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Abstract
The current research article delivers a numerical study of an electrically conducting magnetohydrodynamic nonlinear

convection flow of micropolar fluid over a slendering stretching surface. The flow is laminar and time independent. The

influence of viscous dissipation, Joule heating, non-uniform heat source or sink, temperature-dependent thermal con-

ductivity and thermal radiation is deemed. Heat-transfer characteristics are scrutinized with the aid of modified Fourier’s

law. We presented simultaneous solutions for a flat surface and variable thickened surface. At first, appropriate similarity

transformations are considered to convert the basic partial differential equations as ordinary ones and then solved by the

successive application of numerical procedures such as shooting and fourth-order Runge–Kutta method. Graphs are

delineated to observe the influence of diverse nondimensional parameters on the flow fields. Along with the skin friction

coefficient, couple stress coefficient and local Nusselt number are also discussed and bestowed with the support of the

table. Results stipulate that the distribution of temperature increases with thermal relaxation and radiation parameters, but a

contradictory outcome is spotted for Prandtl number. Also, the microrotation velocity is suppressed with an enhancement

in magnetic field parameter, but an opposite trend is observed for buoyancy force.
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Introduction

Newly, combining dynamic fluids with thermal transport

has been an exclusive, worthy concern due to its abundant

mechanical and industrial significances. Some of such

noteworthy applications of the heat-transfer phenomenon

are the rate of cooling, polymer indulgence, ornament

evolving, sanitize-care of dissolved metals, painting

material and coating of threads. It is well known that the

phenomenon of heat exchange happens when there is a

temperature difference between objects or within various

portions of the object. This process has ample significances

in thermal transmission in muscles, power regiment, an

amalgamation of nuclear energy and many engineering

fields. To describe the heat transport mechanism, Fourier’s

heat conduction law is strongly accomplished by the pre-

vious investigators. In 1948, Cattaneo [1] wished for a new

model to accomplish effective thermal transfer rate with

the addition of relaxation time to Fourier’s model. Later,

Christov [2] wished for the time derivative model to Cat-

taneo’s model, and it is entitled as Cattaneo–Christov heat

flux model. Some significant applications of improved heat

flux model are pasteurization of toned milk, making of

microchips and automatic devices. Hayat et al. [3] reported

the thermal characteristics of an incompressible free con-

vective boundary layer flow of non-Newtonian fluid over a

slendering stretching surface. This investigation is carried

out under the attendance of improved Fourier’s model.

Analytical solutions are presented with the assistance of

homotopic convergent series. The authors [4–6] considered

a model to scrutinize the heat-transfer behavior of MHD
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flows under sundry geometries. The solutions to the prob-

lems are obtained with a joint application of R.K. and

shooting methods. Recently, Nadeem et al. [7] presented an

analytical treatment for MHD non-Newtonian nanoliquid

due to stretching of a plate in the presence of Brownian

motion and concluded that the thermal relaxation param-

eter has a propensity to enhance the fluid temperature.

The fluid flow due to stretching of a slendering surface

with heat transfer has an extensive collection of solicita-

tions in geophysics, biotechnological process and aero-

nautical engineering. Also, it has massive prominence in

the fabrication of rubber mugs and sheets, space vehicles,

glass gusting, polymer physics, whirling of fiber and so on.

Crane [8] initiated an incompressible flow over a stretching

plate. Further, Anderson [9] extended this with Lorentz

force and presented an analytical solution. The inspiration

of temperature-reliant thermal conductivity on non-New-

tonian fluids over a slendering surface was inspected by

Hayat et al. [10] in the attendance of improved Fourier’s

model. A few weeks ago, Anantha Kumar et al. [11]

scrutinized the inspiration of drag force on non-Newtonian

fluid over a stretching sheet with the attendance of melting

heat transfer and concluded that the magnetic parameter

has a tendency to reduce the velocity distribution.

The exploration of non-Newtonian liquid flows due to

stretching of surfaces has countless applications in

biomechanics, aeronautical and mechanical engineering

and in some manufacturing procedures such as thermal

isolation, the invention of paper, biological material

developments, plastic sheets extrusion, crystal expansion,

purification of milk, food dispensation, hot rolling and

glass fiber. Non-Newtonian fluids are the fluids which do

not monitor Newton’s law of viscosity. The micropolar

liquid is one of a special kind and the most familiar non-

Newtonian liquid. The micropolar liquids are liquids with

microstructure. Some oils, honey, mango juice, mud,

toothpaste, some ointments and emulsions are some

notable non-Newtonian liquids in our daily life handling.

