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� Akadémiai Kiadó, Budapest, Hungary 2019

Abstract
The influences of Al2O3 nanoparticles with various shapes on thermal characteristics of nanofluid within a permeable space

concerning magnetic force have been simulated by means of CVFEM. To form the final PDEs, radiation term has been

incorporated. Impacts of magnetic force, radiation constraint, Rayleigh number and shape factor on nanomaterial behaviour

have been analysed. Results demonstrate that the higher values of shape factor lead to augmented convective heat transfer.

By augmenting the magnetic strength, conductive heat transfer can be predominant than that of the convection.
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Introduction

Because of simplicity, cost-effectiveness and low noise of

free convection, this mode can affect thermal behaviour of

a wide range of engineering equipment. The natural con-

vection mechanism transpires under the impact of the

magnetic field in multiple processes including metal cast-

ing, the liquid cooling blanket of the fusion reactors and

crystal growth. However, the existence of Lorentz force

imposes an adverse effect on the phenomenon and deteri-

orates the convective flow. In an investigation of free

convection within a cavity under magnetic field influence,

Rudraiah [1] observed that the stronger Hartmann destroys

the convective heat transportation rate and this suppression

is more characteristic in the regions of the low Grashof

number. Kakarantzas et al. [2] investigated liquid metal

MHD flow inside a container and reported that the impli-

cation of Hartmann flow deteriorates nanomaterial veloc-

ity. In a similar way, Selimefendigil and Oztop [3] and

Sheikholeslami [4] demonstrated an inverse association

between the Lorentz force and Nusselt number.

In the above-mentioned scenarios, the undesirable impact

of Hartmann number on free convection can be compensated

to some extent by replacing the conventional coolants with
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the metallic nanofluids [5–9]. The term nanofluid is

expressed for the colloidal solution of the traditional fluids

and the nano-sized metallic or non-metallic particles

exhibiting superior thermal behaviour than that of the host-

ing fluid and the suspended particles [10]. The magnetohy-

drodynamic (MHD) natural convection of the nanofluids for

multiple operating conditions and nanofluid combinations

has been presented by several studies. Sheremet et al. [11]

analysed the MHD water–Cu nanofluid in a wavy enclosure

under the influence of an isothermal corner heater. Kefayati

[12, 13] implemented the FDLBM to scrutinize nanomate-

rial-free convection through a square cavity. Using the

numerical approach, Sheikholeslami et al. [14–18] studied

MHD and EHD convective transportation of water-based

nanomaterials in a square enclosure, concentric annulus,

semi-annulus and cubic cavity.

Fewer reports presented the MHD convective transporta-

tionwithin porousmedia. The permeable media possesses the

advantages of the low density and large area for the optimal

heat transfer. Selimefendigil and Oztop [19] scrutinized

vented enclosure influenced by Lorentz forces to analyze

mixed convection. Rashad et al. [20] explored the mutual

impact of the internal heat generation and Lorentz forces on

free convective flow of the copper–water within a rectangular

tank. Finding new carrier fluid with greater thermal properties

has been scrutinized by several researchers [21–33].

The objective of this investigation is to scrutinize study

the impact of the nanoparticle shape variation on the MHD-

free convection and the radiation of the Al2O3–water

nanomaterial within a porous medium by implementing the

CVFEM approach. The considered radiation parameter,

shape factor, Hartmann number and particle volume frac-

tion ranges are 0�Rd� 0:8, 3�m� 5:7, 0�Ha� 20 and

0%�u� 5% respectively.

Formulation of problem and simulation

In the present problem, the impact of Hartmann flow on the

behaviour of nanomaterial in a permeable geometry has

been emphasized. CVFEM has been employed concerning

triangular element. The imposed boundary conditions have

been also depicted in Fig. 1. In order to model the porous

terms, the Darcy law has been implemented. Shape factor

influences on nanomaterial properties have been modelled.

