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Abstract
This research analyzes the influences of radiation heat transfer and Brownian movement on the thermal characteristics of

nanofluid flow over an inclined step in the presence of an axial magnetic field. The Rosseland approximation is applied to

simulate the divergence of radiative heat flux in the energy equation. The Al2O3–H2O and CuO–H2O nanofluids are

considered as the working fluid. The KKL correlation is used for modeling the Brownian movement influence on the effective

viscosity and thermal conductivity. The impacts of radiation parameter 0�Rd� 1ð Þ, nanoparticles concentration

0�/� 0:04ð Þ and Lorentz force 0�Ha� 60ð Þ on temperature fields, mean bulk temperature and convective, radiative and

total Nusselt numbers are examined with full details. The results show that the impact of CuO nanoparticles on the average of

total heat transfer rates is greater that the influence of Al2O3 nanoparticles on them. Besides, the highest values of total heat

transfer rates occur in the absence of magnetic field and for the highest values of Rd and / parameters.

Keywords Thermal radiation � Lorentz force � MHD flow � Nanofluid � Brownian movement � BFS

List of symbols
B0 Magnetic field strength

Cp Specific heat (J kg-1 K-1)

h Channel height upstream of BFS, (m)

H Channel height downstream of BFS, (m)

Ha Hartmann number

Fl
! Lorentz force

k Thermal conductivity, (W m-1 K-1)

LD Channel length downstream of BFS, (m)

Lr Reattachment length, (m)

LU Channel length upstream of BFS, (m)

Nu Nusselt number

p Pressure, (N m-2)

P Dimensionless pressure

Pr Prandtl number

q~ Heat flux

Re Reynolds number

Rd Radiation parameter

T Temperature, (K)

u; vð Þ x- and y-components of velocity, (m s-1)

U;Vð Þ Dimensionless X- and Y-component of velocity

V~ Velocity vector

Greek symbols
/ Nanoparticles concentration

l Dynamic viscosity, (N s m-2)

q Density, (kg m-3)

r Electrical conductivity

H Dimensionless temperature

Subscripts
c Convective

f Fluid

in Inlet section

nf Nanofluid

r Radiative

s Solid nanoparticles

t Total

Introduction

Analysis of magnetohydrodynamics MHDð Þ nanofluid

flows is one of the important and noteworthy issues in heat

transfer sciences. This subject has so far been studied by
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many scholars under different conditions [1–11]. This

attention is due to the important role of this type of flow in

the control of hydrothermal behaviors. In fact, in this type

of flow, the heat transfer rates can be controlled by adding

solid nanoparticles to the base fluid (nanofluid) and

applying a magnetic field in the flow domain (MHD flow).

There are many researches about the separate role of

nanofluid [12–26] and magnetic field [27–33] on heat

transfer features of fluid flow. Some of these researches

have been dedicated to study the role of thermal radiation

on the improvement of convection heat transfer rates

[34–40]. Among these articles, Ghalambaz et al. [41] and

Sheikholeslami et al. [42] analyzed the influences of ther-

mal radiation and viscous dissipation on convection heat

transfer of nanofluid flow in a square cavity under different

conditions. Safaei et al. [43] simulated the coupling

between thermal radiation and free convection heat transfer

of nanofluid flow in a shallow cavity using the lattice

Boltzmann method. Interacting effects of magnetic field

and thermal radiation on hydrothermal behaviors of Al2O3–

H2O nanofluid inside a permeable media were simulated by

Sheikholeslami et al. [44]. They reported that the convec-

tion enhances as the radiation parameter increases, but it

reduces by increasing the magnitudes of Hartmann number.

In another research, Sheikholeslami and Rokni [45]

numerically investigated the role of thermal radiation on

heat transfer rates of Fe2O3–ethylene glycol nanofluid flow

inside a porous enclosure considering the influences of an

external electric field. It can be concluded that average

Nusselt number enhances as Darcy number and radiation

parameter increase. Besides, from a different point of view,

the impact of radiative heat transfer on thermal behaviors

of engineering problems was simulated using the discon-

tinuous finite element method [46, 47].

