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Abstract
At present, miniaturization of the devices in order to make them for effective performance, reliability and ease at cost is the

primary need of any nation. In this direction, the role of microchannels can play an important role in the further

development of industrial growth. The increased demand of the microchips in the industrial areas has increased the number

of transistors for the improved functionality which leads to the emission of the higher heat flux, which is already a big

challenge in the electronic sector. In the present paper, a comprehensive review on microchannels has been done regarding

single-phase and multi-phase studies. In the present paper, an intensive review of the thermal and hydraulic characteristics

of fluid flow in microchannels at different hydraulic diameters and their effects on performance has been done. The effects

of the various parameters such as the Reynolds number (Re), Nusselt number (Nu), friction factor (f), pressure drop (P),

working fluid and cross-sectional geometry of duct, as well as the hydrodynamic and thermal aspects, has been also

studied. It was concluded through the literature study that transition from laminar to turbulent is very much affected by

channel cross-sectional geometry, aspect ratio, channel wall roughness and compressibility effects. Also, researchers only

explored the laminar region for its pressure drop and heat transfer characteristics, while the turbulent flow regime is yet to

be explored. It was observed that most of the correlation over-estimated the value of pressure drop in multi-phase flow.
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List of symbols
A Area

Pw Wetted perimeter

a Channel height (m)

b Channel width (m)

C Lockhart–Martinelli parameter

C* Characteristics quantity

Co Convective number

v Velocity

L or l Length

f Friction factor

Re� Laminar equivalent Reynolds number

Ffl Fluid surface parameter

Pr Prandtl number

h Heat transfer coefficient (W m-2 K-1)

k Thermal conductivity (W m-1 K-1)

Nu Nusselt number

Pr Prandtl number

T Temperature (K)

We Weber number

Ac Area of cross section

Di Internal diameter

BL Boiling number

Bo Bond number

CP Specific heat (J kg-1 K-1)

P0 Poiseuille number

Dh Hydraulic diameter (m)

D Diameter (internal)

k(x) Hagenbach factor

Fr Froude number

G Mass velocity (kg m-2 s-1)

Nu Nusselt number

J Total mixture volumetric flux (m s-1)
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Ma Mach number

P Pressure (Pa)

Re Reynolds number

U Velocity (m s-1)

Greek symbols
s Shear stress (Pa)

l Dynamic viscosity (Pa s-1)

q Density (kg m-3)

a Channel aspect ratio

k Laplace constant

a Aspect ratio

e Roughness of the pipe

j Hagenbach factor

;LO Two-phase multiplier (for liquids only)

r Surface tension (N m-1)

Subscripts
app Apparent

crit Critical

tot Total

TP Two-phase mixture

sat Saturated

Exp Experimental

FD Fully developed

L Liquid

V Vapor

Introduction

The microchannel heat exchanger is the ‘heat exchanger of

next generation,’ the new technology which can provide

the solution for the cooling of high-heat flux problem.

Microchannels possess the ability of high heat transfer rate

because of their large surface area-to-volume ratio, which

makes them the finest choice for the development of the

microheat exchangers used for the cooling of electronic

and aerospace components. There are many applications of

the microchannels in industrial sectors but not limited to

electronic, automobile, aerospace and cryosurgery area.

Microchannels have attracted the minds of researchers

because of its wide applications in various areas like

electronic devices, automobile, aerospace, fuel processor

and nuclear reactors. Microchannels serve as the sole

component in order to build the microheat exchangers

which apparently are seen as the heat exchangers of the

next generation because of their application advantages as

well as their efficiency. To enhance the thermal and

hydraulic performance of the microchannels, various

studies on both numerical and experimental works have

been carried out in the past years for single-phase and

multi-phase fluid flows. Basically, the cooling is done in

two ways: the air cooling or the water cooling. When the

requirement of cooling passes over 100 W cm-2, then the

cooling of system is not feasible using air or water for

flowing fluids. In several applications, when components of

the system require to remove the heat flux of higher order,

then it becomes difficult to use a larger heat sink, probably

lager than component itself. It has already provided a new

platform for researchers to develop a new kind of heat

sinks that can be incorporated with the heat source for the

removal of the heat flux. These heat sinks are made of

silicon material, and a layer of silicon oxide is kept over

them for the electrical insulation. Quite narrow

microchannels of different shapes such as rectangular,

circular or triangular are framed around using fins to

increase the rate of heat removal by flowing the cold fluid

(coolant) through these microchannels. Tuckerman and

Pease [1] explained the idea of using microchannel heat

sinks to investigate the single-phase forced convective heat

transfer. It was stated that it could potentially remove heat

flux up to 1000 W cm-2. The value of the convection heat

transfer coefficient (h) was found to be an obstacle to

obtain low thermal resistance value. It was seen that for

laminar flow, the value of ‘h’ is inversely proportional to

the width of the channel. However, the high aspect ratio

(w H-1) will, in turn, increase the surface area which

reduces the value of thermal resistance to provide a high

rate of heat transfer. Philips [2] performed an experiment

on microchannel heat sinks that are used for the applica-

tions in microelectronics such as laser diodes and for high-

energy laser mirrors. To cool the laser diode, heat sinks are

made with indium phosphide having a thermal resistance of

0.072 �C W-1 cm-2, which can dissipate the heat flux of

1000 W cm-2. Hahn et al. [3] investigated the packaging

of high-powered multi-chip modules, basically focused on

the three major areas: (1) fabrication of multi-chip module,

(2) development of high-performance microchannel heat

sinks and (3) assembling technology having very low

thermal performance. A thermostat module having a size of

2 9 2 inches is capable of heat dissipation of hundreds of

watts. Thermal resistance value was maintained below

0.6 K cm-2 W-1 at a heat flux of 50 W cm-2.

Martin et al. [4] investigated microchannel heat exchangers

which were designed for the cooling of heat flux of order

100 W cm-2. Each section had 150 microchannels having

dimensions of 100 lm deep, 100 lm wide and space

50–100 lm. It was found that the thermal capacity of the

crystal board was 20 W and 15 W at the crystal tempera-

ture of 90 �C and 70 �C, respectively. It was observed that

at the flow rate of 50 g s-1 of water, the system provides

an efficient cooling of 0.6 9 105 W m-2 K-1 [5]. Studies

have observed that the heat sink incorporating
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microchannel has been known for the collective heat flux

removal of up to 500 W cm-2 used in the cooling of laser

diode array [6–8]. The basic governing equations related to

fluid flow in conventional channels are given below [9]:

Conservation of mass

r � qm Vm

!� �
¼ 0 ð1Þ

Conservation of momentum

r � qm Vm

!
Vm

!� �
¼ �r � Pþr � ½s� st� þ r

�
Xn
k�1

/kqk Vdr;k

!
Vdr;k

!
" #

ð2Þ

where

s ¼ lmr � Vm

!
and st ¼

Xn
k�1

/kqk vkvk
!h i

Conservation of energy

r �
Xn
k�1

/k Vk

!
ðqkHk þ PÞ

n o
¼ r � keffrT þ CPqm vt

!� �

ð3Þ

The classification criteria of the microchannels were pro-

posed by many researchers over the years according to the

various parameters. Serizawa et al. [10] defined the criteria

for the microchannel and defined the Laplace constant

should be greater than or equal to the microchannel

diameter as given below.

k�Dh ð4Þ

where ‘k’ is the Laplace constant and the ‘Dh’ is the

microchannel hydraulic diameter. Another classification

was given by Mehendale et al. [11] and they classified

microchannels on the basis of its hydraulic diameter (see

Table 1). Kandlikar and Grande [12] also classified the

microchannels on the same basis as shown in Table 2.