Owing to this, they have massive solicitations in industries

such as constructing of semiconductor tools, geothermal

salvage and freezing of magma. Initially, Chiam [12]

scrutinized the heat-transfer features of non-Newtonian

fluid flows across a permeable stretching sheet and

obtained a numerical solution by the consecutive implica-

tion of Newton’s and R.K. methods. The characteristics of

shear-thickening stagnation point flow due to stretching of

a surface were discussed by Nazar et al. [13] by the aid of

Keller-box numerical scheme. Further, the work of

Nazar et al. [13] is extended by Ishak et al. [14] with the

flow across a shrinking sheet. Gupta et al. [15] deliberated

the impact of buoyancy and suction parameters on an

electrically conducting liquid subject to shrinking surface.

They bestowed a numerical treatment for the problem with

the finite element method. Recently, the authors [16, 17]

examined the flow and heat-transfer features of non-New-

tonian nanofluids across a permeable stretching surface in

the attendance of drag force.

Viscous dissipation is an irretrievable procedure, in

which heat is converted to the motion when liquid is

stimulated along the surface. This happens due to the

stroke of shear powers nearby the sheet. This phenomenon

shows a vital role in enormous industrialized and industrial

solicitations such as cuisine food, rock hard, electronic

coffee makers and purification. Motivated by this, Cortell

[18] discussed the influence of Eckert number on magne-

tohydrodynamic flow of non-Newtonian fluid due to a

shrinking sheet. Further, Chen [19] discussed the combined

influence of dissipation generated by viscosity on MHD

flow over a stretching sheet in the attendance of thermal

radiation. They bestowed a numerical solution with the aid

of Keller-Box scheme and clinched that the rate of thermal

transport reduced with an enhancement in the Eckert

number. The influence of velocity slip on MHD flow due to

stretching of a permeable sheet was studied by Anantha

Kumar et al. [20]. Novickij et al. [21] conducted an

experimental study to discuss the influence of Eckert

number on the flow fields in the presence of magnetic field.

Recently, Sulochana et al. [22] discussed the characteristics

of heat transfer on convective non-Newtonian liquids

across a stretching surface in the attendance of Joule

heating and attained the results with the implication of R.K.

and shooting techniques.

The process of non-uniform heat source or sink has

widespread solicitations in paramedical and many techno-

logical undertakings such as radiated diffusers and crude

oil retrieval . Hayat et al. [23] deliberated the effect of

irregular heat parameters on the radiative flow due to the

stretched cylinder by accounting Rosseland approximation.

They presented an exact solution with the aid of HAM.

Further, the researchers [24–26] deliberated the features of

thermal transport on non-Newtonian fluids across a

stretching sheet under the influence of irregular heat source

or sink parameters and concluded that the heat transport

performance can be controlled by the variable heat sink/-

source parameters.

Presently, many researchers have examined the effect of

thermal radiation on the heat-transfer features of fluids

done by a solid surface. Some illustrations of this situation

are space technology, the invention of glass and polymer

dispensation, etc. Bhattacharyya et al. [27] reported the

heat-transfer characteristics of micropolar liquid due to the

permeable shrinking surface with suction and thermal

radiation. Also, they bestowed simultaneous consequences.

The heat-transfer characteristic on MHD stagnation point

flow over a porous stretching sheet was discussed by

Ahmad et al. [28], Gupta et al. [29] and Kundu et al. [30]
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with the attendance of linear radiative heat flux. Haq et al.

[31] discussed the effect of slip on electrically conducting

MHD non-Newtonian fluid flow past a stretching surface in

the attendance of radiation. It was found that the distribu-

tion of temperature was enhanced by the radiation param-

eter. Ramadevi et al. [32] reported a numerical solution for

the magnetohydrodynamic radiative flow of shear-thick-

ening liquids across a coagulated surface in the presence of

thermo-diffusion and diffusion-thermo impacts. A new

heat flux model is considered to analyze the heat-transfer

phenomenon. The natural convective flow and heat-transfer

characteristics in a square enclosure in the attendance of

Lorentz force were examined by Doganchi et al. [33–37],

and it was found that the magnetic field parameter has a

propensity to enhance the local Nusselt number.