The geometry of equipment used in industries and

engineering applications is also one of the important fac-

tors in controlling the hydrothermal behaviors [48–50]. The

channels with step are one of the most important geome-

tries that are used in industries and engineering equipment.

Therefore, analysis of fluid flow in these geometries is

another important subject in thermal sciences. These kinds

of flows are considered as a benchmark problem and have

an essential role in controlling the heat transfer patterns.

The hydrothermal patterns of these flows were extensively

investigated in the absence of nanoparticles and magnetic

field influences [51–58]. In these studies, the effects of

different parameters such as baffles, obstacles, radiative

heat transfer and Reynolds number on the flow and thermal

characteristics were analyzed. Of course, given the indus-

trial application of these flows, many scholars studied the

impacts of solid nanoparticles on the hydrothermal features

of step flows [59–64]. Among these articles,

Mohammad et al. [65] and Alawi et al. [66] summarized

and reviewed a large numbers of previous researches about

the heat transfer characteristics of various nanofluid flows

in channels having the steps. Selimefendigil and Oztop [67]

numerically investigated the influences of different shaped

obstacles on heat transfer rates of Cu–H2O nanofluid over a

step with a corrugated bottom wall. They reported that the

obstacle shapes and Reynolds number have notable im-

pacts on the magnitudes of average Nusselt number. In

other articles, two experimental and numerical studies were

performed by Kherbeet et al. [68, 69] to investigate influ-

ences of various parameters on hydrothermal characteris-

tics of nanofluid flow in the channels having the backward

BFSð Þ and forward FFSð Þ facing steps. In another recent

study, Atashafrooz [70] numerically simulated the impact

of Ag nanoparticles on hydrothermal behaviors of fluid

flow in a 3-D channel with an inclined BFS.

It should be noted that the impacts of magnetic field on

heat transfer features of step flow have been less studied

compared to the nanofluids influences. Among these stud-

ies, Abbasi and Nassrallah [71] numerically analyzed the

role of Lorentz force on the hydrothermal characteristics of

step flow. They found that velocity field and Nusselt

number distributions are dependent on the Stuart number.

In other researches, Selimefendigil and Oztop [72] and

Atashafrooz et al. [73, 74] examined the impacts of dif-

ferent parameters on thermal patterns and entropy genera-

tion of MHD nanofluid flow in channels with step. They

presented that the Hartmann number, buoyancy force,

inclination angle of magnetic field and concentration of

solid nanoparticles affected the flow irreversibility and heat

transfer rates.

Although so far several researches have been done to

analyze the hydrothermal behaviors in ducts with step, but

as it is clear from the literature review, the effects of

thermal radiation on forced convection heat transfer of

MHD nanofluid flow in a duct with an inclined BFS are

still not analyzed and simulated. This motivates the current

research, such that the interacting impacts of radiative heat

transfer, nanoparticles concentration, Brownian movement

and magnetic field strength on the thermal features of

MHD nanofluid flow over an inclined BFS are investigated

here for the first time with full details.

Problem definition

The geometry and physical configuration of regarded

problem for present research is depicted in Fig. 1. The

relevant details and boundary conditions of considered

geometry are obviously seen from this figure. This geom-

etry includes a horizontal channel with an inclined

BFS b ¼ 60�ð Þ. The Al2O3–H2O and CuO–H2O nanofluids

are selected as the working fluid. Thermophysical
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characteristics of H2O and nanoparticles of CuO and Al2O3

are presented and tabulated in Table 1. Also, it is consid-

ered that an axial magnetic field with uniform strength of

B0 affects the whole domain of nanofluid flow.

Governing equations

The vector forms of the basic equations for the current

study can be written as follows:

r � V~ ¼ 0 ð1Þ

V~ � rV~ ¼ � 1

qnf
rpþ lnf

qnf
r2V~
� �

þ 1

qnf
Fl
! ð2Þ

V~ � rT ¼ knf

qnfCpnf

r2T
� �

� 1

qnfCpnf

r � qr! ð3Þ

The terms of Fl
!

and r � qr! are the Lorentz force and

divergence of radiative heat flux, respectively. These two

terms with the effective characteristics of nanofluid would

be computed in the following sections.