Microchannels were defined by Palm [13] as an element

or means of heat transfer which does not directly follow the

classical theories of heat transfer or fluid flow. Thus, the

flow characteristics such as friction factor and the heat

transfer characteristics cannot be easily predicted. A study

by Stefan [14] used a microscale-sized system which does

not show the same typical observations as the macro-sized

systems and stated that it is not appropriate to differentiate

the microchannels and minichannels on the basis of a

specific diameter. The investigation performed by

Halelfadl et al. [15] mainly concentrated on the analytical

optimization of heat sink incorporated with rectangular

microchannels using the water-based solution of nanofluids

as a coolant. The results of the study demonstrated that

using nanofluids as working fluids has reduced the value of

overall thermal resistance and it can increase the thermal

performance of the flowing fluid while dealing at large

temperature. A study by Warrier et al. [16] investigated a

two-phase cooling system incorporating microchannels

which also had the side wall for the purpose of reducing the

high heat fluxes in semiconductor devices. Yu et al. [17]

investigated the thermal characteristics as well as the

hydraulic characteristics of the fractal tree-shaped

microchannels having various aspect ratios. The range of

Reynolds number was set between 150 and 1200. The

results of the investigation proposed that microchannels

with fractal tree-shaped geometry had much larger heat

transfer coefficient as compared to the straight

microchannels. The same treelike thermal performance of

microchannels was also investigated [18–21].

Chamkha et al. [22, 23] numerically investigated the fully

developed free and mixed conventions in vertically ori-

ented channel. Results of the study show that for a fixed

value of R, the material parameter gets reduced to the

velocity profile in free convection and velocity and

microporation profiles become distorted in developing

region of mixed convention. The study also investigated

hydromagnetic two-phase flow [24] and reported that the

flow rate of fluid and particle phase get reduced due to the

presence of the particles in the channel and the volumetric

flow rates and the skin friction coefficients decrease as the

Hartmann number increases. Chamkha [25–28] also

investigated various areas such as unsteady laminar

hydromagnetic flow and heat transfer characteristics in

channels, porous channels and vertical channels with wall

heating conditions and reviewed the application of

nanofluids in microchannels. The magneto hydrodynamic

flow in a vertical microchannel using the Al2O3–water-

based nanofluid was analyzed by Ibáñez et al. [29]. They

Table 1 Classification of microchannels [11]

Classification Hydraulic diameter

Microheat exchangers 1 lm�Dh � 100 lm

Macro-heat exchangers 100 lm�Dh � 1mm

Compact heat exchangers 1mm�Dh � 6mm

Conventional heat exchangers Dh � 6mm

Table 2 Classification of channels [12]

Classification Hydraulic diameter

Microchannels 10 lm B Dh B 200 lm

Minichannels 200 lm B Dh B 3 mm

Conventional channels Dh C 6 mm
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concluded that the nanoparticle volume fraction and slip

length reach the higher value, when the permeability

increases, while the global entropy generation is at its

minimum value, and they reach the minimum value when

the global entropy generation decreases. Shashi

kumar et al. [30] investigated the entropy generation in

microchannels using nanofluids with partial slips and

convective conditions. It observed that the entropy gener-

ation was higher in Ti6Al4VH2O nanofluid as compared to

AA7075-H2O. In the study performed by

Khodabandeh et al. [31], they showed that microchannel

heat sink design with sinusoidal cavities and rectangular

ribs can increase the Nusselt number and heat transfer.

The effects of the flow fluctuation during boiling and

periodic reversed flow were studied [21, 32–38] and stated

that the thermal performance of the microchannel used as

an evaporator in an air-conditioning system may create a

problem. Tuo and Hrnjak [21] proposed a bright solution of

the problem to decrease these effects to a significant level

by using the ventilation system and also by altering the

route of backflow vapor collected at the header at the inlet.

Moallem et al. [39] performed an experiment on the

microchannel heat exchanger incorporated with louvered

fins and the effects of frost formation. The results of the

experiment concluded that the temperature of the fin sur-

face and the air humidity were the primary parameters

which affect mostly the rapid growth rate of frost at a

particular dry bulb temperature of the air. The performance

of the cyclic frosting and defrosting for two different types

of microheat exchangers was also experimented and stud-

ied by Xu et al. [40] and Liu et al. [41]. There were several

other similar studies that have used microchannels and

various conditions to increase the thermal performance of

the microchannel heat exchangers [42–53]. In another

study by Morini et al. [54], they explained a heat sink.

Using the numerical investigation, Sarangi et al. [55]

developed a numerical model of boiling heat transfer by

using microchannels. They focused on the phenomenon of

forced convection in two-phase fluid flow in microchannels

and used water as working fluid. Flat microtubes made of

aluminum materials remained the center of attention for

many years. In majority, it was used in designing the air-

conditioning systems and in the refrigeration industries

where high cooling is required [56–63]. Zhang et al. [56]

performed both experimental and numerical works on a

bent plane consisting of flat microchannel tubes. The

conclusion of the study described that under normal

working conditions, the degradation of the microchannels

is very small.

In the last past few years, research on the determination

of convective heat transfer and pressure drop in mini- and

microchannels has been conducted at a rapid rate [64–67].

Szczukiewicz et al. [64] evaluated the heat transfer

coefficient of some refrigerants used in evaporator consist

of multiple microchannels. It was concluded that two-phase

flow heat sink which has microgap possesses very effective

capability to lower the disadvantages associated with the

normal heat sink of two-phase flow, mainly of that heat

sink which shows some flow instabilities, a reversal inflow

and the variation in wall temperatures between the

microchannels. Another experiment performed by

Alam et al. [65] investigated the characteristics of fluid

flow and heat transfer in a microgap heat sink while using

deionized water as flowing fluid. The results of this study

were compared with the results obtained from the investi-

gation performed over the normal microchannel heat sink.

Fani et al. [66] performed an investigation on nanoparticles

of spherical shape and studied about the size effect on the

thermal performance. The microchannel heat sink con-

sisted of microchannels of trapezoidal shape. This implies

that the fluid has more effect on thermal performance as

compared to the nanofluids. A detailed review was pro-

posed by Ramezanizadeh [68] on the various approaches

for cooling fuel cells. The results of the study show that the

use of nanofluids increases the heat transfer and improves

the efficiency and also the reduction in size and mass helps

in improving the cooling efficiency. Umavathi et al. [69]

investigated the mixed convective flow in vertically ori-

ented microchannels which were filled with the electrically

conducting viscous fluid. Ramezanizadeh et al. [70] studied

the various intelligent methods used for the prediction of

thermal conductivity of nanofluids. Abchouyeh [71] stud-

ied the heat transfer enhancement using nanofluids between

two parallel plates and concluded that with the increase in

nanosized particle concentration, the mean Nusselt number

increases. The application of nanofluids in thermosyphons

was reviewed by Ramezanizadeh et al. [72]. It was

explained that the efficiency of thermosyphons increases

using nanofluids. Ramezanizadeh et al. [73] investigated

nanofluidic thermosyphon heat exchanger using Ni/glyc-

erol–water nanofluid as working fluid in three different

concentrations. It was observed that the increase in mass

flow rate and inlet temperature of hot stream increases the

heat transfer. Chamkha [74] studied the flow of immiscible

fluids in porous and non-porous channels in steady laminar

regime. It was seen that the increase in the Hartmann

number, electrical conductivity ratio and the inverse Darcy

number leads to reduction in flow velocities and increases

the viscosity ratio. Kumar et al. [75] investigated the fully

developed free convective flow in vertical channel using

micropolar and viscous fluids. Umavathi et al. [76–79]

investigated unsteady two-fluid flow, Couette flow, mixed

convection flow and heat and mass transfer in vertically

double-passage channel. In the investigation of unsteady

two-fluid flow, it was seen that velocity and temperature

decrease when the viscosity ratio increases and increase
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when the frequency parameter gets increased [76]. It has

been seen that the cross-sectional and the structural

geometry of microchannel are the most important param-

eters which affect the flow and heat transfer characteristics.

Several studies have been performed by using circular,

triangular, trapezoidal, rectangular and square cross sec-

tions, and also, researchers have carried out investigations

on branched microchannel and fractal-like microchannel

heat sink as shown in Fig. 1 [80].