Kumar et al. [38] considered a problem to study the flow

and heat-transfer features of hybrid ferrofluid due to

stretching of an unsteady surface under the influence of

irregular heat source/sink. Simultaneous solutions are

presented for ferrofluid and hybrid ferrofluids.

From the earlier literature, it is evident that very

limited effort has been carried out for the magnetohy-

drodynamic stagnation point flow of micropolar fluid

across a slendering stretching surface. Thus, in the pre-

sent article, we are interested to examine the flow and

heat-transfer features of a time-independent stagnation

point flow of an electrically conducting magnetohydro-

dynamic micropolar fluid over a variable thickness sur-

face. Suitable similarity transformations are used to

transform the initial partial differential equations into

ordinary ones and then solved numerically by using the

fourth-order Runge–Kutta and shooting methods. Results

are revealed graphically and bestowed numerical values

for various physical parameters.

Mathematical formulation

Consider a steady two-dimensional incompressible stag-

nation point flow of an electrically conducting micropolar

fluid past a stretching sheet with variable thickness. The

fluid flow is considered in the x way. Let us assume that the

variable thickness of the surface is y ¼ L1 xþ pð Þ
1�n
2 ; here

L1, p are positive quantities and (n 6¼ 1, n ¼ 1), respec-

tively, the flow past a slendering stretching surface and flat

surface. The fluid flow is occupied in the region y� 0. The

y� axis is taken perpendicular to the flow direction. We

assume the stretching and ambient velocities of the surface

are us ¼ a xþ pð Þn; and ue ¼ b xþ pð Þn, respectively,

where a and b are nonnegative constants. Varying mag-

netic force B xð Þ ¼ B0 xþ pð Þ
n�1
2 is applied in the route of

y� as portrayed in Fig. 1.

The assumptions of the problem are:

1. Micropolar liquid model.

2. Stagnation point flow.

3. Modified heat flux model is considered.

4. Frictional heating, Joule heating, variable heat sink/-

source and thermal radiation impacts are deemed.

5. The partial slip boundary condition is applied to the

boundary.

The governing equations are

ou

ox
þ ov

oy
¼ 0; ð1Þ

u
ou
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ou
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Here, u; vð Þ are, respectively, the components of velocity, q
is the density, m is the kinematic viscosity, N is the

microrotation (dimensional), b1; b2ð Þ volumetric thermal

Momentum boundary layer

Thermal boundary layer

ν

u

y

x
B0

Variable thickness sheet

y = L1 (x + p)
1–n

2

Slot

Fig. 1 Flow geometry
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expansion, g is acceleration owing to gravity, r is the

electrical conductivity, j is the density of the microinertia,

j is the vortex viscosity, T is temperature, Cp is specific

heat, c� is the relaxation time, l is dynamic viscosity,

A�;B�ð Þ are irregular heat generation or absorption

parameters (A�; B� [ 0 and A�;B�\0) correspondingly,

internal heat source or sink, T1 is the ambient temperature,

k�; r�ð Þ are, respectively, mean absorption coefficient and

Stefan Boltzmann constant.

C;K Tð Þð Þ are, respectively, the spin gradient viscosity

and temperature-dependent thermal conductivity. These are

well defined as

C ¼ lþ j
2

� �
j ¼ lj 1þ a

2

� �

K Tð Þ ¼ k1 1þ e
T � T1
Tw � T1

� �� � ð5Þ

Here, k1 is thermal conductivity and a ¼ j
l is the

micropolar constant.

The boundary conditions are

u ¼ us xð Þ þ L
ou

oy
; v ¼ 0; N ¼ �Mr

ou

oy
; T ¼ Tw at y ¼ L1 xþ pð Þ

1�n
2 ;

u ! ue xð Þ; N ! 0; T ! T1 as y ! 1;

9=
;

ð6Þ

Consider the velocity, temperature and microrotation in

terms of similarity variables

Here, ðf; vÞ, correspondingly, are the similarity variable

and stream function, F0;G;H (functions of f) designate the
velocity, microrotation and temperature correspondingly

with ½b;1Þ.
By invoking similarity transformations, Eqs. (2)–(4) are

transmuted as

1þ að Þd
3F

df3
þF

d2F

df2
� 2n

nþ 1

dF

df

� �2

þ a
dG

df
þ 2

nþ 1
k 1þ dHð ÞH�M

dF

df

� �
þ 2n

nþ 1
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ð8Þ

1þ a
2

� � d2G
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� 3n� 1

nþ 1

dF

df
Gþ dG
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F � 2

nþ 1
a 2Gþ d2F

df2

� �
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ð9Þ

eHþ 1ð Þ d
2H
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þ e

dH
df
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þFPr
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þ 2

nþ 1
PrM Ec

dF
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� �2

þ ð1þ aÞPrEc d2F

df2

� �2

þ Rd
d2H
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þ Prc
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2
F
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F2 d