Computation of effective characteristics
of nanofluid

To evaluate the effective viscosity lnfð Þ, density qnfð Þ,
thermal conductivity knfð Þ and specific heat Cpnf

� �
of

nanofluid, the following relationships are applied [75, 76]:

lnf ¼
lf

1� /ð Þ2:5
þ kBrownain

kf
� lf
Pr

ð4Þ

qnf ¼ /qs þ 1� /ð Þqf ð5Þ

knf ¼ kf 1þ
3 ks

kf
� 1

� �
/

ks
kf
þ 2

� �
� ks

kf
� 1

� �
/

0

@

1

Aþ kBrownain ð6Þ

ðqCpÞnf ¼ /ðqCpÞs þ 1� /ð ÞðqCpÞf ð7Þ

According to Eqs. (4) and (6), impact of Brownian

movement on the parameters of lnf and knf is considered.

To obtain the term of kBrownain, the KKL correlation is

applied as follows [44, 75, 76]:

kBrownain ¼ 5� 104 � /� qf � Cpf

� �
�

ffiffiffiffiffiffiffiffiffi
CbT

qsds

s

� G T;/; dsð Þ ð8Þ

In this equation [44, 75, 76]:

G T ;/; dsð Þ ¼ M1 þM2Ln dsð Þ þM3Ln /ð Þð

þ M4Ln dsð ÞLn /ð Þ þM5Ln dsð Þ2
�
Ln Tð Þ

þ M6 þM7Ln dsð Þ þM8Ln /ð Þ
þ M9Ln dsð ÞLn /ð Þ þM10Ln dsð Þ2 ð9Þ

The coefficients ofMi i ¼ 1; 2; . . .; 10ð Þ are dependent on
the type of nanofluid. The values of these coefficients for

CuO–H2O and Al2O3–H2O nanofluids are presented in

Table 2. Besides, the subscripts of f and s in Eqs. (4)–(9)

Uin, Tin < Tw

h

F
ul

ly
 d

ev
el

op
ed

Tw

Tw

B0

Tw

x

xry

Lr

s
β

Lower bubble

Upper bubble

LU = 5H LD = 20H

H
 =

 2
h

Fig. 1 Geometry and physical

configuration of problem

Table 1 Thermophysical

characteristics of H2O and

nanoparticles of CuO and Al2O3

[73, 74]

Property q/kg m-3 Cp/J kg
-1 K-1 k/W m-1 K-1 l/kg m-1 s-1 r/1 X-1 m-1 ds/nm

H2O 997.1 4179 0.613 0.001003 0.05 –

CuO 6500 540 18 – 10-10 29

Al2O3 3970 765 25 – 10-12 47

Table 2 The coefficients values of CuO–H2O and Al2O3–H2O

nanofluids in Eq. (9) [73, 74]

Mi CuO–H2O Al2O3–H2O

M1 - 26.593310846 52.813488759

M2 - 0.403818333 6.115637295

M3 - 33.3516805 0.6955745084

M4 - 1.915825591 4.17455552786 9 10-2

M5 6.42185846658 9 10-2 0.176919300241

M6 48.40336955 - 298.19819084

M7 - 9.787756683 - 34.532716906

M8 190.245610009 - 3.9225289283

M9 10.9285386565 - 0.2354329626

M10 - 0.72009983664 - 0.999063481
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denote, respectively, the thermophysical characteristics of

base fluid (H2O) and solid nanoparticles (CuO, Al2O3),

where the / symbol is the concentration of nanoparticles.

Also, the Cb parameter in Eq. (8) is the Boltzmann constant

Cb � 1:38� 10�23 J K�1
� �

.

