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Abstract
Viscosity can be mentioned as one of the most crucial properties of nanofluids due to its ability to describe the fluid

resistance to flow, and as the result it affects other phenomena. The effects of nanofluids’ viscosity on different parameters

can be enumerated as pressure drop, pumping power, feasibility of the nanofluid, and its convective heat transfer coef-

ficient. In this investigation, the viscosity of TiO2/water nanofluid was compared and analyzed with experimental data. The

primary goal of this investigation was to introduce a combination of experimental and modeling approaches to predict

viscosity values using four different neural networks. Between MLP-ANN, ANFIS, LSSVM, and RBF-ANN methods, it

was found that the LSSVM produced better results with the lowest deviation factor and reflected the most accurate

responses between the proposed models. The regression diagram of experimental and estimated values shows an R2

coefficient of 0.995 and 0.993 for training and testing sections of the ANFIS model. These values for MLP-ANN, RBF-

ANN, and LSSVM models were 0.998 and 0.999, 0.996 and 0.997, and 0.997 and 1.000 for their training and testing parts,

respectively. Furthermore, the effect of different parameters was investigated using a sensitivity analysis which demon-

strates that the average diameter can be considered as the most affecting parameter on the viscosity TiO2–water nanofluid

with a relevancy factor of 0.992123.
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Introduction

Recently, the applications of nanofluids have been widely

accepted by many scholars in numerous engineering

problems like mechanical, chemical, and electrical engi-

neering, due to their favorable properties compared to the

conventional fluids, such as lubricating efficiency, cooling

capacity, thermal characteristics, and viscosity behavior

[1–5].

The viscosity augmentation can be achieved with the

help of adding nanoparticles to the base fluid [6–8]. The

nanofluids’ viscosity affects the convective heat transfer

coefficient, pressure drop, pumping power, its workability

in industrial application, and thereby the pressure reduction

must be compensated by using higher quantity of power

[9]. The addition of micrometer-sized particles to the base

fluids causes vast changes in the properties of the operating

fluid [10, 11]. In this way, it can be concluded that

nanofluids express higher convective heat transfer and
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viscosity by comparison of nanofluids with liquids which

conventionally utilized [12–14]. Thus, the optimization of

heat transfer process can be obtained by applying nan-

otechnology. The examples of nanoparticles that are sus-

pended in the fluids are metals, oxides, ceramics, and

nanotubes [15–19]. Additionally, the range contributed to

the nanoparticles’ size is approximately between 1 and

100 nm. As suspended particles have the characteristics of

higher viscosity and thermal performance, auspicious

properties associated with nanofluids can be achieved by

adding these particles. In this way, some experimental

investigations on the viscosity of nanofluids have been

performed by many researchers [4]. Therefore, the influ-

ence of various parameters on nanofluids viscosity has been

studied by many scholars [20–24]. The effects of temper-

ature [9, 21, 22, 25–33], volumetric concentration of

nanoparticle [1, 20, 21, 23, 27–29, 34–39], aggregation

radius [40, 41], particle shape [42], thickness of nanolayers

[43, 44], and packing fraction [45] have been widely pro-

vided in these studies.

The flow characteristic and thermal performance of

TiO2/distilled water flowing through a vertical pipe in an

upward direction have been investigated by He et al. [46].

The operation conditions can be stated as a constant heat

flux boundary condition in turbulent and laminar flow

regimes. In the investigation, the average diameter of

95 nm was utilized for TiO2 nanoparticles. As indicated in

the results, the estimated quantity of the Einstein equation

is considerably lower than the calculated viscosity of

nanofluids [28]; the viscosity of TiO2/water nanofluid in

the temperature range of 15–35 �C and volume concen-

tration range of 0.2–2 vol% has been studied by

Duangthongsuk et al. [28]. According to the experiments,

the nanofluids’ viscosity reduced by increasing the tem-

perature and particle concentrations. As stated in the

results, the comparison of the experimental viscosity of

nanofluids with estimated quantities from the previous

correlations showed these two values were distinct.