2H

df2
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þ 2
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1þ eHð Þ A� dF
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þ B�H

� �
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ð10Þ

Here, k is the convection parameter, d is the nonlinear

convection parameter, M is the magnetic field parameter, A

is the stretching ratio parameter, Pr is the Prandtl number,

Ec is the Eckert numbers and c is the thermal relaxation

parameter. These are defined as

k¼Grx

Re2x
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gb1ðTs�T1ÞðxþpÞ3

t2
;
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usðxÞðxþpÞ

t
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;
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1
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ð11Þ
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The transformed boundary conditions are

F ¼ 1� n

1þ n

� �
b;

dF

df
¼ 1; G¼�Mr

d2F

df2
; H¼ 1; at b¼ L1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þp

2t

r

dF

df
! A; G! 0;H! 0 ; as b!1

9>>=
>>;
ð12Þ

Here, b ¼ L1

ffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þp

2t

q
is the wall thickness parameter.

Equations (8)–(10) are nonlinear ODEs with the domain

½b;1Þ. In order to facilitate the computation, we change it

into ½0;1Þ using the following transformations.

f ðgÞ ¼ f ðf� bÞ ¼ FðfÞ; gðgÞ ¼ gðf� bÞ ¼ GðfÞ; hðgÞ
¼ hðf� bÞ ¼ HðfÞ;

ð13Þ

Here, g is the new similarity variable.

Making use of Eq. (13), Eqs. (8)–(10) and (12) become

d3f

dg3
1þ að Þ þ d2f

dg2
f � 2n
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df
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dg
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þ 2
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df
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� 2n
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ð14Þ
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2
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þ f
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ð15Þ
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þ 2

nþ 1
1þ e hð Þ A� df

dg
þ B�h

� �
¼ 0;
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d2f

dg2
; h ¼ 1; at g ¼ 0

df
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! A; g ! 0; h ! 0; as g ! 1

9>>=
>>;
;

ð17Þ

The mathematical expressions for the physical quantities

(friction factor, couple stress coefficient and local Nusselt

number) are

Cf ¼
ss

1
2
qðusÞ2

;CS ¼ Mw

l us
;Nu ¼ xqs

k1ðTw � T1Þ ; ð18Þ

Here, the surface shear stress, couple stress and heat flux

(ss;Mw; qs) can be defined as

ss ¼ ðlþ jÞ ou
oy

þ jN

� �
y¼0

; Mw

¼ lþ j
2

� �
j

oN

oy

� �
y¼0
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¼ � KðTÞ þ 16r�T3
1

3k�

� �
oT

oy

� �
y¼0

; ð19Þ

Making use of Eq. (7) in Eqs. (19) and (18), it becomes

Re1=2x CF ¼ 2 1þ að1�MrÞð Þ d2f

dg2

� �
g¼0

; CS

¼ 1þ a
2

� � dg

dg

� �
g¼0

; Re�1=2
x Nu

¼ � ð1þ ehÞ
1þ Rdð Þ�1

dh
dg

� �
g¼0

; ð20Þ

where Rex ¼ usðxÞðxþpÞ
t is the local Reynolds number.

Results and discussion

The coupled and nonlinear system of ordinary differential

Eqs. (14)–(16) with the corresponding boundary conditions

(17) is solved numerically with the shooting and the fourth-

order Runge–Kutta methods. The influence of various

dimensionless parameters on the fluid velocity, temperature

and microrotation is exposed via plots. Further, we scru-

tinize the influence of the same parameters on the physical

quantities and the results are presented in the table. Results

are attained by allocating the values of physical parameters

as a ¼ 0:2, A ¼ 0:05, M ¼ 0:5, Ec ¼ 0:3,

Rd ¼ A� ¼ B� ¼ 0:1, Pr ¼ 7, k ¼ 0:1, 2¼ 0:5, g ¼ 0:1,

d ¼ 0:3, c ¼ 0:5 and Mr ¼ 0:5. We have chosen these

values as common for the whole study of results unless

otherwise specified in graphs and tables. In all the figures,

f 0 gð Þ, g gð Þ and hðgÞ symbolize the distributions of velocity,

microrotation and temperature. In diagrams, solid lines

signify the curves for the flow over a flat sheet (b ¼ 0) and

dashed lines signify the curves for the flow due to

stretching of a variable thickness sheet (b ¼ 0:5).
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In Figs. 2–4, we plot the influence of magnetic field