Computation of Lorentz force

The Lorentz force appears in the momentum equations due

to the existence of magnetic field. According to the Ohm’s

low, this force can be obtained as follows [33]:

Fl
!¼ rnf E~þ V~� B~

� �� �
� B~ ð10Þ

In the absence of electric field E~ ¼ 0
� �

, the Fl
!

are

computed as [33]:

Fl
!¼ rnf V~� B~

� �
� B~ ð11Þ

The term of rnf in the above equation is the effective

electrical conductivity of nanofluid that can be computed as

[75, 76]:

rnf ¼ rf 1þ
3 rs

rf
� 1

� �
/

rs
rf
þ 2

� �
� rs

rf
� 1

� �
/

0

@

1

A ð12Þ

Also, B~ ¼ B0i~and V~ ¼ ui~þ vj~.

By substituting Eq. (12) and parameters of B~ and V~ in

Eq. (11), the Lorentz force is obtained as follows:

Fl
!¼ � rf 1þ

3 rs
rf
� 1

� �
/

rs
rf
þ 2

� �
� rs

rf
� 1

� �
/

0

@

1

A� v� B2
0

0

@

1

Aj~

ð13Þ

Computation of radiative heat flux

Since, the working fluid in this study is MHD nanofluid, the

radiative heat flux can be obtained using Rosseland

approximation as [41]:

qr
!¼ qrx i~þ qry j~ ð14Þ

and

qrx ¼
�4r�

3bR

oT4

ox
ð15Þ

qry ¼
�4r�

3bR

oT4

oy
ð16Þ
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Present work
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Re = 200

Re = 400

Re = 200

Re = 400

φφ

Cu – H2O

Fig. 2 Comparison of XMax and NuMax magnitudes at various

magnitudes of / with the findings of Abu-Nada [57]

Table 3 Comparison of Nu and

hMax magnitudes at different

values of Ha with the results of

Ref. [79] / ¼ 0:02;Re ¼ 100ð Þ

Ha hMax Nu

Present solution Ref. [79] Difference� %ð Þ Present solution Ref. [79] Difference� %ð Þ

0 0.353 0.349 1.146 4.465 4.394 1.615

10 0.322 0.327 1.529 4.983 5.020 0.737

20 0.307 0.311 1.286 5.512 5.573 1.094

30 0.298 0.303 1.650 5.827 5.903 1.287

40 0.295 0.299 1.337 6.049 6.117 1.110

Difference� %ð Þ ¼
Resultð Þ

Present
� Resultð Þ

Ref: 79½ 	

Resultð Þ
Ref: 79½ 	

����

����� 100

Table 4 Influence of CuO and

Al2O3 nanoparticles on the

magnitudes of average total

Nusselt number Nut
� �

at various

values of Rd parameter

Ha ¼ 20;/ ¼ 0:04ð Þ

Rd Al2O3–H2O CuO–H2O

0 4.986771 5.161620

0.25 5.706675 5.897706

0.5 6.399273 6.651880

0.75 7.189846 7.435231

1 7.972395 8.254035
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where r� and bR are, respectively, the Stefan–Boltzmann

constant 5:67� 10�8 Wm�2 K�4
� �

and the coefficient of

mean absorption. In Eqs. (15) and (16), the T4 can be

approximated using Taylor series as follows [39, 41, 45]:

T4 ¼ 4 Tinð Þ3T � 3 Tinð Þ4 ð17Þ

Therefore, the divergence of radiative heat flux for

MHD nanofluid flow would be calculated using the below

equation [39, 41, 45]:

r � qr!¼ �16 Tinð Þ3r�
3bR

o2T

ox2
þ o2T

oy2

� 	
ð18Þ
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(c) 0.04= =Haφ and 0 (d) 0.04= =Haφ and 60
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Fig. 3 Distributions of isotherms in the duct at various magnitudes of Rd;/ and Ha parameters
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Dimensionless forms of governing equations
and boundary conditions

