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Abstract
The goal of the current article is investigating the nanomaterial stream and its thermal features on a cylinder which is

porous. Nanofluid viscosity and the efficient thermal conductivity are computed by KKL equation. In such method, impact

of Brownian movement is incorporated. The governing PDEs will be decreased to an ODEs set with the adequate ones

utilizing resemblance transformation, numerically resolved by fourth-order Runge–Kutta method. Results for flow as well

as heat transfer specifications are acquired to different amounts of the nanoparticle mass fraction, Re, suction factor and

various forms of nanofluid. In this study, such results illustrate that a nanoparticle presence in the basis fluid can alter the

flow model. Based on the achievements, Nu is a growing function of fraction of nanoparticle, Re and suction factor.
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Introduction

In recent years, there has been being a need to improve new

forms of liquids that will be more influential in heat

transfer efficiency, as increasing requests of such mod-

ernistic technology as microelectronics, chemical products

and power station. The general definition of nanofluid is a

fluid including nano-size solid particles existing in such

basis fluid with slight thermal conductivity such as oils,

ethylene glycol and water [1–5]. Choi and Eastman [6]

proposed the phrase of ‘nanofluid’ when they were repre-

senting a new method to augment thermal feature of HTF

(heat transfer fluid). In the past years, the endeavors for

improving the conduction of fluid were conducted by

mixing solid particles in micrometer or millimeter sizes

into typical carrier fluid; nonetheless, such method because

of suspending millimeter- or micrometer-sized solid parti-

cles in fluid brings about some challenges—including

channel blocking, sedimentation and abrasion—which are

then resolved by reducing the size of such particles to

nanometer scales, which is around 1 to 100 nm. The types

of utilized nanofluids are typically metals such as Cu and

Au, oxide metals such as CuO, TiO2, Fe3O4 and Al2O3 and

nonmetallic element such as carbon [7–12]. The inclusion

of such nanoparticles leads the thermal conductivity of

nanofluid to grow, as those nanoparticles have a greater

level of thermal conductivity compared to the basis fluids

[13–21].

Al2O3 nanofluid with 1.0% of mass concentration

including a particle size of 50 nm has been utilized by

Senthil et al. [22] who found that the maximum efficiency

was acquired at 75% charging rate and 30� slop angle.

Scientists paid attention to the most increase in thermal
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resistance, applying a various desirable mixture of dis-

parate terms. Wei et al. [23] scrutinized the efficiency of

nanomaterial within a pipe with mount of device with new

shape for producing swirl flow. Ferrofluid migration with

considering radiation was examined by Sheikholeslami and

Shamlooei [24], and they concluded that Lorentz force

makes velocity to decline. Huminic et al. [25] have con-

ducted research about the usages of Fe2O3/H2O nanoma-

terial in a thermosyphon heat pipe. Nanomaterials of

various fractions—such as 0%, 2% and 5.3%—have been

charged in the pipe. Based on their results, the most rate of

performance was related to the concentration of 5.3%.

Sheikholeslami et al. [26] employed nanopowder for

boiling phenomena and suggested empirical correlations.

The efficiency of collector employing ZrO2/H2O and Ag/

water nanomaterial was performed by Hussain et al. [27]

who illustrated that those nanofluids grew the efficiency of

unit than water, no more so than at a great inlet tempera-

ture; nevertheless, the performance of that collector silver

nanopowder has been greater compared to ZrO2/water

nanofluid. Other techniques were incorporated by

researchers to augment performance [28–41]. The thermal

efficiency as well as hydraulic efficiency of graphene

nanoplatelets at different fluxes of heat flux has been

computed by Arshad and Ali [42]. Based on their results, a

growth in heat flux damages the nanofluid stability which is

a reason for a reduction in thermal efficiency of nanofluid

in a greater level of heat flux. The decrease in wall base

temperature was 3.45%, and that reduction was 17.48% for

thermal resistance compared to pure water. Melting of

nanomaterial within a duct as a part of ventilation unit was

simulated by Sheikholeslami et al. [43], and they provide

second law analysis for all cases. Pressure drop and thermal

feature of a coiled tube by applying alumina nanomaterial

were studied by Kumar et al. [44] who found the Dp of

0.8% nanofluids to be 9%, greater compared to H2O. The

empirical Nu for 0.1%, 0.4% and 0.8% nanofluids has been

found to be 28%, 36% and 56%, respectively, greater than

basis fluid. These improvements happened because of the

greater rate of knf, efficient fluid combination and storage

secondary stream style in duct. It is found that the amount

of thermal efficiency coefficient was higher than unity. As

a result, alumina nanomaterial can be utilized as a carrier

fluid in helical pipe to improve the rate of heat transfer with

slight pressure fall. Improving numerical approaches helps

the designers to find the optimized design for heating

systems [45–66]. To augment the efficiency of cooling

unit, Sheikholeslami et al. [67] suggested inserting com-

plex turbulator and they considered exergy loss in their

modeling. Mixture of R-11 with titanium was applied by

Naphon et al. [68], and they conduct some experiments for

various tilt angles from 0� to 90�. Based on their results, the
most thermal efficiency of heat pipe has been acquired at

50% charging mass and 60� tilt angle. To gain a more

fundamental insight into the mechanisms of heat transfer in

nanofluids, molecular dynamics simulations are proved to

be a proper technique [69, 70]. Solar unit enhanced with

twisted tape has been scrutinized by Farshad and Sheik-

holeslami [71], and they found the best model for turbulent

modeling. The entropy production through nanofluid filled
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Fig. 1 Geometry of cylinder in the current study
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direct adsorption solar collector with Cu/water as operant

fluid has been surveyed by Parvin et al. [72] in different

solid mass fractions. The most efficient heat transfer factor

improvement has been related to the greatest Re and mass

fraction of 3%. This should be said that the efficiency of

collector doubled.