Therefore, new correlations were performed in order to

predict the nanofluids’ viscosity [47].

In addition to the experimental investigations, vast

variety of efforts were done to model the experimental

results by proposing different correlations or by utilizing

artificial neural networks. Various studies in different fields

have recommended applying artificial intelligence like

support vector machines, fuzzy inference systems, and the

artificial neural networks (ANNs), which commonly lead to

accurate results [48–53].

Radial basis function neural networks (RBF-NN) have

been applied by Zhao et al. [34] for the aim of predicting

the viscosity of CuO/water and Al2O3/water nanofluids. In

this way, 721 experimental data contributed to the men-

tioned nanofluids were utilized. Also, for predicting the

viscosity of nine various nanofluids with the help of hybrid

self-organizing polynomial neural network based on

GMDH, nine models have been developed by

Atashrouz et al. [54].

Derakhshanfard and Mehralizadeh in 2018 published a

paper on the impact of the efficiency of radial basis func-

tion method. They investigated the viscosity of crude oil

under different ranges of temperatures and various mass

fractions of five types of nanofluids. Increase in the con-

centration of TiO2, ZnO, and FeO3 nanoparticles led to

decrease in the viscosity of their corresponding nanofluids;

by contrast, any raise in the mass fraction of WO3 and NiO

will result in higher viscosities [55].

Additionally, LSSVM approach has been employed by

Meybodi et al. [56] for predicting the viscosity of water-

based SiO2, CuO, TiO2, and Al2O3 nanofluids. For the aim

of estimating the viscosity of TiO2/water nanofluid, an

ANN has been developed by Esfe et al. [40] with consid-

ering volume fraction and temperature as input data. As

stated in the results, the ANN model can precisely and

reliably estimate the viscosity of TiO2/water nanofluid.

Baghban et al. [57] used least square support vector

machine algorithm (LSSVM) to examine the properties of

29 various nanofluids.

Furthermore, or the aim of predicting the viscosity of

non-Newtonian EG–water/Fe3O4 nanofluids as a function

of shear rate, volume fraction, and temperature, GMDH

approach has been utilized by Atashrouz et al. [58].

According to the results, the GMDH approach can estimate

the viscosity accurately. Heidari et al. [59] and Barati-

Harooni et al. [60] proposed two distinct methods utilizing

a similar data bank for predicting the viscosity based on

MLP-ANN and RBF-ANN, respectively. Based on their

results, both models have the ability to predict the

nanofluids’ viscosity accurately [61].

Additionally, the ANN model has been used by

Longo et al. [62] for estimating the thermal conductivity of

Al2O3/water and TiO2/water nanofluids. Moreover, differ-

ent investigations with the help of ANN approach for

estimating the thermophysical properties of nanofluids

containing various kinds of nanoparticles (Fe, Cu,

Mg(OH)2, TiO2, MgO, Al2O3) and base fluids (ethylene

glycol, water, and their mixture) have been stated by

Esfe et al. [63–67]. Also, another study has been carried out

by Aminian [68] which focused on the development of an

ANN model for predicting the water-based nanofluid’s

effective viscosity for an extensive group of experimental

data [47]. In addition to the ANN approaches,

Tafarroj et al. [69] utilized the computational fluid

dynamics and predicted the efficiency of the absorption of

nanofluids. The impact of concentration of nanofluid and

the operating temperature was investigated through CFD

and ANN approaches. They drew a comparison between
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these methods and discussed their benefits and disadvan-

tages. In spite of the CFD approach, they proposed that

MLP network is not able to either analyze the trends or

predict anything beyond its training domain [70].

In the present study, we utilize various neural networks

(ANFIS, MLP-ANN, LSSVM, and RBF-ANN) to model

the experimentally obtained data of viscosity of TiO2–

water nanofluid and develop four various models to predict

the viscosity precisely, rapidly, and cost-effectively.