By substituting Eqs. (13) and (18) into momentum and

energy equations and using the dimensionless terms, the

non-dimensional forms of governing equations can be

rewritten as:

oU

oX
þ oV

oY
¼ 0 ð19Þ

Θ

Y

0 0.2 0.4 0.6 0.8 1
0

0.2
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Fig. 4 Temperature variations along Y axis at various magnitudes of Rd;/ and Ha parameters
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U
oU

oX
þ V

oU

oY
¼ �1

1� /ð Þ þ / qs
qf

 !
oP

oX

þ 1

Re

1

1�/ð Þ2:5 þ
kBrownain
kf�Pr

1� /ð Þ þ / qs
qf

0

@

1

A o2U

oX2
þ o2U

oY2

� 	

ð20Þ

U
oV

oX
þ V

oV

oY
¼ �1

1� /ð Þ þ / qs
qf

 !
oP

oY

þ 1

Re

1

1�/ð Þ2:5 þ
kBrownain
kf�Pr

1� /ð Þ þ / qs
qf

0

@

1

A o2V

oX2
þ o2V

oY2

� 	

�

1þ
3 rs

rf
�1

� �
/

rs
rf
þ2

� �
� rs

rf
�1

� �
/

1� /ð Þ þ / qs
qf

0

BBBBBB@

1

CCCCCCA

Ha2V

Re

ð21Þ

U
oH
oX

þ V
oH
oY

¼ 1

RePr

1þ
3 ks

kf
�1

� �
/

ks
kf
þ2

� �
� ks

kf
�1

� �
/

0

@

1

Aþ kBrownain
kf

1� /ð Þ þ /
qcpð Þ

s

qcpð Þ
f

0

BBBB
BB@

1

CCCC
CCA

� 1þ 4

3
Rd 1þ

3 ks
kf
� 1

� �
/

ks
kf
þ 2

� �
� ks

kf
� 1

� �
/

0

@

1

Aþ kBrownain

kf

0

@

1

A

�1
0

B@

1

CA

� o2H
oX2

þ o2H
oY2

� 	

ð22Þ

where

X;Yð Þ ¼ x

H
;
y

H

� �
U;Vð Þ ¼ u

Uin

;
v

Uin

� 	
P ¼ p

U2
in

Pr ¼ lfCpf

kf

Ha ¼ B0H

ffiffiffiffiffi
rf
lf

r
Re ¼ qfUinH

lf
H ¼ T � Tin

Tw � Tin
Rd ¼ 4 Tinð Þ3r�

kfbR

ð23Þ

Besides, the non-dimensional forms of the boundary

conditions can be presented as:
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Fig. 4 continued
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At the inlet section of channel: U ¼ 1; V ¼ 0 andH ¼ 0

At all channel walls: U ¼ V ¼ 0 and H ¼ 1

At the outlet section of channel:
oU

oX
¼ oV

oX
¼ 0 and

oH
oX

¼ 0

Definition of Nusselt numbers

In convection heat transfer of MHD nanofluid flow in the

presence of thermal radiation, the total heat flux qt
!� �

on

the surfaces is obtained by summing the convective qc
!� �

and radiative qr
!� �

heat fluxes. Therefore, the total Nusselt

number Nutð Þ is the sum of the convective Nucð Þ and

radiative Nurð Þ Nusselt numbers [39, 45]. These Nusselt

numbers are computed along the bottom wall of channel

and downstream of the BFS 0�X� LD
H

and Y ¼ 0
� �

as:

Nuc Xð Þ ¼ � 1þ
3 ks

kf
� 1

� �
/

ks
kf
þ 2

� �
� ks

kf
� 1

� �
/
þ kBrownain

kf

0

@

1

A

1

Hw �HM

oH
oY

����
Y¼0

ð24Þ

Nur Xð Þ ¼ � 4

3
Rd

� 	
1

Hw �HM

oH
oY

����
Y¼0

ð25Þ
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Nut Xð Þ ¼ Nuc Xð ÞþNur Xð Þ