The problem under consideration has below equations:
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The thermophysical properties of nanomaterial were

estimated by the below equations
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Fig. 1 a Current porous domain, b CVFEM element
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The effective viscosity lnf as involving Brownian

motion:
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Prf kf
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The impact of the nanoparticle shape factor has been

involved in the estimation of the effective thermal con-

ductivity knf as:

kp � kf ¼ kr

knf

kf
¼ krm/þ kf þ kr/þ mkf þ kp

kp þ mkf þ kr/þ kf

ð10Þ

The various shape factors, related coefficient and prop-

erties are enlisted in Tables 1–3 [34].

Equation (11) has been considered to attain the dimen-

sionless form.
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In two recent equations, the definition of new parame-

ters is:

Ha ¼ rfK B2
0

lf
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In addition, the boundaries are summarized as:

h ¼ 0:0 on outer surfaces

W ¼ 0:0 all boundaries
oh
on

¼ 1:0 on inner surface
ð15Þ

To calculate Nuloc and Nuave, the below equations were

employed:

Table 2 Thermophysical

properties of water and

nanoparticles

q=kgm�3 Cp=J kgK
�1 k=WmK�1 b� 105=K�1 r=Xm�1

Water 997.1 4179 0.613 21 0.05

Al2O3 3970 765 25 0.85 9 10-5 1 9 10-10

Table 1 The coefficient values of Al2O3–water nanofluid

Coefficient values Al2O3–water

a1 52.813488759

a2 6.115637295

a3 0.6955745084

a4 4.17455552786E-02

a5 0.176919300241

a6 - 298.19819084

a7 - 34.532716906

a8 - 3.9225289283

a9 - 0.2354329626

a10 - 0.999063481

Table 3 Different values of m

Platelet Brick Cylinder Spherical Shape

5.7 3.7 4.8 3 m
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Sheikholeslami [34] is the pioneer of CVFEM. This

technique combines FEM and FVM and uses the benefits of

both approaches. In the final step, the Gauss–Seidel tech-

nique has been applied to find the values of scalars in each

corner of triangular element. Various improvements in

numerical approaches have been reported in recent decade

[35–47].

In order to attain mesh insensitive results, a mesh

analysis has been conducted for all the states. Table 4 is an

example which demonstrates the results of various mesh

sizes for a certain case. Furthermore, to ensure the cor-

rectness of the written code, the outputs have been com-

pared with the previously published studies [1] which

employed the same code. Table 5 validates that the present

results are in reasonable accordance with the past literature.

In addition, other validation exists in Refs. [48, 49].

Results and discussion

In the present investigation, the role of nanoparticle shape

on the transportation of nanomaterial within porous tank

with employing buoyancy and radiation parameters was

depicted. To control the velocity, magnetic force was

involved. The results have been analysed to predict the

impact of the radiation parameter (0�Rd� 0:8), shape

factor (3�m� 5:7), Hartmann number (0�Ha� 20) and

concentration (0%�u� 5%) of the alumina nanoparticles.

Figure 2 illustrates the impact of platelet-shaped

(m ¼ 5:7) nanoparticles addition (u ¼ 4%) on the stream-

lines and the isotherm profiles of the porous medium at

Ra = 600 and Rd = 0.8 without magnetic field effect. It is

evident that the convective coefficient reduces while the

Wmax augments with the introduction of the nanomaterial

within hosting fluid because knf is greater than kf. The

impact of the Hartmann number on the nanofluid migration

at Rd = 0.8, m = 5.7, u = 4% for the Ra ¼ 100 and Ra ¼
600 is illustrated in Figs. 3 and 4. The impact of the Lor-

entz forces results in the augmentation of temperature

surface. The fluid convection incites a clockwise recircu-

lating eddy which is subdivided into the bottom and top

sections of the cavity, and this division is more perceptible

at lower Ra and higher Ha. Lorentz forces results in the

augment of Wmax. The mode of heat transfer is conductive

at lower Ra, while it is relatively convective at the higher

Ra.