parameter (M) on the flow fields such as velocity, micro-

rotation and temperature (f 0 gð Þ, g gð Þ and hðgÞ). Figure 2

displays that the distribution of velocity and its boundary

layer thickness get suppressed as the values of magnetic

field parameter increase. This contests the physical inter-

pretation on applying the magnetic force to an electrically

conducting fluid, and this provides an elevation in the drag

force, which results in decreasing strength on the distri-

bution of velocity. Due to this, a reduction in the distri-

bution of velocity is noticed. But in the cases of

microrotation and temperature fields, it is quite reverse to

fluid velocity as shown in Figs. 3 and 4. Due to the Lorentz

force, some additional heat energy will be produced in the

flow, which causes an enhancement in the distributions of

microrotation and temperature. Here, it is evident that

Solid   : β = 0

Dashed : β = 0.5

λ = 0.1, 0.5, 0.9(
)

Fig. 6 Impact of buoyancy parameter (k) on fluid microrotation

M = 0, 1, 2

Solid   : β = 0

Dashed : β = 0.5

(
)

Fig. 2 Impact of magnetic field parameter (M) on fluid velocity

M = 0, 1, 2

Solid   : β = 0

Dashed : β = 0.5

(
)

Fig. 3 Impact of magnetic field parameter (M) on fluid microrotation

M = 0, 1, 2

Solid   : β = 0

Dashed : β = 0.5

(
)

Fig. 4 Impact of magnetic field parameter (M) on fluid temperature

λ = 0, 0.5, 1

Solid   : β = 0

Dashed : β = 0.5

(
)

Fig. 5 Impact of buoyancy parameter (k) on fluid velocity
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maximum temperature is attained in the case of slendering

stretching surface when compared to the flat surface.

The impact of buoyancy parameter (k) on the velocity,

microrotation and temperature (f 0 gð Þ, g gð Þ and hðgÞ) is

portrayed in Figs. 5–7. As likely, for enhancing values of

convection parameter the profiles of velocity increase, but

an opposite result is perceived for the distributions of

temperature and microrotation field. Due to high buoyancy

forces, we noticed a decrement in the thickness of thermal

and microrotation fields and an enhancement in the

momentum boundary layer thickness.

Figures 8–10 are outlined to see the impression of the

material parameter on velocity, microrotation and temper-

ature (f 0 gð Þ, g gð Þ and hðgÞ), respectively. It is fascinating to
notice that all the distributions are escalating factors of

Solid   : β = 0

Dashed : β = 0.5

α = 0.1, 0.2, 0.3

(
)

Fig. 9 Impact of material parameter (a) on fluid microrotation

Solid   : β = 0

Dashed : β = 0.5

λ = 0.1, 0.5, 0.9

(
)

(
)

Fig. 7 Impact of buoyancy parameter (k) on fluid temperature

Solid   : β = 0

Dashed : β = 0.5

α = 0.1, 0.2, 0.3

(
)

Fig. 8 Impact of material parameter (a) on fluid velocity

Solid   : β = 0

Dashed : β = 0.5

α = 0.1, 0.2, 0.3

(
)

Fig. 10 Impact of material parameter (a) on fluid temperature

Solid   : β = 0

Dashed : β = 0.5

A = 0.1, 0.2, 0.3

(
)

Fig. 11 Impact of stretching ratio parameter (A) on fluid velocity
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material parameters. It is worth mentioning that the max-

imum velocity and temperature are noticed in the case of

flow past a slendering surface when compared to the other.

Influence of stretching ratio parameter (A) on velocity,

microrotation and temperature is portrayed in Figs. 11–13.

From Fig. 11, we observe that the distribution of velocity is

overshot by an escalation in values of stretching ratio

parameter. But the microrotation and temperature distri-

butions are reduced with larger A.