¼ � 1þ
3 ks

kf
� 1

� �
/

ks
kf
þ 2

� �
� ks

kf
� 1

� �
/
þ kBrownain

kf
þ 4

3
Rd

0

@

1

A

1

Hw �HM

oH
oY

����
Y¼0

ð26Þ

where the mean bulk temperature HMð Þ is defined as:

HM Xð Þ ¼
r
1
0 UHdY

r
1
0 UdY

ð27Þ

Numerical solution and validation results

The basic Eqs. (19)–(22) are first discretized using the

finite volume method FVMð Þ and are converted to the set

of algebraic equations. Also, the pressure field Pð Þ is

coupled with velocity fields U;Vð Þ using the SIMPLE

algorithm [77]. Then, the obtained algebraic equations are

solved numerically by the line-by-line LBLð Þ method and

using a FORTRAN code. The blocked-off method [78–80]

is employed for modeling the inclined wall of BFS in

Cartesian coordinates. The convergence criterion is defined

so that the sum of absolute residuals of U;V;P and H
variables is less than 10�5. Additionally, the following

criterion is also employed to ensure the convergence of

solution:

Max
Cn m; nð Þ � Cn�1 m; nð Þ

Cn m; nð Þ

����

����� 10�6

where the n symbol denotes the iteration level and the C
term points to all variables of U;V ;P andH. To ensure that

the obtained results are not dependent on the gird size, the

grid independence analysis is carried out. Accordingly, a

grid size of 675� 42 X � Yð Þ is selected as the best mesh.

Of course, the mentioned mesh is clustered near the

channel and step walls to achieve more accuracy.

The numerical solution presented in the current research

is validated with the results of two different studies. First,

the magnitudes of maximum Nusselt number NuMaxð Þ
along the bottom wall of a channel with BFS and its

position XMaxð Þ are compared with the simulated results by

Abu-Nada [59]. To reach this goal, all conditions of the

problem of Ref. [59] are applied in the computer program

written to analyze the problem of the current research.

These comparisons are demonstrated in Fig. 2 for the

various magnitudes of nanoparticles concentration and

Reynolds numbers at ER ¼ 2. Moreover, a close agreement

is observed between the presented results of this study and

Ref. [59]. To check the correctness of the simulation results

of nanofluid flow in the presence of magnetic field, the

second comparison is carried out based on the findings of

Aminossadati et al. [81]. The magnitudes of average

Nusselt number Nu
� �

and maximum temperature HMaxð Þ
are compared at various values of

Ha Ha ¼ 0; 10; 20; 30; 40ð Þ in Table 3. According to this

table, the maximum difference between the results is about

1:65%; therefore, the simulated results in this research are

validated.

Results and discussions

First, influences of CuO and Al2O3 nanoparticles on the

magnitudes of average total Nusselt number

Nut ¼ r

LD
H

0

Nut Xð ÞdX
 !

are presented in Table 4 at five

various values of radiation parameter. As it is seen from

this table, the magnitudes of Nut are different for Al2O3–

H2O and CuO–H2O nanofluids. By choosing the CuO–H2O

nanofluid as the working fluid, a higher Nut is obtained.

This means that the impact of CuO nanoparticles on the

heating and cooling procedures is greater than influence of

Al2O3 nanoparticles. Therefore, the CuO–H2O nanofluid is

selected to analyze the thermal behaviors at different val-

ues of radiation parameter Rdð Þ, Hartmann number Hað Þ
and nanoparticles concentration /ð Þ.

To clarify the influence of radiation heat transfer on the

thermal features of MHD CuO–H2O nanofluid, isotherms

contours are presented in Fig. 3a–d at different magnitudes

of Rd;/ and Ha parameters. According to these figures, all

three parameters have a significant impact on the isotherms

contours inside the channel. To further show the details of

these impacts, the dimensionless temperature distributions

Hð Þ along Y axis are also plotted in Fig. 4a–e at different

locations of X X ¼ 1; 2; 5; 10ð Þ. According to these figures,
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by augmentation of the radiation parameter, the H distri-

bution becomes more homogeneous and approaches the

temperature of the hot walls; such that the temperature

gradients along the channel walls (especially along the

bottom wall) reduce with increase in the Rd parameter.