The topic of this study is investigating the nanoparticle

stream and its heat transfer because of a cylinder including

an identical suction. Nanofluid viscosity and efficient

thermal conductivity are computed by KKL equation. In

this pattern, Brownian movement impact on the efficient

thermal conductivity is taken into account. The declined

ODEs are numerically resolved applying fourth-order

Runge–Kutta method. The influences of factors governing

on this problem are investigated and presented.

Mathematic description

Figure 1 illustrates a steady laminar nanofluid stream

resulted from a stretching pipe (radius = a in axial axis). Z-

direction as well as r-direction is evaluated along the

direction of the pipe and in the radial one, respectively.

The viscous waste is supposed to be negligible, and tube

surface is considered to have a fixed temperature Tw which

is larger than T!. The basis fluid and the powders were in

thermal balance, in which no any slip exists among them.

The correlations are represented as follows under such

presumptions [73]:
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r ¼ a : T ¼ Tw; w ¼ ww; u ¼ Uw

ð5Þ

ww ¼ 2zc;Uw ¼ �acc; and c is a positive fixed.

The carrier fluid is water, and the selected nanopowders

are the same of [74], and also we utilized the KKL model

for prediction of feature of nanomaterial. We supposed that

mixture of copper oxide and base fluid is homogeneous.
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The resembling transformation is considered as follows

based on Wang [75]:

u ¼ �ac½g�0:5f ðgÞ�; g ¼ ðr=aÞ2;
hðgÞ ¼ ðT1 � TÞ=ðT1 � TwÞ; w ¼ 2zcf 0ðgÞ; ð6Þ

ODEs are acquired as follows by replacing Eq. (8) into

Eq. (5):

f 00 þ f 000g ¼ Re � A1 � 1� /ð Þ2:5 �ff 00 þ f 02
� �

; ð7Þ

gh00 þ ðPrRe f A�1
3 A2 þ 1Þh0 ¼ 0; ð8Þ

f ð1Þ ¼ c;
h 1ð Þ ! 0; hð1Þ ¼ 1;
f 0ð1Þ ¼ 1; f 0 1ð Þ ! 0;

ð9Þ

where parameters should be calculated as:

Pr ¼ lf kfqfð Þ�1
Cpq
� �

f
; A3 ¼

knf

kf
Re ¼ ca2=2tf ;

A2 ¼
ðqCpÞnf
ðqCpÞf

; A1 ¼
qnf
qf

ð10Þ

Physical numbers of interest are the Nu and Cf, intro-

duced as follows [73]:

Nu � knf

kf
�2ð Þh0ð1Þ

Cf � A�1
1 1� /ð Þ�2:5

� �
f 00ð1Þ

��� ���;
ð11Þ

Results and discussion

On a stretching cylinder which is porous, nanofluid stream

and its heat transfer are studied. The related correlations

and the boundary conditions have been altered to ODEs,

numerically solved by applying fourth-order Runge–Kutta

method. Figures 2, 3 and 4 demonstrate the effects of /; k
and Re on Cf. Also influences of scrutinized parameters on

Nu are illustrated in Figs. 5, 6 and 7. Dispersion of

nanoparticles becomes a significant approach in heating

and cooling processes. When CuO is mixed with water, the

greater Nusselt amount and lower surface friction factor

can be reached. It is observed that the width of thermal

boundary reduces and there is a ignorable change in the

profile of velocity as the nanofluid mass fraction grows

from 0 to 0.04. Temperature and velocity reduce when Re
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rises. This resulted that surface friction factor reduces with

growing mass fraction of nanofluid; nonetheless, it rises

when Re and suction factor grow. The impacts of Re,

nanoparticle mass fraction and suction factor on Nu and Cf

can be summarized in two formulas:

Cf ¼ 1:83þ 1:04Reþ 0:65k� 0:013/

� 1:39� 10�3Re /þ 1:98� 10�3/k� 0:45Re2 þ 0:079k2

ð12Þ

Nu ¼ 15:85þ 13:11Reþ 12kþ 0:057/

� 0:032Re/� 0:089/k� 0:14Re2 þ 0:93k2
ð13Þ

As k augments, velocity gradient enhances and it makes

the Fanning factor to augment. Cf augments with the rise of

Re which is attribute to higher velocity gradient. Influence

of nanopowder concentration on Cf is negligible as

depicted in outputs. As a consequence of augmenting k,
thinner boundary layer will be obtained and it enhances the

Nu. Nu tends to decline with the decrease of Re and similar

trend was exhibited for fraction of nanofluid.

Conclusions

This paper surveyed two-dimensional nanofluid stream

because of a stretching penetrable pipe. Numerically, the

equations are resolved by utilizing the fourth-order Runge–

Kutta procedure. The impacts of mass fraction of nano-

fluid, suction factor, Re on the stream and its heat transfer

specifications were investigated. Based on results, there is a

direct communication between surface friction factor and

Re and suction factor; nevertheless, the inverse communi-

cation is observed with mass fraction of nanofluid. Also,

the width of thermal boundary layer reduces when nano-

fluid mass fraction, suction factor and Re rise. Opting

higher fraction of CuO leads to greater Nu.
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