Figure 14 is plotted to discuss the influence of thermal

radiation (Rd) on the distribution of temperature. From the

figure, it is noticed that the effect of radiation parameter on

hðgÞ is increasing. It is familiar that the mechanism of

radiation is the heat transference phenomenon which

releases the energy via liquid grains such that some addi-

tional heat is produced in the flow. Hence, we detected an

enhancement in the thickness of thermal boundary layer for

larger Rd. We witnessed a motivating result that the curves

of temperature (hðgÞ) are more affected for b ¼ 0:5 when

compared to that of b ¼ 0.

Figure 15 is sketched to examine the influence of

Prandtl number (Pr) on the distribution of temperature. As

expected, for increasing values of Prandtl number the fluid

temperature reduces. The reason behind this is that the

momentum diffusivity dominates with larger Prandtl

number. Moreover, the thermal diffusivity is lesser. Hence,

the distribution of temperature and the corresponding

boundary layer thickness reduces with larger Prandtl

number.

The influence of thermal relaxation parameter (c) on

temperature is portrayed in Fig. 16. By the strengthening of

relaxation parameter, the fluid temperature enhances.

Physically, for higher thermal relaxation time, the fluid

particles unveil non-conducting performance. Due to this,

the particles oblige more time to fetch temperature to their

Solid   : β = 0

Dashed : β = 0.5

A = 0.1, 0.2, 0.3

(
)

Fig. 12 Impact of stretching ratio parameter (A) on fluid

microrotation

Solid   : β = 0

Dashed : β = 0.5

A = 0.1, 0.2, 0.3(
)

Fig. 13 Impact of stretching ratio parameter (A) on fluid temperature

Rd = 1, 2, 3

Solid   : β = 0

Dashed : β = 0.5

(
)

Fig. 14 Impact of thermal parameter (Rd) on fluid temperature

Pr = 1, 2, 3

Solid   : β = 0

Dashed : β = 0.5

(
)

Fig. 15 Impact of Prandtl number (Pr) on fluid temperature
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corresponding particles. It is also observed that the profiles

of temperature are more affected for b ¼ 0:5 than that of

b ¼ 0.

Figures 17 and 18 unveil the influence of irregular heat

source or sink parameters (A�, B�) on the distribution of

temperature. It was detected that increasing values of A�

and B� result in the enrichment in the profiles of temper-

ature. Physically, increasing values of irregular heat

source/sink parameters assist as an agent to spawn tem-

perature in the flow. Due to this, we observed a rise in the

fluid temperature for swelling values of A� and B�. It is
noticeable that the maximum temperature is achieved in

the case of flow past a slendering surface when compared

to the other.

Solid   : β = 0

Dashed : β = 0.5

γ  = 0.0, 0.05, 0.1

(
)

Fig. 16 Impact of thermal relaxation parameter (c) on fluid

temperature

A* = 0, 1, 2

Solid   : β = 0

Dashed : β = 0.5

(
)

Fig. 17 Impact of irregular heat source/sink parameter (A*) on fluid

temperature

B* = 0, 1, 2

Solid   : β = 0

Dashed : β = 0.5

(
)

Fig. 18 Impact of irregular heat source/sink parameter (B*) on fluid

temperature

Solid   : β = 0

Dashed : β = 0.5

Ec = 0.1, 0.2, 0.3

(
)

Fig. 19 Impact of Eckert number (Ec) on fluid temperature

Solid   : β = 0

Dashed : β = 0.5

n = 0.5, 1.0, 1.5

(
)

Fig. 20 Impact of power index parameter (n) on fluid velocity
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In Fig. 19, the graph for dissimilar values of Eckert

number (Ec) against the fluid temperature is sketchily

revealed. As expected, for rising values of Eckert number

the profiles of temperature are enhanced. The ratio between

kinetic energy and enthalpy change is the so-called Eckert

number. Therefore, kinetic energy boosts with Eckert

number. Ergo, the distribution of temperature and the

corresponding thermal boundary layer thickness are raising

functions of Eckert number.

Influence of n on the distributions of velocity and tem-

perature is portrayed in Figs. 20 and 21 correspondingly.