Besides, any increase in the nanoparticles concentration

results in a decrease in magnitudes of theH distribution. Of

course, this reduction is negligible near the duct walls

(especially near the bottom wall), so that the difference

between the temperature gradients on these walls is very

small. The impact of magnetic field on the H distribution is

well seen from the gradients of temperature on the bottom
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wall oH
oY

��
Y¼0

� �
. In fact, the magnitudes of oH

oY

��
Y¼0

decrease

by augmentation of Ha number. Also, the role of recircu-

lation zones on the H distribution is well illustrated in

Figs. 3 and 4. To better understand this issue, the stream-

lines contours are shown in Fig. 5a and b at various mag-

nitudes of / and Ha for Rd ¼ 0:5. A significant

recirculation zone (lower bubble) is created on the bottom

wall downstream the BFS. The length of this region on the

bottom wall Lrð Þ enhances with augment of / and Ha

parameters. Besides, the secondary recirculation region

(upper bubble) is formed on the top wall in the absence of

Lorentz force Ha ¼ 0ð Þ. The extent of this region increases

by enhancing the / parameter.

The main bulk temperature HMð Þ is one of the important

factors in determining the thermal characteristics. The

impacts of Rd;/ and Ha parameters on the variations of

HM along the duct are shown in Fig. 6a–c. In all cases, the

HM enhances along the channel in the axial direction of

flow, due to both radiative and convective heat transfer

mechanisms. However, the increase in Rd parameter and

consequently enhancement of thermal radiation heat

transfer leads to an augmentation in the HM magnitudes,

while it decreases with increase in the / and Ha

parameters.

Considering the significant effects of Rd;/ and Ha

parameters on the temperature distributions and mean bulk

temperature; it is expected that the heat transfer rates are

affected by these parameters. In the next figures, an attempt

is performed to analyze this issue. Impacts of Rd;/ and Ha

parameters on the convective Nusselt number Nucð Þ along
the bottom 0�X� LD

H
; Y ¼ 0

� �
are displayed in Fig. 7a–e.

As it is seen from these figures, both the trends and mag-

nitudes of Nuc are dependent on the Ha number, whereas

the Rd and / parameters only affect its values. In fact, the

difference between the trends of Nuc distributions at

various magnitudes of Ha is seen at the lower recirculation

zone and near to the reattachment point Xrð Þ. In the case of

Ha ¼ 0, the Nuc has a local maximum value NucMax
ð Þ near

the reattachment point, while the magnitude of NucMax

decreases with augmentation of Ha number, such that the

Nuc distribution lacks a peak in the highest value of Ha

number Ha ¼ 60ð Þ. However, the Nuc decreases with

enhancing the radiation parameter and Hartmann number,

but it enhances with increase in the concentration of CuO

nanoparticles. These treatments can be also seen from the

magnitudes of average convective Nusselt number

Nuc ¼ r
LD
H

0 Nuc Xð ÞdX
� 	

against the various values of

Rd;/ and Ha parameters, which are reported in Fig. 8.

Based on Fig. 8, the maximum rate of convective heat

transfer occurs in the absence of thermal radiation and

magnetic field and for the nanofluid with highest value of

nanoparticles concentration Rd ¼ 0;Ha ¼ 0;/ ¼ 0:04ð Þ.
With respect to Eq. (24) and the presented explanations

about the oH
oY

and HM, it can be concluded that the reduction

of Nuc in terms of Rd parameter is due to the decrease of
oH
oY

��
Y¼0

, whereas its enhancement against the / parameter is

related to the increase in knf
kf

term. Also, the decrease of

oH
oY

��
Y¼0

andHM terms against Ha number is the main reason

for reducing the Nuc in terms of this number.

