 - 4.0473 - 0.9313
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HTC of nano-refrigerants with the higher degree of preci-

sion. The analogous trend of the calculated and real pool

boiling HTC of nano-refrigerants illustrates the ability of

the recommended model not only to anticipate the pool

boiling HTC of nano-refrigerant with great exactness but

also to predict precisely the tendency of pool boiling HTC

variations with heat flux values (Fig. 6).
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Conclusions

This research was performed to examine the strength of

feed-forward back-propagation network in the prediction of

the pool boiling HTC for different refrigerant-based

nanofluids in an ample range of experimental condi-

tions. 1342 experimental data sets were collected from

different references, in current work. In order to training,

evaluation and attaining the optimal network architecture

data were separated to train, test and validation sets.

Firstly, roughly 70% of data sets were employed for

training the network and adjust the effective network

variables, such as the much more efficient transfer func-

tions of hidden and output layers and the number of neu-

rons in the hidden layer.

Next, test and validation data points (approximately

30% of experimental data sets divided equally for both

steps) were utilized to investigate and confirm the opti-

mized artificial neural network and for approximating the

anticipating capability of the ANN. The outcomes of this

research pointed out the obtained neural network with 19

hidden neurons can properly model nano-refrigerants pool

boiling HTC (MSE and R2 are 0.0145 and 0.995004 in a

row).
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