Theory

Multilayer perceptron artificial neural network
(MLP-ANN)

A type of computational intelligence which is originated

from biological nervous systems like the human brain is

named artificial neural networks (ANNs). Complicated

relations between outputs and inputs of a system can be

found with the help of ANNs. Interconnections or links and

processing elements are mentioned as two major elements

for each ANN. In this way, interconnections and masses

provide connections between neurons; however, nodes or

neurons and the processing elements process the informa-

tion [71, 72]. Radial basis function (RBF) and multilayer

perceptron (MLP) are considered as the most prevailing

ANNs. The mentioned networks differ fundamentally

based on the approach in which the neurons process the

information. Various layers are included in an MLP neural

network, in which the input layer proportionate to the input

data and the output layer proportionate to the output of the

model are the first and the last layers, respectively. Addi-

tionally, the middle layers between the output and input

layers are called hidden layers [73]. In general, hidden

layers have an obligation for the internal appearance of the

relation between the model’s inputs and the favorable

output. The neurons’ number and input variables are equal;

on the other hand, the outputs’ number is typically the one

that is the appealing property/parameter. The numbers of

neurons and hidden layers must be decided based on

empirical approaches. A one-hidden-layer MLP is favor-

able in many problems [74]. Nonetheless, mainly two

hidden layers are utilized for complex systems. Also, the

whole neurons in the next and previous layer are connected

to each neuron in the hidden layer [61]. In turn, the hidden

neurons’ outputs perform as inputs to the output neuron

where they undergo another transformation. The following

equation describes the output of MLP neural network:

cjk ¼ Fk

XNk�1

i¼1

xijkciðk�1Þ þ bjk

 !
; ð1Þ

in which bjk and cjk express bias mass for neuron j in layer

k and the neuron j’s output from k’s layer, respectively. xijk

indicates the model-fitting parameters, which are the link

masses. These parameters have been chosen indiscrimi-

nately in the start of network training process. Addition-

ally, Fk signifies the nonlinear activation transfer functions

that are regarded in various forms like linear functions,

Gaussian, bipolar sigmoid, binary sigmoid, binary step

function, and identity function [75].

Adaptive neuro-fuzzy inference system (ANFIS)

The combination of multilayer artificial neural network and

Sugeno fuzzy inference model (SFIM) is named ANFIS.

Synaptic masses are not utilized in ANFIS approach;

however, it applies nonadaptive and adaptive nodes in its

different layers. The performing principle of ANFIS and

SFIM is relatively identical [76]. In the initial phase of

ANFIS, least square method and gradient descent with

backpropagation algorithm identify model parameters and

fuzzy membership function [77]. The analysis of viscosity

values is performed with the help of using the fuzzy

membership functions. Generally, a set of degrees and

objects of membership is considered as a fuzzy set, which

its values vary between 0 and 1. The analysis of ambiguous

and subjective judgments is mentioned as the crucial role

of the fuzzy logic. It is presumed that the ANFIS approach

includes two inputs x and y, as well as one output f. For

generating two if–then rules, the first-order Sugeno kind

should be utilized as follows:

Rule 1 if x is U1 and y is V1; then f1 ¼ p1xþ q1yþ r1

Rule 2 if x is U2 and y is V2; then f2 ¼ p2xþ q2yþ r2;

in which x and y express the input variables, and U1, U2,

V1, and V2 indicate small, medium, and large fuzzy sets.

Also, different design parameters like p1, q1, r1, p2, q2, and

r2 define the linguistic labels in the training phase. A typ-

ical schematic of the ANSIS model is provided in Fig. 1.
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Fig. 1 Typical structure of the ANFIS [4]
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Least squares support vector machine (LSSVM)

A machine learning technique utilized in regression pattern

recognition, classification, and analysis amid input data is

named support vector machine (SVM). Least square sup-

port vector machine (LSSVM) is considered as a novel

version of SVM, which was proposed to obviate the pre-

vailing problems of SVM approach. In this approach,

regression error is added to the constraints associated with

the optimization. To be clear, regression error is mathe-

matically determined and solved in LSSVM approaches;

nonetheless, it is optimized in the learning phase of SVM

methods. Equation 2 defines the penalized function in this

method as follows [78]:

QLSSVM ¼ 1

2
wTwþ c

XN

k¼1

e2k; ð2Þ

in which T and c indicate transpose matrix and regression

errors’ summation. The succeeding constraints subject to

the above equation:

yk ¼ wT/ðxkÞ þ bþ ek k ¼ 1; 2; . . .;N; ð3Þ

in which, ek, T, y, b, and w express the N training objects’

regression error, the transpose matrix, the output vector

contributed to the model, the bias or the intercept of linear

regression, and the regression mass (the linear regression

slope), respectively. Additionally, the following equation

regularly expresses the mass coefficient (w):

w ¼
XN

k¼1

akxk where ak ¼ 2cek : ð4Þ

By reformulating Eq. (4) with the help of LSSVM method,

the succeeding equation is obtained [78]:

w ¼
XN

k¼1

akx
T
kxþ b : ð5Þ

Therefore, the Lagrange multipliers can be described as

follows:

ak ¼
ðyk � bÞ

xTkxþ ð2cÞ�1
: ð6Þ

By utilizing the succeeding Kernel function, the mentioned

linear regression equation is reformulated:

f ðxÞ ¼
XN

k¼1

akKðx; xÞ þ b : ð7Þ

Also, K(x, xk) indicates the Kernel function that is the

result of dot product of x and xk vectors. Actually, the dot

product of U(xk) and U(x)T is K(x, xk) like the succeeding

expression [78]:

Kðx; xkÞ ¼ /ðxÞT � /ðxkÞ : ð8Þ

Radial basis Kernel function is considered as one of the

most eminent Kernel function which has been applied in

this investigation as follows:

Kðx; xkÞ ¼ exp � xk � xk k2=r2
� �

: ð9Þ

This paper uses a PSO algorithm for the aim of optimizing

the LSSVM approach. A schematic illustration of the PSO-

LSSVM method is demonstrated in Fig. 2.

RBF-ANN

Radial basis function neural networks are referred as one of

the firm-proved neural networks, which are applied in

regression and classification. In fact, the theory of function

approximation is the basis of the concept associated with

Input

Random division of data into
training and testing

Employ feature
Subset (σ2,Y)

Implement GA
and select

σ2,Y

Meet stopping
criterion?

Yes

Determine
optimum σ2,Y

No

Construct
LSSVM model

Evaluate the model by
training and testing

data

Return the LSSVM
using optimum

feature

PSO–LSSVM
model

Training
data

Testing
data

Fig. 2 A schematic illustration of PSO-LSSVM
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RBF-ANN. The introduction of this method was rendered

by Broomhead, which was a sort of feed-forward neural

networks. Furthermore, numerous numerical and mathe-

matical investigations have been carried out with the help

of using these networks [79]. Generally, a three-layer feed-

forward structure is included in a RBF neural network, that

is, an input layer is connected to the output layer with the

help of a hidden layer. In reality, p is the input nodes in the

input layer which is similar to the input variables’ number

of the model. The major part of RBF-ANN which transmits

the data from input space to a hidden space is the hidden

layer. Every point contributed to the hidden layer is cen-

tered at an exact radius. The distance between the input

vector and its own center is measured in every neuron [80].

The configuration of an RBF-ANN system is similar to

the structure of MLP-ANN, but a complex RBF function is

applied to the hidden layers. The result of RBF-ANN is:

yikðxÞ ¼
Xn

i¼1

wiUki xk � cik kð Þ;

i ¼ 1; 2; . . .N and k ¼ 1; 2; . . .;M;

ð10Þ

where x is an input pattern, yi (x) is ith output, and wki is the

mass of connection from the kth interior element to the ith

element of outcome layer. The || || symbol represents the

Euclidean norm, and ck is the archetype of the middle of

the kth interior element. Conventionally, the RBF (u) is

picked out as the Gaussian operator which is presented

below:

hðxÞ ¼ exp �ðx� cÞ2

r2

 !
: ð11Þ

The radius (r) and center (c) are parameters of Gaussian

RBF. Away from the center, it decreases uniformly.