Single-phase flow

Friction factor and pressure drop

Peiyi and Little [81] executed a number of experiments by

using gaseous flow instead of liquid flow in microchannels

of trapezoidal cross section made of silicon/glass. The

experiments were performed to investigate the character-

istics of friction factor and pressure drop inside

microchannels. Results of their study showed that the flow

transition in microchannel occurs very early as compared

to the conventional channels. It was observed that the flow

transition in microchannels occurs at Reynolds number

range of 400–900. It was concluded that the transition also

depends upon the test conditions. They made a suggestion

to decrease the transition Reynolds number or the critical

Reynolds number for microchannels to advance the heat

transfer characteristics. Investigation performed by

Pfahler et al. [82] used three microchannels having a

rectangular cross section. Area of a cross section of these

microchannels was in the range of 80–7200 lm2. In this

study, N-propanol was used as a flowing fluid. The results

of this study interpreted the characteristics of fluid flow and

friction factor. Numerous experiments were performed to

investigate friction factor in various conditions by using

different methods. Peng et al. [83], Wang et al. [84], Peng

and Wang [85] and Peng and Peterson [86] concentrated to

investigate the fluid flow and heat transfer characteristics

for the various structures of microchannels. Yu et al. [87]

used nitrogen gas and water as flowing fluid in

microchannels having a hydraulic diameter of 19.52 and

102 lm.

Hydraulic diameter for a different cross section of

channels is defined as,

Dh ¼
AC

Pw

ð5Þ

where ‘Ac’ is an area of cross section and ‘Pw’ is wetted

perimeter.

For circular channels, the hydraulic diameter is,

Dh ¼ Di ð6Þ

where ‘Di’ is the internal diameter of the channel.

For rectangular channels, the hydraulic diameter is,

Dh ¼
4ab

2 aþ bð Þ ð7Þ

where ‘a’ and ‘b’ are the sides of the channel.

For Isosceles triangular channel, the hydraulic diameter

is,

Dh ¼
a

2
p
3

ð8Þ

where ‘a’ is the side of the isosceles triangle.

Researchers have used the classical laminar theory as

the basis to understand the nature of fluid flow character-

istics in microchannels.

C� ¼
f � Reð Þexp
f � Reð Þtheory

ð9Þ

where ‘f’ is the friction factor and ‘Re’ is Reynolds num-

ber, but the multiplication of both quantities gives a non-

dimensional number. It is calculated experimentally as well

as theoretically and the ratio of it gives the ‘C*’ as the

characteristic quantity. Theoretically, the values of friction

factor in circular tubes are calculated as:

For laminar flow:

f ¼ 64

Re
ð10Þ

For turbulent flow:

f ¼ 0:3164Re�0:25 ð11Þ

A study conducted by Hwang and Kim [88] described

the characteristics of pressure drop in the microchannels

with internal diameter of 0.244, 0.430 and 0.792 mm, and

R134a was used as working fluid to investigate the Rey-

nolds number range of 150–10,000. Yen et al. [89] per-

formed experiment on microchannels having inner

diameters of 0.19, 0.30 and 0.51 mm. Flowing fluid used in

this study was HCFC123 and FC-72 to observe the varia-

tion in heat transfer and fluid flow characteristics. The

results of the study showed that when the flow is in the

laminar region on the Reynolds number value in the rangeFig. 1 Fractal-like microchannel network [80]
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of 20–265, then the value of friction factor in microchan-

nels was in agreement with theoretical laminar flow.

Celata et al. [90] performed an investigation on

microchannel using water as flowing fluid. The investiga-

tion was performed experimentally as well as analytically

in the Reynolds number range of 20–4000, while the

hydraulic diameter of the microchannels was considered

between 30 and 344 lm (see Table 3).

In laminar flow regime, the Poiseuille number (P0) is a

constant and given by the product of friction factor and

Reynolds number.

P0 ¼ f Re ð12Þ

Poiseuille number becomes a very important factor for

the rectangular channels as it is a function of aspect ratio.

Shah and London [91] proposed a correlation to determine

the Poiseuille number. This correlation is as follows,

f Re ¼ 24 1� 1:3553aþ 1:9467a2 � 1:7012a3
�

þ0:9564a4 � 0:2537a5
� ð13Þ

The aspect ratio of the channel must be less than 1, and

in some cases, it is greater than 1, and the inverse of it will

be taken.

Nikuradse [92] also provides a correlation to calculate

the value of Poiseuille number in the pure turbulent regime,

which is read as:

f ¼ 3:48� 1:737 ln e=D
� �� ��2 ð14Þ

where ‘e’ is absolute roughness of the pipe and ‘D’ denotes

the internal diameter of the pipe.

The friction factor can be calculated by using a relation

given by Colebrook et al. [93] given as follows:

1p
f
¼ 3:48� 1:737 ln

e

D

� �
þ 9:35

Re
p
f

� 	
ð15Þ

The work of Kandlikar and Steinke [94] determined the

friction factor by using two components. These two com-

ponents were, friction factor taken from the classical theory

of fully developed flow and the second component was

Hagenbach factor.

DP ¼ 2 fReð ÞlVL
D2

h

þ k xð Þq �V2

2
ð16Þ

where k(x) is known as the Hagenbach factor and given by,

k xð Þ ¼ fapp � fFD
� � 4x

dh
ð17Þ

In this relation, fapp and fFD are known as apparent and

fully developed friction factors, respectively. The results of

the study showed that this correlation only can predict the

friction factor in the laminar region, and for the turbulent

region, there is a discrepancy. Since this correlation was

developed for the fully developed flow in microchannels

and because of temperature variation along with the length

of the microchannel, the temperature profile was not

completely developed. Thus, this correlation shows devi-

ation from the experimental data. For a rectangular cross

section, the Hagenbach factor for fully developed flow is:

k 1ð Þ ¼ 0:6796þ 1:2197aþ 3:3089a2 � 9:5921a3
�

þ8:9089a4 � 2:9959a5
�

ð18Þ

Kandlikar and Grande [12] also performed an experi-

ment and presented their findings as correlation to calculate

the friction factor in the turbulent regime for fully devel-

oped flow.

fapp ¼ 0:0929þ 1:01612
L
Dh

 !
Re�

�0:268�0:3298
L
Dh


 �

ð19Þ

where Re� is known as laminar equivalent Reynolds

number which was proposed by Jones [95], specifically for

rectangular channels only as follows:

Re� ¼ Re
2

3
þ 11

24
/ 2� /ð Þ

� 	
ð20Þ

It is very important to acknowledge that this correlation

was only proposed for minichannels. Later it was con-

firmed by Kumar et al. [96] that it also can be used for

microchannels successfully.

In the past few years, researchers have done work in

single-phase flow in microchannels. They have quite

explored areas of both liquid flow and gaseous flow. The

work done is shown in Table 4 for liquid flow and in

Table 5 for gaseous flow. Morini et al. [54] worked in

turbulent flow and reported that the experimental value of

friction factor was less than that of calculated by Blasius

correlation for flow in smooth tubes, even after taking

account of compressibility effects. When there is a gaseous

Table 3 Laminar flow in circular and non-circular channels with

diameter (D) and sides a and b [90]

Cross section Geometry Hydraulic diameter Constant value

Circular D Dh 64

Rectangular a/b = 0.1 2ab/(a ? b) 85.76

a/b = 0.2 2ab/(a ? b) 76.8

a/b = 0.4 2ab/(a ? b) 65.28

a/b = 0.6 2ab/(a ? b) 60.16

a/b = 0.8 2ab/(a ? b) 57.6

Square a a 56.96

6 J. P. Sharma et al.
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flow, the compressibility effects seem to be more signifi-

cant as compared to liquid flow. The basic condition for the

significance of compressibility effects in gaseous flow

occurs when one of these two given conditions as given

below are satisfied

Ma[ 0:3 ð21Þ
DP
Pin

[ 0:05 ð22Þ

where ‘Ma’ denotes the Mach number and ‘Pin’ denotes the

pressure drop at inlet of channel.

In the experiment performed by Vijayalakshmi et al.

[206], they concluded that pressure distribution is linear in

incompressible flow, when the value of Reynolds number

exceeds up to 1600. However, pressure distribution linear

in nature when the value of Reynolds number goes beyond

1600. These results were in agreement with the results of

Kumar et al. [96]. Later on, another experiment performed

by Ding et al. [210] explained that, when the value of

pressure drop in the duct is nearly 10 kPa, the compress-

ibility effects in gaseous flow tend to be more significant,

while the Mach number is kept less than 0.1. Hrnjak and Tu

[143] concentrated in the laminar regime and explained

that roughness of the channel is not a very significant factor

in laminar flow. However, when it comes to turbulent flow,

it changes very chaotically and shows its effect on friction

factor. Same observations were performed by Tang et al.