The dependence of Nuavg on the shape factor (m), (Rd),

(Ha) have been shown in Fig. 5. Results show that Nuavg
observes the direct dependence on the m. The platelet

shapes (m ¼ 5:7) demonstrated the best performance of all

the selected nanoparticle shapes followed by cylindrical

(m ¼ 4:8)-, brick (m ¼ 3:7)- and spherical (m ¼ 3)-shaped

particles. Like m, the Rd also demonstrates a direct rela-

tionship with the Nuavg. However, compared to the m, Ra

and the Ha, the results of Nuavg are more sensitive towards

the variation of the Rd. The trend of the Nuavg is also

Table 4 Variation of Nuave with change of mesh size at

Ra ¼ 600,Rd ¼ 0:8;Ha ¼ 20 and / ¼ 0:04:

Mesh size in radical direction 9 angular direction

51 9 151 61 9 181 71 9 211 81 9 241 91 9 271

1.777101 1.7797347 1.783917 1.784450 1.7860465

Table 5 Variation of Nuave at Pr = 0.733

Ha Gr ¼ 2� 105

Present Rudraiah et al. [1]

50 2.67911 2.8442

10 4.9047 4.8053

6

4

3

4

3

2

1

0.6

0.
4

0.2

0.4

Streamlines Isotherms

Fig. 2 Impacts of / on nanofluid behaviour (/ ¼ 0:04 (—) and / ¼
0 (- - -)) when Ra ¼ 600;Ha ¼ 0;m ¼ 5:7;Rd ¼ 0:8
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ascending as a function of the Ha and Ra; however, for the

conditions of constant a Rd , m and u; the Nuavg demon-

strates declining trend with the increasing values of Ha and

Ra. Based on the results, a correlation for the estimation of

the Nuavg as a function of the considered parameter can be

predicted as;

Nuave ¼ 1:86þ 0:042mþ 0:64Rdþ 0:3Ra� 0:25Ha

þ 7� 10�3mHa� 0:16RdHa� 0:3RaHa

þ 1:4� 10�4 m2

ð18Þ

The validly of the proposed correlation is applicable for

the studied radiation parameter (0�Rd� 0:8), shape factor

(3�m� 5:7), nanomaterial concentration (0%�u� 5%),

Hartmann number (0�Ha� 20) and (100�Re� 600).

Conclusions

The manuscript investigates the influence of the nanoma-

terial shape variation on the MHD-free convection and the

radiative heat transfers of the Al2O3–water nanomaterial

within a porous medium by employing the CVFEM

approach. The considered radiation parameter, shape fac-

tor, Hartmann number and particle volume fraction ranges

are 0�Rd� 0:8, 3�m� 5:7, 0�Ha� 20 and

0%�u� 5%, respectively. The findings of the study can

be concluded as:

• The higher shape factor augments the Nuave. The

platelet shapes (m ¼ 5:7) demonstrated the highest

Nuavg followed by cylindrical (m ¼ 4:8)-, brick

(m ¼ 3:7)- and spherical (m ¼ 3)-shaped particles.

• Compared to the m, Ra and the Ha, the results of Nuave
are more sensitive towards the variation of the Rd. The

convective mode is predominating when Ha = 0.
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Fig. 4 Impacts of Ha on nanofluid flow when

Ra ¼ 600;Rd ¼ 0:8;m ¼ 5:7;/ ¼ 0:04
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Fig. 3 Impacts of Ha on nanofluid flow when

Ra ¼ 100;Rd ¼ 0:8;m ¼ 5:7;/ ¼ 0:04
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Ra = 350, Ha = 10,    = 0.04φ Rd = 0.4, Ha = 10,    = 0.04φ 

Rd = 0.4, Ra = 350,  = 0.04 Ha = 10, m = 4.35,    = 0.04

Ra = 350, m = 4.35,    = 0.04 Rd = 0.4, m = 4.35,   = 0.04  φ
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