Methodology

Pre-analysis phase

The data used for modeling are extracted from the exper-

imental studies [81–85]. There are 56 sets of data points in

this study for predicting viscosity of TiO2-based water

nanofluid as a function of temperature, volume fraction,

and average diameter. The temperature ranges between 15

and 50 �C, while the volume fraction, average diameter,

and viscosity range between 0.2 and 3, 21 and 25 nm, and

0.00057 and 0.00122 kg (mS)-1, respectively. In the cur-

rent paper, four model-building procedures and five dif-

ferent statistical approaches were used in order to estimate

and validate the viscosity of nanofluid. The resulted data

from the experimental section of the study at the first step

are used to train the models. In order to evaluate the

globalization of models, we used dataset of nanofluid with

a diameter of 21 nm for testing phase and other data points

with a diameter of 25 nm were used for training stage. The
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Fig. 3 Bubble curves of suggested experimental data set

Table 1 Optimal mass and bias

values for the MLP-ANN

method

Neuron Hidden layer Output layer

Mass Bias Mass Bias

Temperature Volume fraction Diameter b1 K b2

1 - 45.1185 - 18.7702 9.679373 1.385814 0.463076 0.674379

2 3.378248 - 1.56017 - 0.38251 0.873476 - 0.88936

3 - 0.81892 7.078029 1.059212 - 7.07731 1.149244

4 2.075723 7.725278 - 0.9513 6.995672 - 0.98092
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suggested models can predict viscosity of TiO2 nanofluids

with great accuracy for different inputs. Equation 12 shows

the normalization procedure of every data:

Dk ¼ 2
x� xmin

xmax � xmin

� 1; ð12Þ

where x is the value of the nth parameter. The absolute

value of Dk will be less than unity. The other values are fed

to the neural network systems, and the models are built to

predict the viscosity as the main output.

Outlier detection

On the condition of implementing statistical approaches or

training machine learning algorithms, outliers or anomalies

could be mentioned as a severe concern. They are generally

made due to the measurements’ errors or excellent systems

conditions, as the result cannot illustrate the prevailing

functioning of the underlying system. Certainly, applying

an outlier removal phase before proceeding with additional
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Fig. 4 Trained membership functions for different input parameters

Table 2 More details of trained

models for the prediction of

viscosity of TiO2/water

nanofluid

LSSVM ANFIS

Type Value/comment Type Value/comment

Kernel function RBF Membership function Gaussian

C 5745.3831 No. of MF parameters 32

r2 2.0486028 No. of clusters 4

Number of data used for training 42 Number of data used for training 42

Number of data used for testing 14 Number of data used for testing 14

Optimization method PSO Optimization method PSO

Population size 55 Population size 55

Iteration 1000 Iteration 1000

C1 1

C2 2

MLP-ANN RBF-ANN

No. of input neuron layers 3 No. of input neuron layers 3

No. of hidden neuron layers 4 No. of hidden neuron layers 20

No. of output neuron layers 1 No. of output neuron layers 1

Hidden layer activation function Logsig Hidden layer activation function RBF

Output layer activation function Purelin Output layer activation function Purelin

Number of data used for training 42 Number of data used for training 42

Number of data used for testing 14 Number of data used for testing 14

Number of max iterations 200 Number of max iterations 20
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M
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n 
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E
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Fig. 5 Performance of the LM algorithm according to MSE in

different iterations for the MLP-ANN
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investigation can be stated as the exceptional practice. The

leverage value procedure is applied as an outlier detection

method in this study. The Hat and the residual values of

any input were calculated. This method’s principles are

provided in Refs. [86, 87]. The succeeding equation is

applied to calculate the Hat matrix:

H ¼ XðXTXÞ�1
XT: ð13Þ

X is a matrix of size N 9 P, in which N represents the data

points’ total number and P denotes the input parameters’

number. T and - l are transposed and inverse operators,

respectively. A warning leverage value is also defined

using the following expression:

H� ¼ 3ðpþ 1Þ
N

: ð14Þ

A rectangular area restricted to R = ± 3 and 0 B H B H*

is considered as the feasible region.