[204] and stated that roughness factor of microchannels

does not play any role in friction factor ergo friction is

solely independent of surface roughness in laminar flow.

However, the classical theory of fluid flow does not agree

with these results. But, many other researchers

[12, 87, 90, 118, 119, 210–212] confirmed that the friction

factor is closely affected with the change in surface

roughness in laminar flow. In some other experiments

performed by Morini et al. [54, 205], Kohl et al. [203],

Table 5 Single-phase pressure drop for gaseous flow

Author Year Channel cross

section

Flowing fluid Hydraulic diameter

(Dh)

Reynolds number

(Re)

L/Dh Aspect

ratio

Peiyi and little [81] 1983 Rectangular,

trapezoidal

Ar, H2 and N2 55.8–83.1 100–15,000 100–720 2.37–4.75

Pfahler et al. [99] 1990 Rectangular,

trapezoidal

Ar, H2 and N2 76.12 0.0009–300 – 0.008–0.4

Choi et al. [194] 1991 Circular N2 3.00–81.2 30–20,000 640–8100 0

Pong et al. [195] 1994 Rectangular N2 and He 0.03–2.33 – – 0.03–0.24

Arkilic et al. [196] 1994 Rectangular He 2.59 0.0014–0.012 2892 39

Yu et al. [87] 1995 Circular N2 19–102 250–20,000 \1.00 –

Shih et al. [197] 1996 Rectangular N2 and He 2.33 0.001–0.1 1717 33.33

Stanley et al. [198] 1997 Rectangular N2 56–256 50–10,000 – –

Wu et al. [199] 1998 Rectangular N2 3.37 0.1–1.00 1305 10.3

Araki et al. [200] 2000 Trapezoidal,

triangular

H2 and N2 3.92–10.3 0.0065–0.0345 1.59–3.83 1.41–19.71

Turner et al. [201] 2001 Rectangular,

trapezoidal

Air, N2 and He 5–96 0.1–1000 263–5176 20–435

Asako et al. [202] 2005 Circular N2 150 1508–2188 206–327 –

Kohl et al. [203] 2005 Rectangular Air 24.9–99.8 6.8–18,814 220–533 1.03–3.90

Morini et al. [54] 2006 Circular N2 133–730 100–10,000 575–3759 –

Tang et al. [204] 2007 Circular

Rectangular

N2 50–300 3–6200 333–3000 –

Morini et al. [205] 2009 Circular N2 100–300 100–25,000 167–5000 –

Vijayalakshmi et al.

[206]

2009 Trapezoidal N2 60.5–211 0.04–0.18 246–860 2.6–3.6

Chen and Zhang

[207]

2014 Circular CO2 0.1–0.5 mm 3–300 200–800 –

Yuan et al. [208] 2015 Square Air 0.4 mm 200–2100 243.75 1

Byongjoo Kim [209] 2016 Rectangular Compressed

nitrogen

155–580 lm 30–2500 131.03–490.32 0.25–3.8

Yuan et al. [208] 2016 Circular Air 0.4 mm 150–2800 25 –

12 J. P. Sharma et al.
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Sharp and Adrian [213] and Hrnjak and Tu [143], they

observed that there was no transition reported in laminar to

the turbulent regime. According to other studies

[81, 83, 86, 104, 115, 210, 212, 214], it was seen that there

was an early transition as compared to the classical theory

of fluid flow.

Heat transfer

The classical theory of fluid flow defines heat transfer on

the basis of Nusselt number, a dimensionless quantity

which depends upon heat transfer coefficient, hydraulic

diameter of the channel and the thermal conductivity of the

fluid flowing in the channel. The value of Nusselt number

in fully developed laminar flow regime is 4.364, while the

constant heat flux boundary condition was used. Experi-

mental investigation performed by Cuta et al. [108] con-

sidered the problem of thermal entrance for laminar flow in

combination with constant heat flux. The results of this

study observed Nusselt number to be a function of axial

distance, Reynolds number and Prandtl number.

Nu ¼ 4:364þ
0:00668 dh=x

� �
Re Pr

1þ 0:04 dh=x

� �
Re Pr

h i2
3

8><
>:

9>=
>;

ð23Þ

An experiment was performed by Schilder et al. [215]

on single-phase flow while keeping the diameter of the

microchannel as 0.6 mm. In another experiment conducted

by Admas et al. [114], they worked on the turbulent flow

by considering water as flowing fluid in microchannels of

circular cross section having hydraulic diameters of 0.76

and 0.109 mm. They proposed a correlation as given

below:

Nu ¼ NuGn þ 1þ Fð Þ ð24Þ

where

NuGn ¼
f
8

� �
Re� 1000ð Þ Pr

1þ 12:7 f
8

� �1
2 Pr

2
3 �1

� � ð25Þ

where ‘f’ is

f ¼ 1:82 log Reð Þ � 1:64f g�2 ð26Þ

F ¼ 7:6� 10�5Re 1� dh

do


 �2
( )

ð27Þ

NuGn was known as Nusselt number given by Gnielinski

[216] in his correlation. Garimella and Singhal [217] pro-

posed both laminar and turbulent conditions and explained

that there is a small agreement between experimental

results and classical theory. The study concluded that

transition from laminar flow to turbulent flow occurs at a

very low value of Reynolds number. Mala and Li [115]

stated that microchannel flow ceases early transition at low

Reynolds number range of 300–900. Peng et al. [83] found

the transition to be at 700. Silvério and Moreira [218]

contradicted the previous results and stated that the tran-

sition does not take place at Reynolds number value less

than 1800. These results were in agreement with the results

of Sharp and Adrian [213]. Single-phase flow heat transfer

is shown in Table 6.

Che et al. [230] investigated Peclet number effect for

liquid–liquid two-phase flow heat transfer for rectangular

cross-sectional microchannel. The range of Peclet number

was kept from 25 to 800. It was observed that with the

increase in Peclet number, Nusselt number increases with

respect to time as shown in Fig. 2 and decreases the heat

transfer index as shown in Fig. 3.

Fischer et al. [231] carried out investigation on laminar

heat transfer with water–5 cS silicone oil or PAO as

flowing fluids. The nanoparticles of Al2O3 having the

volume fraction of 3% were suspended in water/PAO

droplets. In Fig. 4, the average Nusselt number was com-

pared with non-dimensional pressure drop, normalized by

pressure drop of single phase of water flow. Figure 5 shows

that the 5 cS silicone oil shows good performance in

comparison with other fluid. It was also seen that the

addition of nanoparticles into PAO oil enhances the heat

transfer and reduces the pressure drop slightly. Figure 5

shows that the highly viscous silicone oil had the highest

value of Nusselt number, but the pressure increases about

11% for single-phase fluid flow.

Peiyi and Little [81] performed heat transfer character-

istics analysis for both laminar flow and turbulent flow and

concluded that values of Nusselt number were greater than

as compared to the conventional theory. Later Choi et al.

[194] confirmed that correlations given by Peiyi and Little

were not in agreement with their experimental results.

Extensive study of heat transfer characteristics in single-

phase flow in microchannels suggested the following

important points:

i. A study performed by [83, 85, 86, 106,

119, 124, 214, 229] concluded that Nusselt number

values obtained by experimental results are much

less as compared to the conventional theories.

ii. The experimental results of [12, 81, 107, 109, 110,

114, 121, 130, 140, 232–234] confirmed that Nusselt

number values are greater as compared to the

predicted values of conventional theories.

iii. The results of a study performed by [16, 111, 127,

135, 235, 236] concluded that conventional theories

and experimental results are in very good agreement

with each other in correlations given for laminar and

turbulent flow regimes.
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It is observed that even though researchers have done

extensive studies on microchannels, there are still some

deviations in results. Finally, it was concluded that these

deviations could be because of the following reasons:

i. Velocity profile and the entrance region are the most

crucial area in microchannel flow. Since velocity

profile, temperature and the entrance region are in

developing mode, the changes in Nusselt number

along with the microchannels take place.

ii. The theory of fluid dynamics describes that there are

two entrance length: hydrodynamic entrance length

and thermal entrance length. When the velocity

profile becomes fully developed, then it is necessary

to take into account the effects of thermal entrance

length.

iii. The complications arise when the value of the

Prandtl number becomes greater than unity. In that

case, Graetz number becomes the criteria to avoid

the entrance effects. Morini [237] suggested taking

account the effects of entrance length after Graetz

number higher than 10, and Rosa et al. [238] reported

that entrance effects might be important at high

Reynolds number values.

iv. The difference between inlet and outlet temperatures

could be very high in microchannels. Thus, it is

possible that the deviation in Nusselt number takes

place because of changes in thermophysical

properties.