Influences of Rd;/ and Ha parameters on the radiative

Nusselt number Nurð Þ distributions along the bottom wall

are shown in Fig. 9a–e. Comparing the presented results in

Figs. 7 and 9 clearly shows that trends of Nur distribution

are similar to the trends of Nuc distribution. Therefore,

additional explanations are not presented to avoid repeti-

tion. According to Figs. 9 and 10, the Nur and its average

Nur ¼ r
LD
H

0 Nur Xð ÞdX
� 	

enhance significantly with aug-

mentation of radiation parameter. This enhancement is due

to an increase in the magnitude of HM parameter and the

direct presence of Rd parameter in calculating the radiative

Nusselt number. But, the Nur and Nur reduce with the

increase in the Ha number because of the decrease of HM

and oH
oY

��
Y¼0

terms against this number. A noteworthy point

in Fig. 9 is that the impact of / parameter on the magni-

tudes of Nur is dependent on the values of Ha number. In

the case of Ha ¼ 60, this impact is generally decreasing,

while in the absence of magnetic field Ha ¼ 0ð Þ, this

influence is different in different zones. However, Fig. 10

clearly presents that the overall effect of concentration of

nanoparticles on the Nur is small and decreasing. In fact,

this reduction is due to a decrease in the values of HM

against the / variable.

Originally, overall heat transfer characteristics of the

thermal systems can be specified by calculating the total
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Nusselt number Nutð Þ. Distributions of Nut along the bot-

tom wall are displayed in Fig. 11a–e at various values of

Rd;/ and Ha parameters. These figures clearly show that

the trends of Nut distribution are similar to the variations of

the Nuc and Nur. As it is shown in Fig. 11a–e, the Nut
enhances with augmentation of the Rd and / parameters,

but it reduces with increase in the Ha number. These

results are also confirmed by calculating the magnitudes of

average total Nusselt number Nut
� �

in Fig. 12. Based on

this figure, the highest magnitude of total heat transfer rate

occurs in the absence of Lorentz force and for the highest
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values of radiation parameter and nanoparticles concen-

tration Ha ¼ 0;Rd ¼ 1;/ ¼ 0:04ð Þ.

Conclusions

Interacting impacts of radiative heart transfer, Lorentz

force and Brownian movement on the thermal features of

MHD nanofluid flow over an inclined BFS are analyzed

with details. The main results of this research can be

summarized as follows:

• The CuO nanoparticles have a greater impact on heat

transfer rates in comparison to the Al2O3 nanoparticles.

• The trends and magnitudes of Nuc, Nur and Nut along

the bottom wall are dependent on the Ha number, while

the Rd and / parameters only affect their values.

• An enhancement in the radiation parameter leads to an

increase in the magnitudes of radiative and total heat

transfer rates, while the values of convective heat

transfer rate reduce with increase in this parameter. As

for the case of Ha ¼ 20 and / ¼ 0:04, the Nur and Nut
enhance about 261:92% and 39:96%, respectively,

when the Rd parameter rises from 0:25 to 1, while the

reduction rate of the Nuc is about 8:28%

Nut
��
Rd¼1

�Nut
��
Rd¼0:25

Nut
��
Rd¼0:25

�����

�����
� 100 ¼ 39:96%

 !

:

• All heat transfer rates decrease with augmentation of

the magnetic field strength, such that for the case of

Rd ¼ 0:5 and / ¼ 0:04, the Nuc, Nur and Nut variables

reduce, respectively, about 19:54%, 19:55% and

19:57% when the Ha number changes from 0 to 60

Nut
��
Ha¼60

�Nut
��
Ha¼0

Nut
��
Ha¼0

�����

�����
� 100 ¼ 19:57%

 !

:

• By adding the CuO nanoparticle to the water-based

flow, convective and total heat transfer rates enhance.

As for the case of Rd ¼ 0:5 and Ha ¼ 20, the Nuc and

Nut increase, respectively, about 13:96% and 8:27%

when the nanoparticles concentration rises to 4%

Nut
��
/¼0:04

�Nut
��
/¼0

Nut
��
/¼0

�����

�����
� 100 ¼ 8:27%

 !

:

Also, the impact of / parameter on the Nur variable

decreases about 3:07%.
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