An increment in the values of n results in an increase in the

fields of f 0 gð Þ and hðgÞ. Figures 22 and 23 render the

impact of d on f 0 gð Þ and hðgÞ. As expected, for growing

values of nonlinear convection parameter both the distri-

butions (velocity and temperatures) are enhanced. Also, it

is fascinating to perceive that high temperature and

Solid   : β = 0

Dashed : β = 0.5

n = 0.5, 1.0, 1.5

(
)

Fig. 21 Impact of power index parameter (n) on fluid temperature

Solid   : β = 0

Dashed : β = 0.5

δ  = 0.0, 0.5, 1.0

(
)

Fig. 22 Impact of nonlinear convection parameter (d) on fluid

velocity

Solid   : β = 0

Dashed : β = 0.5

δ  = 0.0, 0.5, 1.0

(
)

Fig. 23 Impact of nonlinear convection parameter (d) on fluid

temperature

Solid   : β = 0

Dashed : β = 0.5

Mr = 0.0, 0.5, 1.0

(
)

Fig. 24 Impact of microrotation parameter (Mr) on fluid velocity
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velocity are accomplished in the case of flow past a slen-

dering surface when compared to the other.

Figures 24 and 25 are plotted to examine the effect of

microrotation parameter (y) on the distributions of velocity

and temperature. An escalating value of microrotation

parameter results in a hike in the distribution of tempera-

ture and a fall in the fluid velocity. Impact of wall thickness

parameter (b) on the distribution of velocity and tempera-

ture is illustrated in Figs. 26 and 27 disparately. As likely,

for increasing values of b enhances both the velocity and

temperatre fields. It is easy to see that an enhancement in

the wall thickness parameter causes a hike in the fluid

velocity. Originally, an increment in the values of b bar-

ricades the flow motion and hence improves the fluid

velocity. Hence, the results of that kind are noticed.

In Table 1, geometrically b ¼ 0 symbolizes the flow

over a flat surface and b 6¼ 0 denotes the variable thickened

surface. The impacts of all sundry parameters are alike in

both cases except the Prandtl number and power-law index

parameter. The higher values of buoyancy and nonlinear

convection parameters enhance the friction factor, couple

stress and heat transfer rate, but a contrary movement is

noticed due to the Lorentz force. The swelling values of

uneven heat source/sink and Eckert number inflate the

couple stress and skin friction coefficients but suppress the

local Nusselt number. Shear and couple stresses are

improved, and the rate of thermal transport lessens with an

intensification in the radiation parameter. The boosting

values of microrotation parameter dwindle the Nusselt

number and friction factor and enhance the coefficient of

couple stress. In both b ¼ 0 and b 6¼ 0 cases, the higher

values of Pr enhance the couple stress and local Nusselt

number but the coefficient of skin friction increases in the

case of b ¼ 0, while it decreases in the b 6¼ 0 case. The

swelling values of power-law index parameter suppress the

couple stress coefficient in both the cases. The local Nus-

selt number enhances if b ¼ 0 and dwindles if b 6¼ 0 with

an increase in n. An incompatible result is noticed in

friction factor when compared in both cases.

Solid   : β = 0

Dashed : β = 0.5

Mr = 0.0, 0.5, 1.0

(
)

Fig. 25 Impact of microrotation parameter (Mr) on fluid temperature

β  = 0, 0.5, 1.0, 1.5, 2.0, 2.5

(
)

Fig. 26 Impact of wall thickness parameter (b) on fluid velocity

β  = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5

(
)

Fig. 27 Impact of wall thickness parameter (b) on fluid temperature
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Conclusions

This research article explains the MHD nonlinear convec-

tive stagnation point flow and heat-transfer characteristics

of micropolar fluid across a slendering stretching surface.

Simultaneous solutions were bestowed for the flow past a

flat surface and slendering surface. The impacts of thermal

radiation, temperature-dependent thermal conductivity,

frictional heat and variable heat sink/source are examined.

The principal consequences are listed as follows

• The distribution of temperature and the boundary layer

thickness reduces with an enhancement in the buoyancy

ratio parameter.

• It is noticed that high temperature is accomplished in

the case of flow past a variable thickness surface than

that of the other (flat surface).

• An increase in nonlinear convection parameter

enhances the friction factor, couple stress and heat

transfer rate, but an opposite result is noticed due to the

Lorentz force.

• Microrotation parameter has a propensity to enhance

the couple stress coefficient.