Model development and verification
methodology

As an essential step in developing a model, the validation

of model must be carried out. This step aims to check the

accuracy of the proposed models and see if they produce

valid results [88]. To derive the representative models,

outstanding approaches of MLP-ANN, LSSVM, ANFIS,

and RBF-ANN were utilized. The accuracy of models was

examined by Eqs. 15–19:

MSE ¼ 1

N

XN

i¼1

ðXexp
i � Xsimul

i Þ ð15Þ

ARD ð%Þ ¼ 100

N
�
XN

i¼1

X
exp
i � Xsimul

i

�� ��
Xsimul
i

ð16Þ
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Fig. 7 Estimated viscosity values compared to experimental data

using different models; a ANFIS, b MLP-ANN, c RBF-ANN,

d LSSVM
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STD ¼ 1

N � 1
�
XN

i¼1

ðXexp
i � Xsimul

i Þ2
 !0:5

ð17Þ

RMSE ¼ 1

N

XN

i¼1

ðXexp
i � Xsimul

i Þ2
 !0:5

ð18Þ

R2 ¼ 1�
PN

i¼1 ðX
exp
i � Xsimul

i Þ2
PN

i¼1 ðX
exp
i � X

avg
i Þ2

; ð19Þ

where output property is denoted by X, N represents the

figure of total data points, ‘exp’ illustrates the experimental

values and ‘simul’ is a notation for modeled values. X
avg
i is

the average of experimentally obtained viscosities.

Results and discussion

The proposed MLP-ANN, RBF-ANN, ANFIS, and

LSSVM strategies were associated with common opti-

mization algorithms including Levenberg–Marquardt and

particle swarm optimization (PSO). Figure 3 shows the

bubble curve of viscosity versus the volume fraction and

temperature in which the size of each bubble is dependent

on the size of particles. The detailed information of MLP-

ANN including the number of neurons in hidden and out-

put layers is listed in Table 1. In this table, the amount of

mass parameter for different inputs (temperature, volume

fraction, and diameter of TiO2) and also the bias numbers

for the interior and the output layers are presented. It is

worth mentioning that several structures were evaluated

and then the best one with four neurons in hidden layer was

selected as good structure with minimum parameters.

Based on the above procedure for MLP-ANN model, we

tried several times to find the best structure of RBF-ANN

with minimum parameters. The optimization algorithm to

find the optimized RBF-ANN parameters was Levenberg–

Marquardt.

In association with ANFIS strategy, the particle swarm

optimization (PSO) method is utilized for the aim of

determining optimum parameters. Training results of

membership functions for different parameters and various

clusters are demonstrated in Fig. 4, where the plot of

degree of membership versus average diameter of particles,

percentage of volume fraction, and temperature is illus-

trated. Detailed information about the proposed models

such as used membership and activation functions, number

of clusters, interior and exterior layers, and the optimiza-

tion methods is reported in Table 2. Two kinds of tuning

parameters (c and r2) were used in the LSSVM machine.

The optimized values for c and r2 are 5745.3831 and

2.0486028, respectively.

Train

0.0013

Train: y = 1.0004x – 5E – 07
R 

2 = 0.9949

Test: y = 0.9919x + 9E – 06
R 

2 = 0.993

Train: y = 0.9994x + 5E – 07
R 

2 = 0.9985

Train: y = 1.0002x – 2E – 07
R 

2 = 0.9958

Test: y = 1.0026x – 3E – 06
R 

2 = 0.9987

Test: y = 0.9986x + 1E – 06
R 

2 = 0.9973

Train: y = 1.001x – 8E – 07
R 

2 = 0.9975

Test: y = 1.0002x – 2E – 07
R 

2 = 0.9999

0.0012

0.0011

A
ct

ua
l v

is
co

si
ty

 o
f T

iO
2–

W
at

er

0.001

0.0009

0.0008

0.0007

0.0006

0.0005

(a)