Multi-phase flow

Multi-phase flow is in which the flow takes place in two or

more than forms of state of the matter. When two fluids

flow in the channels, it is allowed to change its phase in

order to provide maximum heat transfer similar to a case of

evaporator and condenser. Most common multi-phase flow

exists in the form of two-phase flow. Other types of two-

phase flows are as follows: liquid–liquid, liquid–gas and

gas–gas flows.

Friction factor and pressure drop

In two-phase flow, the flows are classified into two major

categories: (1) homogeneous flow and (2) separated flow.

In gas–liquid flow, most of the flows are homogeneous

flow and suppose to mix up; thus, the calculation of pres-

sure drop can be done by using standard pressured drop

correlations. Since only latent heat is assumed to be

exchanged between fluids during phase change, the mean

properties are computed as weighted as compared to the

vapor and liquid percentage present. A number ofTa
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correlations for two-phase flow have been suggested.

Thoughtful selection of correlation is very important while

applying on a model for precise results. Two-phase pres-

sure drop is a function of friction factor, acceleration factor

and gravitational factor terms.

dP

dZ total pressure drop
¼ dP

dZfrictional
þ dP

dZaccelaration
þ dP

dZgravitational

ð28Þ

Horizontal flow :
dP

dZgravitational
¼ 0 ð29Þ

Adiabatic flow :
dP

dZaccelaration
¼ 0 ð30Þ

Thus, the total pressure drop,

dP

dZ total pressure drop
¼ dP

dZfrictional
¼ 2fTPLG

2

qTPDh

ð31Þ

where ‘fTP’ is denoted as two-phase friction factor and ‘G’

is known as mass velocity and is equivalent to G ¼ qv.
Also, qTP is known as two-phase density.

qTP ¼ x

qG
þ 1� x

qL

� �1

ð32Þ

The two-phase friction factor is described as,
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• For laminar flow,

fTP ¼ 16

ReTP
ð33Þ

• For turbulent flow,

fTP ¼ 0:079Re�0:25
TP ð34Þ

where two-phase Reynolds number is defined as,

ReTP ¼ GDh

lTP
ð35Þ

where lTP is known as two-phase viscosity.

The study carried out by Cioncolini et al. [211] intro-

duced a new correlation, which was based on the Weber

number. This method of observation at macroscale was

also meant to sum up the criteria of microscale in both

laminar flows. Another correlation given by Costa-Patry

et al. [239] performed an experiment on flow boiling in

multi-microchannels having a width of 85 lm. It was

concluded that correlation given by Cioncolini was in

agreement with their results.

fTP ¼ 0:0196We�0:0722
c Re0:318L ð36Þ

Few other viscosity models applicable in two phases are

as follows:

i. The model is given by McAdams et al. [240]:

lTP ¼ x

lG
þ 1� x

lL

� �1

ð37Þ

ii. The model is given by Owens [241]:

lTP ¼ lL ð38Þ

iii. The model is given by Cicchitti et al. [242]:

lTP ¼ xlG þ 1� xð ÞlL ð39Þ

iv. The model is given by Dukler et al. [243]:

lTP ¼ blG þ 1� bð ÞlL ð40Þ

v. The model is given by Beattie and Whalley [244]:

lTP ¼ blG þ 1� bð Þ 1þ 2:5bð ÞlL ð41Þ

vi. The model is given by Awad and Muzychka [245]:

lTP ¼ 2lG þ lL � 2 lG � lLð Þ 1� xð Þ
2lG þ lL þ lG � lLð Þ 1� xð Þ ð42Þ

Venkatesan et al. [246], Cioncolini et al. [218] and Choi

and Kim [247] identified the two-phase flow patterns and

reported that only in case of bubble flow, HFM is appli-

cable in which flow field is with weak disturbance.

Liu et al. [248] reported that bubble flow patterns only

occur in high flow velocities of liquids and low velocities

of gases. However, Taylor flow is also known as slug flow

which also demonstrated the applicability of the HFM

assumption. Defined criteria for HFM assumption is to

where the tube diameter is less than the diameter of bubble

length moving along the capillary. In general, slug flow is

not always considered as SFM (separated flow model)

because flow patterns do not always come into the picture

in SFM. Study on two-phase pressure drop is also repre-

sented (see Table 7).

Experiment performed by Choi and Kim [247] described

one of the most precise viscosity models, a model of

Beattie and Whalley. It is focused on volumetric specifi-

cation. The results reported that Dukler’s model over-cal-

culates the two-phase pressure drop, but it is under-

calculated by rest of the models. Chung et al. [256]

reported that when Dukler’s model is used for diameter

range of 530–250 lm, it estimates pressure drops. How-

ever, when it calculates data in diameter range of

100–50 lm, it shows a good agreement. In another case, it

was seen that Beattie and Whalley model was used for the

diameter range of 530–250 lm, and it estimates pressure

drop very significantly as compared to diameter range of

100–50 lm. Study performed by Choi and Kim at

microchannel diameter for Dh = 490 lm reported that

Duckler’s model is not very precise, but at diameter Dh

= 141 lm it predicts pressure drop more precisely. It was

also seen that these results was in agreement with the

results of Chung et al. [256], while the model of Beattie

and Whalley does not show significant difference for

microchannel diameters 490 lm and 141 lm.

Figures 6 and 7 show the pressure drop comparison

based on the experimental results of two homogenous flow

void fraction models (McAdams and Cicchitti) for flow in

fractal-like microchannels. The models are in agreement

with the experimental results, and the mean deviations for

both models are 12.0% and 12.1% and maximum deviation

of 20.3% and 20.8% for McAdams and Cicchitti models,

respectively. It was stated that both models can overpredict

the measured pressure drop values.

A study conducted by Lee and Mudawar [257]

explained the two-phase viscosity model predicted by

Cicchitti. They explained that this model was slightly dif-

ferent from the rest of the models and provides a greater

estimation of two-phase viscosity at very low quality as

compared to rest of the models. They described further that

the tendency of overprediction of data at low quality and

under-prediction of data at higher quality by Cicchitti

method gives reasonable mean deviation. This was also

verified by the results of Cioncolini et al. [211], Yue et al.

[254] and Kawahara et al. [263]. It is important to under-

stand that the best model calculates the pressure drop in

two phases which are different for each and every study. It

is also important to notice that the hydraulic diameter of

characteristics of the two-phase flowing fluid is the key

A study on thermohydraulic characteristics of fluid flow through microchannels 17
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Table 7 Two-phase pressure drop

Authors Year Flowing fluid Channel

cross-

sectional

geometry

Hydraulic

diameter

range (Dh)

Reynolds

number range

(Re)

Developed correlation

Mishima

and Hibiki

[249]

1996 Water and air C 1000–4000 – C ¼ 21 1� e�0:319Dhð Þ

Zhang and

Webb

[250]

2001 R134a

R-22

R404a

Circular 2.13 mm – When x = 0 (liquid flow); Two-phase multiplier,

;2LO ¼ 1

When x = 1 (vapor flow); Two-phase multiplier

;2LO ¼
dPf;vo

dz

� �

dPf;vo

dz

� � ¼ ql
qv

� �
fvo
flo

� �

Lee and Lee

[251]

2001 Water and air R 780–6670 0.303–17,700 C ¼ A
l2
L

qLrDh

� �q
llj
r

� �
ResLO

Chen [252] 2002 Water and N2 C 100 250–20,000 –

Qu and

Mudawar

[253]

2003 Water R 349 – C ¼ 21 1� e�0:319Dhð Þ � 0:00418Gþ 0:0613ð Þ

Yue et al.