Table 1 Effect of the different

flow regulating parameters on

Cf , CS and Nu for the flow past

a variable thickness surface and

flat surface

Cf CS Nu

b ¼ 0 b 6¼ 0 b ¼ 0 b 6¼ 0 b ¼ 0 b 6¼ 0

M ¼ 0 - 0.9826 - 0.9307 - 0.3306 - 0.3007 0.7280 0.5981

M ¼ 1 - 1.3028 - 1.2495 - 0.4092 - 0.3755 0.3890 0.2560

M ¼ 2 - 1.5648 - 1.5110 - 0.4645 - 0.4276 0.1205 - 0.0165

Rd ¼ 1 - 1.1205 - 1.0705 - 0.2763 - 0.2498 0.6311 0.4721

Rd ¼ 2 - 1.1120 - 1.0628 - 0.2759 - 0.2497 0.5516 0.4357

Rd ¼ 3 - 1.1049 - 1.0565 - 0.2758 - 0.2496 0.4926 0.4018

Pr ¼ 1 - 1.0773 - 1.0773 - 0.2741 - 0.2489 0.2742 0.2384

Pr ¼ 2 - 1.0628 - 1.0998 - 0.2726 - 0.2467 0.4140 0.3409

Pr ¼ 3 - 1.0565 - 1.1113 - 0.2725 - 0.2462 0.5105 0.4022

c ¼ 0:0 - 1.1178 - 1.0686 - 0.2919 - 0.2651 0.4667 0.3416

c ¼ 0:1 - 1.1206 - 1.0707 - 0.2922 - 0.2653 0.4976 0.3627

c ¼ 0:2 - 1.1235 - 1.0730 - 0.2925 - 0.2655 0.5317 0.3864

A� ¼ 0 - 1.1270 - 1.0762 - 0.2824 - 0.2555 0.6573 0.4577

A� ¼ 1 - 1.1174 - 1.0655 - 0.2811 - 0.2543 0.3053 0.1071

A� ¼ 2 - 1.1.67 - 1.0537 - 0.2797 - 0.2529 - 0.0698 - 0.2689

B� ¼ 0 - 1.1313 - 1.0806 - 0.2937 - 0.2664 0.6442 0.4466

B� ¼ 1 - 1.1251 - 1.0724 - 0.2925 - 0.2650 0.3335 0.1030

B� ¼ 2 - 1.1161 - 1.0592 - 0.2909 - 0.2628 - 0.0663 - 0.3733

Ec ¼ 0:1 - 1.1428 - 1.0920 - 0.2958 - 0.2682 1.1297 0.8552

Ec ¼ 0:2 - 1.1389 - 1.0879 - 0.2950 - 0.2675 0.8998 0.6424

Ec ¼ 0:3 - 1.1349 - 1.0837 - 0.2943 - 0.2668 0.6708 0.4306

n ¼ 0:5 - 1.0881 - 1.1799 - 0.0742 - 0.1170 - 0.4979 - 0.1917

n ¼ 1:0 - 1.1329 - 1.1329 - 0.2214 - 0.2214 - 0.3302 - 0.3302

n ¼ 1:5 - 1.1582 - 1.1097 - 0.3001 - 0.2729 - 0.2178 - 0.3929

k ¼ 0:1 - 0.8894 - 0.8199 - 0.2567 - 0.2259 0.7935 0.5623

k ¼ 0:5 - 0.8423 - 0.7773 - 0.2488 - 0.2190 0.8615 0.6242

k ¼ 0:9 - 0.7800 - 0.7197 - 0.2360 - 0.2076 0.9280 0.6854

d ¼ 0:1 - 0.8955 - 0.8436 0.0711 0.0713 - 0.0095 - 0.1593

d ¼ 0:2 - 0.8208 - 0.7610 0.0740 0.0740 0.0375 - 0.1059

d ¼ 0:3 - 0.7469 - 0.6796 0.0772 0.0769 0.0800 - 0.0590

Mr ¼ 0:0 - 0.7335 - 0.6931 - 0.2946 - 0.2819 0.0697 - 0.0335

Mr ¼ 0:5 - 0.7671 - 0.7221 - 0.1555 - 0.1572 - 0.0245 - 0.1119

Mr ¼ 1:0 - 0.7809 - 0.7358 - 0.1276 - 0.1133 - 0.1260 - 0.1937
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• Eckert number and thermal radiation parameter have a

tendency to enhance the fluid temperature.

• An enhancement in the local Nusselt number is

observed for increasing values of thermal relaxation

parameter.
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