(b)

(c)

(d)

0.0005 0.0006 0.0007 0.0008 0.0009

Estimated viscosity of TiO2–Water
0.001 0.0011 0.0012 0.0013

0.0013

0.0012

0.0011

A
ct

ua
l v

is
co

si
ty

 o
f T

iO
2–

W
at

er

0.001

0.0009

0.0008

0.0007

0.0006

0.0005
0.0005 0.0006 0.0007 0.0008 0.0009

Estimated viscosity of TiO2–Water
0.001 0.0011 0.0012 0.0013

0.0013

0.0012

0.0011

A
ct

ua
l v

is
co

si
ty

 o
f T

iO
2–

W
at

er

0.001

0.0009

0.0008

0.0007

0.0006

0.0005
0.0005 0.0006 0.0007 0.0008 0.0009

Estimated viscosity of TiO2–Water
0.001 0.0011 0.0012 0.0013

0.0013

0.0012

0.0011

A
ct

ua
l v

is
co

si
ty

 o
f T

iO
2–

W
at

er

0.001

0.0009

0.0008

0.0007

0.0006

0.0005
0.0005 0.0006 0.0007 0.0008 0.0009

Estimated viscosity of TiO2–Water
0.001 0.0011 0.0012 0.0013

Test Linear (Train) Linear (Test)

Train Test Linear (Train) Linear (Test)

Train Test Linear (Train) Linear (Test)

Train Test Linear (Train) Linear (Test)
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ANN, d LSSVM
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Model validation results

We applied both graphical and statistical approaches to

evaluate the models’ performances regarding the estima-

tion of the viscosity. Figure 5 illustrates the MSE error for

the LM algorithm. Increasing the number of iterations

results in the decrease in MSE error until it touches a final

value of 4 9 10-4 after about 40 iterations. Figure 6 shows

information about the performance of ANFIS method

evaluated by PSO approach; it was seen that the corre-

sponding root-mean-squared error was decreased rapidly in

the first 100 iterations. Figure 7 shows the plot of the

resulted viscosities obtained from the proposed models. In

this figure, the results of prediction are plotted versus data

index and shows the training and testing procedure results.

From this figure, it can be seen that the LSSVM and RBF-

ANN had a better prediction capability and led to a more

precise results. The coefficient of determination (R2) indi-

cates how close predicted values are to experimental val-

ues. This parameter usually lies between 0 and 1.0. Closer

values to unity indicate more accurate predictions. Near-

unity coefficients of determination for the proposed models

represent their capability in predicting the viscosity. As is

demonstrated in different parts of Fig. 8, the regression

diagram of experimental and estimated values shows an R2

coefficient of 0.995 and 0.993 for training and testing

sections of the ANFIS method in part a, and in the b, c and

d parts of the diagram; the coefficients of determination

were 0.998 and 0.999, 0.995 and 0.997, 0.997 and 1.000 for

training and testing part of MLP-ANN, RBF-ANN, and

LSSVM models. The majority of data points for both

training and testing datasets are concentrated around the

Y = X line which implies the accurate predictions of the

proposed models. In addition to the conclusion derived

from Fig. 7, Fig. 8 also verifies the accurateness and the

prediction capability of LSSVM and the MLP-ANN

approaches. Detailed information about the results of the

evaluation methods is summarized in Table 3. Based on the

acquired values, LSSVM showed an absolutely brilliant

accurateness; it has had minimum MRE%, while having

the maximum R-squared quantitates. Different parts of

Fig. 9 illustrate the percentage of the relative deviation for

the developed models. It was observed that the LSSVM

model had the best accuracy than the others and its relative

deviation does not exceed from 1.5% band. The relative

deviation of MLP-ANN also lies between ? 1.5 and

- 1.5%.

Detection of suspicious dataset for different models was

done based on the pre-mentioned strategy of outlier

detection, and the results are illustrated in Fig. 10.