[254]

2004 Water and N2 T 333–528 10–1000 C ¼ aXbRecLO

a ¼ 0:411822

b ¼ �0:0305

c ¼ 0:600428

Coleman

and

Krause

[255]

2004 R134a R 830 400–40,000 –

Chung et al.

[256]

2004 Water N2 R 50–100 0.0014–0.012 dP
dzF=B

¼ fB
qG UB�U1ð Þ

2DB

Lee and

Mudawar

[257]

2005 R134a R 349 – C ¼ 2:16Re0:047fo We0:6fo : L� L

C ¼ 1:45Re0:25fo We0:23fo : L� T

Pamitran

et al. [258]

2008 CO2 and R–22 C 1500–3000 – C ¼ 1:2897Re0:5674tp We�3:3271
tp

Yue et al.

[259]

2008 CO2 and water C 200–667 0.4–2300 ;2L ¼ 0:217b�0:5
L Re0:33LS

Lee and

Garimella

[260]

2008 Water R 160–538 – C ¼ 2566G0:5466D0:8819
h 1� e�0:319Dhð Þ

Choi et al.

[261]

2008 R410a Circular 1.5 mm,

3.0 mm

10,000–100,000

;2fo ¼
�dp

dz
F

� �
tp

�dp

dz
F

� �
fo

¼
�dp

dz
F

� �
tp

2ffoG
2

Dqf

Li and

Hibiki

[262]

2008 R123, R134a, R22,

R236ea, R245fa,

R404a, R407c,

R410a, R507,

CO2, water and

air

– 0.50–12 mm 10–37,000

[liquid]

3–4 9 105

[gas]

C ¼ 1:79
Reg

Rel

� �0:4
1�x
x

� �0:5

Kawahara

et al. [263]

2009 Water and ethanol C 250–500 – C ¼ 1:38Bo0:5466Re0:52L We�0:12
G : without contraction

C ¼ 0:55Bo0:5466Re0:52L We�0:12
G : with contaction

Megahed

and

Hassan

[264]

2009 FC-72 R 70–304 19–4443
C ¼ 0:0053Re0:934

fo

Co
0:73

X2ð Þ0:175
: laminar liquid� laminar vapor

C ¼ 0:0053Re1:7

fo

Co
0:7

X2ð Þ1:24
: laminar liquid� laminar vapor
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component for the selection of the best model. It was

concluded in various studies that the models of Dukler and

Cioncolini are capable of predicting the data precisely for

microchannels. On the other hand, the models given by

Beattie and Whalley and McAdams are best to predict the

pressure drop of two phases in minichannels and macro-

channels. Separated flow model (SFM) is a model in which

both fluids (liquid and gas) flow separately from each other

in a channel. Each phase takes up a certain area of the cross

section of the channel. Separated flow model has been

studied extensively and experiments have been performed

as well considering the combination of air–water as flow-

ing fluid. In most of the cases, triangular geometry of cross

section of microchannels has been used. Many researchers

have performed experiments by considering various

hydraulic diameters. Zhao and Bi [267] conducted a study

for hydraulic diameters range of 0.87–2.89 mm.

Kawahara et al. [263] studied the SFM for nitrogen and

Table 7 (continued)

Authors Year Flowing fluid Channel

cross-

sectional

geometry

Hydraulic

diameter

range (Dh)

Reynolds

number range

(Re)

Developed correlation

Choi et al.

[194]

2009 Propane R 1500–3000 – C ¼ 1732:953Re�0:323
tp We�0:24

tp

Lee et al.

[265]

2010 Ammonia,

CO2,

R11,

R12,

R22,

R123, R134a,

R141b, R410a

and water

– 0.2–14 mm 0.05 9 103–

10.1 9 103

[liquid]

1.2 9 103–

155 9 103

[gas]

Cnew ¼ 121:6 1� e�22:7Boð Þx1:85e

Venkatesan

et al. [246]

2011 N2 C 600 –
C ¼ 4We0:3L

ReG

ReL

� �0:5
: Bo� 1

C ¼ 2We0:5L
ReG

ReL

� �0:5
: Bo\1

Garcia et al.

[266]

2017 R407c Circular 4.5 mm,

8 mm

8000–16,000
lh ¼ x

lv
þ 1�xð Þ

ll

h i�1

Homogenous per McAdams

Data

1:1

+/– 5%

+/– 15%

110

90

70

M
od

el
 Δ
P

50

30

10
10 30 50 70 90

Experimental ΔP
110

Fig. 6 Homogenous flow models given by McAdams [80]
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Fig. 7 Homogenous flow models given by Cicchitti [80]
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water as flowing fluid in microchannels of circular cross

section having a hydraulic diameter of 100 lm.

Chung et al. [256] performed experiments on microchannel

of square cross section having a hydraulic diameter of

96 lm. A study performed by Lockhart and Martinelli

[268] used the concept of the two-phase multiplier for the

calculation of pressure drop in liquid flow:

;2L ¼ 1þ C

X
þ 1

X2
ð43Þ

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dP
dz

� �
L

dP
dz

� �
V

2
64

3
75

vuuuut ð44Þ

The value of two-phase multiplier, denoted by ;2L is

calculated with the help of coefficient ‘C’ and a parameter

given by Lockhart–Martinelli, X2, which gives the ratio of

single-phase liquid to a single-phase gas pressure gradient.

Study conducted by Friedel [269] reported a correlation to

calculate the pressure gradient multiplier of two-phase flow

as follows:

;2LO ¼ E þ 3:24FH

Fr0:045We0:035
ð45Þ

E ¼ 1� x2
� �

þ x2
qLfvo
qvfLo

ð46Þ

where ‘Fr’ and ‘We’ are commonly known as Froude and

Weber numbers and also fvo and fLo are known as friction

factors of gas and liquid at given mass flux ‘G.’

Since many numbers of experimentations were per-

formed below the condition where the value of Reynolds

number for gas and liquid (ReL and ReG) was less than

1000, the model of Lockhart and Martinelli estimates the

value of ‘C’ to be 5. The findings of other experiments

performed by Yue et al. [254, 259], Chung et al. [256] and

Fukano and Kariyasaki [270] depicted that results cannot

be well estimated by only one value of 5. Thus, they stated

further that the value of C tends to get lower as the

diameter of the channel is decreased from 530 to 50 lm.

This finding was confirmed by the results of Yue et al.

[254], who described that the models given by Lockhart

and Martinelli cannot predict dependency of C, well the

values of mass flux as good as it does for gas flow and

liquid flow on superficial velocities. Many researchers have

given other correlations to calculate the value of Cin order

to further calculate the value of the two-phase multiplier.

Experimental results of Cavallini et al. [271] stated that the

model is given by Mishima and Hibiki [249] capable of

estimating pressure drop in two-phase flow in condensation

process of R134a and R-236a in channels having a diam-

eter of 1.4 mm. It was seen that the correlation proposed by

Mishima and Hibiki [249] takes account of the dependency

of C on the size of the channel, while the channel gap is

maintained between 0.4 and 4 mm.