According to these analyses, based on various plots of

standard residual versus Hat values, in ANFIS, MLP-ANN,

RBF-ANN, and LSSVM no data were considered as

outlier.

Sensitivity analysis

A bunch of sensitivity analyses were carried out to find out

how each input parameter affects the target variable,

namely the viscosity. Quantitative effect of each parameter

calculated using a relevancy factor is defined by the fol-

lowing expression:

r ¼
PN

i¼1 ðX
exp
k;i � X

avg
k Þðyi � �yÞ

PN
i¼1 ðX

exp
k;i � �XkÞ2 �

PN

i¼1

ðyi � �yÞ2
; ð20Þ

where N, Xk,i, Yi, �Xk, and �Y are the total number of data

points, ith input value of the kth parameter, ith output

value, average value of the kth input parameter, and mean

value of the output parameter, respectively. The relevancy

factor lies between - 1 and ? 1, in which higher absolute

values represent the higher effect of the corresponding

parameter. The positive effect reflects the target variable’s

Table 3 Evaluation of the

performance of the proposed

models using statistical analysis

Model Data set R2 MRE/% MSE RMSE STD

ANFIS Train 0.995 1.050 0.00000 0.00001 0.00001

Test 0.993 0.944 0.00000 0.00001 0.00001

Total 0.996 1.023 0.00000 0.00001 0.00001

MLP-ANN Train 0.998 0.650 0.00000 0.00001 0.00000

Test 0.999 0.392 0.00000 0.00000 0.00000

Total 0.999 0.585 0.00000 0.00000 0.00000

RBF-ANN Train 0.9958 1.0869 0.000000 0.000010 0.000006

Test 0.9973 0.5596 0.000000 0.000007 0.000004

Total 0.9970 0.9551 0.000000 0.000007 0.000006

LSSVM Train 0.997 0.799 0.00000 0.00001 0.00000

Test 1.000 0.084 0.00000 0.00000 0.00000

Total 0.998 0.620 0.00000 0.00000 0.00000
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increment as a specific input parameter increases, while the

negative effect reflects the target variable’s decrement as a

specific input parameter increases. From three main input

parameters, all parameters showed direct impact on the

results, which means any increase in anyone of the input

parameters leads to increase in viscosity. Figure 11 illus-

trates the sensitivity analysis results, in which the average

diameter had the highest positive effects with relevancy

factor of 0.9922. The second most affecting parameter was

temperature and showed a positive effect of 0.9722. It was

seen that volume fraction also had a great impact on the

viscosity of the nanofluid with relevancy factor of 0.9320.

Conclusions

Enhancement of heat transfer rates with the lowest uti-

lization of energy attracted a lot of attention during recent

decades. Carbon nanotubes (TiO2) are considered as

promising nanomaterials and have been in the center of

attention. In the present study, four soft computing-based

approaches including MLP-ANN, ANFIS, LSSVM, and

RBF-ANN were used in order to model the amount of

viscosity of TiO2–water nanofluid system. Among MLP-

ANN, ANFIS, LSSVM, and RBF-ANN methods, it was

found that the LSSVM produced better results with the

lowest deviation factor and reflected the most accurate

responses. The regression diagram of experimental and

estimated values shows the R2 coefficient of 0.9982 and

0.9969 for training and testing. The coefficients of deter-

mination were 0.9993 and 0.9989, 0.9975 and 0.9963,

0.9996 and 0.9993 for training and testing part of MLP-

ANN, RBF-ANN, and LSSVM models. Furthermore,

LSSVM model had the best accuracy than the others and its

relative deviation does not exceed from 1.5% band. The

relative deviation of MLP-ANN also lies between ? 1.5

and - 1.5%. Results from the sensitivity analysis revealed

that all parameters had direct impact on the viscosity which

means increase in every parameter will increase the vis-

cosity of TiO2–water nanofluid. The present study can be

worthy to reach a better understanding of nanofluids and

their applications in heat transfer phenomenon, especially

when a high level of performance is needed.
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