Another equation to estimate the two-phase multiplier

was introduced by Chisholm [272] which is as follows:

;2LO ¼ 1þ Y2 � 1
� �

Bx2�
n
2 1� xð Þ2�

n
2þx2�n

h i
ð47Þ

where the value of n is 0.25 and Y is known as Chisholm

parameter which is as follows:

Y ¼ dP=dZð ÞVO
dP=dZð ÞLO

ð48Þ

If the value of Chisholm parameter lies between 0 and

9.5, then the value of parameter B is as follows:

B ¼

4:8 : G� 500 kgm�2 s�1

2400

G
: 500\G� 1900 kgm�2

55

G0:5
: G[ 1900 kgm�2 s�1

8>>><
>>>:

ð49Þ

When the values of Y lies between 9.5 and 28,

B ¼
520

YG0:3
: G� 600 kgm�2 s�1

21

Y
: G[ 600 kgm�2 s�1

8><
>:

ð50Þ

When Y � 28,

B ¼ 15; 000

Y2G0:5
ð51Þ

The research was done by Zhang and Webb [250] cal-

culated pressure drop in two-phase flow in adiabatic con-

dition using R404a as flowing fluid in aluminum channel

having multi-port extrudes. The hydraulic diameter of the

channel was considered as 2.13 mm, and two another tubes

made of copper having a hydraulic diameter of 6.25 mm

and 3.25 mm were inserted to make it as a concentric

channel. Results of this study predicted that correlation

given by Friedel cannot estimate two-phase pressure drop

precisely. Thus, they proposed a new correlation to cal-

culate the two-phase pressure gradient multiplier as

follows:

;2LO ¼ 1� x2
� �

þ 2:87x2
P

Pcrti


 ��1

þ1:68x0:8 1� xð Þ0:25 p

Pcrit


 ��1:64

ð52Þ

where critical pressure is denoted by Pcrit and its value

remains constant for each fluid.

An experiment performed by Müller-Steinhagen and

Heck [273] used the collection of 9300 measurements

values of pressure drop for developing a correlation which

is as follows:
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dP

dZ


 �

f

¼ F 1� xð Þ
1
3þ dP

dZ


 �

VO

x3 ð53Þ

where the value of F is given by,

F ¼ dP

dZ


 �

LO

þ2
dP

dZ


 �

VO

� dP

dZ


 �

LO

� 
x ð54Þ

In previous years, when there was a focus on analyzing

the flow patterns mainly churn flow and annular flow then

it was realized that SFM is very realistic. Some studies

[274–276] proposed that little bubble was present in liquid

slug flow or the slug–annular flow which is typically not

seen in Taylor flow. Basically, churn flow only comes into

the picture where high velocity of gaseous flow takes place.

It contains big gas bubbles, but slugs are very small as

compared to the bubbles. Annular flow occurs at even

higher gas flow velocities but for very low velocities of

liquids [277]. A study was conducted by Venkatesan et al.

[246] to define the naming structure for the flow patterns

based on basic characteristics. Slug flow, annular flow and

slug–annular flow come under intermittent flow and bubbly

flow, and dispersed bubbly flow comes under dispersed

flow regime. Some researchers such as Lee and Mudawar

[257], Yue et al. [254, 259] and Chung et al. [256] also

worked on flow patterns for the analysis of pressure drop in

two-phase flow. However, in another experiment per-

formed by Lee and Mudawar [252] concluded that churn

flow cannot be very often found by SFM as stated by

Yue et al. [254].

Venkatesan et al. [246] experimented on a tube having a

diameter of 3.4 mm by considering a model of Dukler with

the bubbly regime and reported that only 10% mean

deviation from homogeneous flow model (HFM) takes

place bubbly flow. Pressure drop was calculated by the

mean deviation of 17%. Prediction of slug flow was made

by using the correlation given by Chisholm, and the mean

deviation was reported to be 14% as compared to the HFM

which had the mean deviation of 43%. It was stated that

HFM can very well estimate the bubbly flow regime in a

tube having a hydraulic diameter of 1.7 mm with the mean

deviation of only 7%. On the other hand, for the same

diameter, Taylor flow and slug flow were predicted by the

mean deviation of 28% and 22%, respectively. The previ-

ous results predicted that SFM is reliable to predict the

churning flow and slug low. For the prediction of Taylor

flow and bubbly flow, HFM is considered best. A study

conducted by Venkatesan et al. [246] on annular flow

regime reported that when the gas is flowing at high

velocities in a tube having a hydraulic diameter of 0.6 mm,

annular flow regime cannot be observed, which was in

agreement with the results of Chung and Kawaji. It was

concluded that it is possible because of strong surface

tension force in narrow channels appearing in microchan-

nels which makes the liquid film to incorporate with the gas

core comfortably as compared to the minichannels. This is

why the existence of annular flow does not take place.

Mean deviation between HFMs and experimental results

are shown in Table 8.

In two-phase flow in microchannels, viscous forces and

inertia forces play a vital role, while the capillary forces are

easily negligible [278]. However, it was observed that

when the diameter of the tube is reduced then capillary

forces comes into the picture and seems to play an

important role in the determination of two-phase flow

patterns. An experiment performed by Li and Wu [279]

described that in theory, there are only four important

forces which can be related to the two-phase flow patterns

in narrow channels or conventional channels, which are:

(a) Surface tension forces

(b) Gravitational forces

(c) Inertia forces

(d) Viscous forces

The bond number is the term which describes the com-

pression of the dimension of channels and the nominal size of

the bubble. It is the actual measure of the available body

forces to the surface tension forces in a bubble. Reynolds

number holds the significance of the ratio of inertia force to

the viscous force, for liquid and gases. On the other side, the

ratio of inertia to the surface tension is known as Weber

number [118]. It is also notable that viscous force-to-surface

tension force ratio is known as a capillary number. Many

researchers such as Venkatesan et al. [246], Yue et al.

[254, 259],Kawahara et al. [252], Lee andLee [251], Lee and

Mudawar [257], Megahed and Hassan [264], Pamitran et al.

[258] and Choi et al. [194] worked on the application of

inertia forces and surface tension forces for the estimation of

pressure drop in two-phase flow.

Heat transfer

Chen [252] experimented and developed a new correlation

to be used in saturated boiling. This correlation is old and

precise, and it is compatible very well with the water at low

pressure. There are some specific conditions to use this

correlation which are as follows:

Hydraulic diameter: Dh C 1 mm,

Pressure drop range: P = 0.09–3.45 MPa

Heat flux range: q00 = 0–2.4 MW m-2

Heat transfer coefficient: h = hNB ? hFC
Forced convection is predicted from the following

correlation,
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hFC ¼ 0:023Re0:8f Pr
0:4

f
F K=dhð Þ ð55Þ

where Re is the Reynolds number and Pr is the Prandtl

number:

Reynolds number:Ref ¼
G 1� xð Þdh

lf
ð56Þ

Prandtl number: Prf ¼
lCp

K


 �

f

ð57Þ

‘F’ is known as the enhancement factor and it was given by

Chen [252] and its value is given by ReTP=Refð Þ0:8.
The phenomenon of nucleate boiling was studied by

Forster and Zuber [280], and they developed a correlation

to decrease the average value of superheat incorporated

with thermal boundary layer and to enhance bubble

nucleation phenomenon in cavities that exist in the wall.

hNB ¼ 0:00122
K0:79
f C0:45

pf q0:49f g0:43c

r0:5l0:29f h0:24fg q0:24g

" #
DT0:24

sat DP0:75
sat S ð58Þ

where

DTsat ¼ ½TW � Tsat�; andDPsat ¼ PsatðTW½ Þ � P� ð59Þ

In the above equation, ‘S’ is defined as suppression

factor and its value is given by S ¼ DTeff
DTsat

h i0:99
:

The study conducted by Kandlikar [281] also proposed a

correlation to calculate the heat transfer coefficient, which

consists of 1000 different data points and all using water,

cryogenic fluids and refrigerants as flowing fluids. This can

be used only for hydraulic diameter, Dh C 1 mm.

h ¼ max hNBO; hCBCð Þ ð60Þ

where

hNBO ¼ 0:6683Co�0:2 1�xð Þ0:8f2 Frfoð Þþ1058BL0:7 1� xð Þ0:8FfL

h i
hfo

ð61Þ

hCBC ¼ 1:136Co�0:9 1� xð Þ0:8f2 Frfoð Þ þ 667:2BL0:7 1� xð Þ0:8FfL
h i

hfo

ð62Þ

and

hfo ¼
Kf

dh

Ref � 1000ð Þ f
2

� �
Prf

1þ 12:7 Pr
2
3

f �1
� �

f
2

� �0:5h i ð63Þ

In this correlation, ‘Co’ is called convection number,

‘BL’ is known as boiling number and ‘Frfo’ is called the

forced number in the saturated condition of all liquids. The

equations used for the above given parameters are given as

follows:

Co ¼ ðqg=qfÞ0:5
1� xð Þ
x

� 0:8
ð64Þ

BL ¼ q
00
w

Ghfg
ð65Þ

Frfo ¼
G2

q2f gdh
ð66Þ

Another study conducted by Gungor and Winterton

[282] focused on developing a correlation by using 3700

data points by taking ethylene glycol, water and refriger-

ants as their flowing fluids. The criteria for using the cor-

relation were dh C 1 mm. Correlation to calculate the heat

transfer coefficient was as follows:

Table 8 Mean deviation between HFM and experimental results

Experiments Models

Mc Adams Owens Cicchitti Dukler Beattie and Whalley Lin

Choi and Kim [247], Dh = 490 lm 40.81 352.1 300.7 66.84 30.69 111.99

Choi and Kim [247], Dh = 141 lm 169.87 709.07 650.12 42.1 43.5 346.56

Cioncolini et al. [211] 43.6 40.0 26.6 47.7 39.2 –

Lee and Mudawar [257] 28.26 – 15.98 30.61 26.79 26.44

Yue et al. [254], Dh = 528 lm 19.31 244.38 221.14 – – 67.54

Yue et al. [254], Dh = 333 lm 18.15 201.92 187.96 – – 76.91

Kawahara et al. [263], distilled water 28.00 40.5 40.3 33.9 49.0 39.2

Kawahara et al. [263], ethanol 4.8 mass% 59.1 114.9 113.6 27.7 55.2 101.6

Kawahara et al. [263], ethanol 49 mass% 46.6 99.9 99.3 10.4 95.1 90.9

Kawahara et al. [263], ethanol 100 mass% 71.2 110.9 110.1 8.3 93.4 104.5

Average values 52.4 212.62 196.2 33.43 54.11 107.29
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h ¼ hf 1þ 3000BL0:86 þ 1:12
1� x

x

� 0:75 qg
qf


 �0:41
( )

E2

ð67Þ

where the parameter ‘E2’ is depended upon the following

conditions:

E2 ¼
1 : Frfo � 0:05
Fr

1�2Frfoð Þ
fo : Frfo\0:05

�
ð68Þ

Few correlations were presented by the study of Shah

and London [283]. These correlations were designed to be

used for the minichannels and microchannels. They pointed

out that both nucleate boiling and convective boiling play a

significant role in the study of evaporative heat transfer in

two phases. Their correlation was developed to use for both

the horizontal and the vertical orientations of tubes. Con-

dition dictates, when N[ 1 and BL[ 0.0003, in that case,

the value of heat transfer coefficient (h) is given by the

following correlation:

h ¼ 230BL0:5hf ð69Þ

N ¼ 1� x

x


 �0:8 qg
qf


 �0:5

ð70Þ

However, when N[ 1 and BL\ 0.0003, in this case,

the value of heat transfer coefficient (h) is given by,

h ¼ 1þ 46BL0:5
� �

hf ð71Þ

In another condition, when 0.1\N\ 1,

h ¼ FsBL
0:5 exp 2:74N � 0:1ð Þhf ð72Þ

And when the value of N\ 0.1, then ‘h’ is given by,

h ¼ FsBL
0:5 exp 2:74N � 0:15ð Þhf ð73Þ

where Fs is known as Shah’s constant and its value is given

by,

Table 9 Two-phase flow heat

transfer
Authors Year Flowing fluid Channel geometry

Lazarek and Black [284] 1982 R113 Circular

Cornwell and Kew [285] 1992 R113 Rectangular

Moriyama et al. [286] 1992 R113 Rectangular

Bowers and Mudawar [287] 1993 R113 Minichannels

Wambsganss et al. [288] 1993 R113 Circular

Mertz et al. [289] 1996 Water, R141b Rectangular

Kew and Cornwell [290] 1997 R141b Circular

Ravigururajan [234] 1998 R124 Rectangular

Mehendale and Jacobi [291] 2000 R134a Rectangular

Kawahara et al. [263] 2002 Water, nitrogen Circular

Lee and Mudawar [257] 2005 R134a Rectangular

Zhao et al. [292] 2006 Water, kerosene Rectangular

Hrnjak and Luo [143] 2008 Water, CO2 Rectangular

Agostini et al. [293] 2008 R236fa Rectangular

Megahed and Hassan [264] 2009 FC-72 Rectangular

Ergu et al. [294] 2009 Water Rectangular

Alapati et al. [295] 2009 NA Rectangular

Na and Chung [296] 2011 ID Circular

Megahed and Hassan [264] 2012 FC-72 Rectangular

Liu et al. [41] 2012 Methanol, helium Rectangular

Autee et al. [297] 2012 Water, air Circular

Ide et al. [298] 2012 Water, nitrogen, Circular

Costa-Patry et al. [239] 2012 R245fa, R236fa Rectangular

Szczukiewicz et al. [299] 2013 R236fa, R245fa Circular

do Nascimento et al. [148] 2013 R134a Rectangular

Goss and Passos [150] 2013 R134a Circular

Houshmand and Peles [300] 2014 Air–water Rectangular

Suwankamnerd and Wongwises [301] 2015 Air–water Rectangular

Chinnov et al. [302] 2016 Air/nitrogen and water Rectangular

Vanderputten et al. [303] 2017 R134a Rectangular

Dalkılıç et al. [304] 2018 R134a Rectangular

A study on thermohydraulic characteristics of fluid flow through microchannels 23

123



Fs ¼
15:43 : BL\0:0011
14:7 : BL[ 0:0011

�
ð74Þ

A study conducted by Li and Wu [279] used 3744 data

points to develop a correlation with the help of parameters

such as Reynolds number, boiling number and bond

number. This correlation can be used for many different

flowing fluids, on various operating conditions and for

different geometries, orientations and dimensions of

microchannels. They deduced from their results that bond

number is a parameter which can be used to define the

criteria for estimating the heat transfer coefficient. It was

stated that the correlation can be used only for the condi-

tion where 0.19 mm B dh B 2.01 mm:

h ¼ 334BL0:3 BoRe0:36f

� �0:4 Kf

dh


 �
ð75Þ

Bo ¼
g qL � qg
� �

d2h

r
ð76Þ

A number of experiments have been performed, and the

results are published to define the pressure drop and heat

transfer characteristics of microchannels. Researchers have

worked in both areas—single-phase flow and two-phase

flow—and finally, it was concluded that either results were

deviating from conventional theory of fluid flow and heat

transfer or they simply were not in agreement with others.

Two-phase flow heat transfer is shown in Table 9. Heat

transfer characteristics of microchannels show much more

deviation as compared to the pressure drop. However, in

some of the studies, it was seen that results of some

researchers were in agreement with the conventional the-

ories, but in few other cases, the results were completely

different, while the operating condition, hydraulic diameter

and flowing fluid were kept same. Some new correlation

was developed in order to predict the friction factor and

Nusselt number. Their correlation was developed by using

the many numbers of data point collectively, and they were

not based on any theoretical assumptions or hypothesis;

thus, this correlation cannot be assumed as much reliable

and significance.

Conclusions and recommendations
for future studies

The present paper presents an extensive review in the area

of fluid flow and heat transfer in microchannels for single-

phase as well as multi-phase flows. It was observed that

single-phase flow in microchannels having a hydraulic

diameter of few hundred micrometers, fluid is considered

to be incompressible, while the flow becomes fully

developed. However, the flow is taking place in laminar

flow regime at constant temperature boundary condition

seems to follow the classical theory of fluid flow. Various

experiments performed at low value ranges of Reynolds

number concluded that the experimental results were in

agreement with the theoretical prediction. However, it was

seen as the value of Reynolds number becomes higher;

then, the experimental results start to deviate from the

conventional laminar predictions. It was also noted that

experimental results seem to follow the conventional

thermal developing flow pattern when the hydraulic

diameter of the microchannel is increased. On the other

side, the experimental results of pressure drop show a slight

agreement for both laminar and turbulent regimes. It is

possible that the deviations occurred in pressure drop in

laminar and turbulent regimes may be because the corre-

lations were developed by assumed macroscale behavior.

Researchers only explored the laminar region for its pres-

sure drop and heat transfer characteristics, while the tur-

bulent flow regime is yet to be explored for pressure drop

and heat transfer characteristics. So, it is highly recom-

mended to work in this direction.
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