
Influence of cerium oxide nanoparticles on thermal conductivity
of antifreeze

Preparation and stability of nanofluid using surfactant

Ali Taghizadeh1 • Mohsen Taghizadeh1 • Mohammad Azimi1 • Ali Sulaiman Alsagri2 • Abdulrahman A. Alrobaian3 •

Masoud Afrand4,5

Received: 18 December 2018 / Accepted: 29 May 2019 / Published online: 12 June 2019
� Akadémiai Kiadó, Budapest, Hungary 2019

Abstract
The objective of this work was to examine the thermal conductivity of a stable nano-antifreeze containing

cetyltrimethylammonium bromide coated cerium (IV) oxide nanoparticles (CeO2 NPs). The considered base fluid is a

mixture of 50:50 ethylene glycol (EG) and deionized water. The morphology and structure of the samples are characterized

with X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier-

transform infrared spectroscopy. The experiments are done in the volume concentration range of 0.1–0.9%, CNT volume

concentration range of 0.015–0.135% and the temperature range of 20–50 �C. The thermal conductivity (TC) of the

prepared nanofluid samples was measured using a KD2-Pro thermal properties analyzer. The outcomes showed that

boosting the temperature and the solid volume concentration causes an increase in the thermal conductivity ratio of the

CeO2/EG–water nanofluid. The findings also indicated that the TC of CeO2/EG–water nanofluid augments up to 36.13% at

volume concentration of 0.135% and 50 �C. Furthermore, it was depicted that the use of CeO2 NPs lead to a higher TC

compared to other NPs in the same base fluid. Finally, a new correlation was proposed for predicting the TC and thermal

conductivity enhancement of CeO2/EG–water in terms of nanoparticle concentration and temperature.
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Abbreviations
CTAB Cetyltrimethylammonium bromide

CMC Critical micelle concentration

NP Nanoparticle

TC Thermal conductivity (W m-1 K-1)

EG Ethylene glycol

TCE Thermal conductivity enhancement

TCR Thermal conductivity ratio

FESEM Field emission scanning electron microscopy

FTIR Fourier transform infrared spectroscopy

XRD X-ray diffraction

EDAX Energy-dispersive X-ray analysis
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List of symbols
K Dimensionless shape factor

D Average crystal size (Å)

B The line broadening at half the maximum intensity

(radian)

K X-ray wavelength

H The Bragg angle (�)

Introduction

In recent years, various studies have been done to evaluate

the thermophysical properties of water to develop its

application in various industries. One of the most conve-

nient methods of reduction of water freezing point is the

addition of EG. The mixture of EG and water is known as

an efficient antifreeze in cold regions. In fact, this mixture

has a lower TC in comparison with the pure water.

Nanofluids are a new class of heat transfer fluid incor-

porating a small quantity of nanosized particles that are

uniformly and stably suspended in common liquids such as

water and engine oil [1]. Nanofluids have many applica-

tions in various fields such as chemical and environmental

engineering [2–5]. Previous studies have revealed that the

TC of nanofluids is higher than that of the base fluids [6].

In addition, it has been reported that the TC of nanofluids is

highly sensitive to several factors such as size, shape,

aspect ratio, NP concentration, temperature, base fluid, pH,

and surfactant type and also many studies have focused on

thermal convection improvement as desired change and

also rheological changes to check viscosity increase as

unwanted phenomena after adding nanoparticles to base

fluids [6–19]. The presence of dispersed NPs within the

range of 1–100 nm in nanofluids can significantly enhance

the TC and the viscosity of base fluids [20]. Hence,

nanofluids have been noted by many scholars and scientists

because of their advantageous for several modern uses, and

researchers have believed that they are the modern heat

transfer fluids [21–23].

Several researchers have focused on the TCE of

nanofluids with base fluids like water, EG, and EG–water

mixture. Syam Sundar et al. [24] studied the thermophys-

ical aspects of Fe3O4/EG–water nanofluid at ratios 60:40,

40:60, and 20:80 and reported the highest TCE of 2.94%

which was for the 60:40 mixture. Vajjha and Das [25]

investigated the TCE of mixture of 60:40 EG–water con-

taining CuO and Al2O3 NPs. Reddy and Rao [26] reported

the TC of TiO2/EG–water nanofluid samples in the tem-

perature range of 30–70 �C and the volume concentration

range of 0.2–1.0%. They noticed that the TC of this type of

nanofluid could increase up to about 7%. Suganthi et al.

[27] examined the TC of ZnO/EG–water (50:50) nanofluid

and reported the maximum TCE of 17.26% for the

nanofluid with volume concentration of 2%. Teng and Yu

[28] showed that the TCE of nanofluid Al2O3/EG–water

(45:55) nanofluid with volume concentration of 3% is

about 11.6%. Hemmat Esfe et al. [29–31] depicted that the

TCE of 40:60 EG–water nanofluid containing CuO, MgO

and Cu/TiO2 NPs is 36.97%, 35%, and 44%, respectively.

Afrand et al. [32] examined the TC of Fe3O4/water nano-

fluid in the temperature range of 20–55 �C and volume

concentration range of 0.1–3%. In an experimental inves-

tigation, Sundar et al. [33] studied the TC of Fe2O4/EG–

water nanofluid and found that the maximum TCE belongs

to the 20:80 EG–water mixture with NP concentration of

2%. They also reported that the TC augments by boosting

both the NP concentration and temperature. Soltanimehr

and Afrand [1] investigated the influence of operational

parameters on the TC of MWCNT/EG–water nanofluid.

The outcomes of their research showed that the maximum

TCE of this nanofluid is about 34.7%. Keyvani et al. [34]

studied the TCE of CeO2/water nanofluid. The findings

revealed that the highest TCE is about 22% which belon-

ged to the nanofluid with NP concentration of 2.5% at

50 �C. Some was performed on thermal behavior of

nanofluids with CeO2 NPs and different base fluids

[35–38].

Table 1 presents a brief summary of other researches

work. In these works, water or ethylene glycol was used as

the base fluid. According to the results of these studies,

increasing NP concentration in water or ethylene glycol

enhances the TC of the base fluid.

One of the main requirements of nanofluids is their long-

term stability. The preparation method of a nanofluid is

very important because of its direct impact on its thermo-

physical properties such as the TC. Literature survey shows

that numerous inconsistencies exist in the available data

regarding the nanofluids stability. Indeed, the key factor

which affects the nanofluid stability is aggregation of NPs

due to the existence of van der waals attractive forces. In

fact, the instability of nanofluids is the main disadvantage

for industrial applications [45–47]. Nanoparticles tend to

aggregate since surface area and surface activity of these

particles are high [48]. To achieve stable nanofluids,

researchers use physical or chemical techniques such as the

addition of surfactant, surface adjustment of the suspended

particles or inducing a strong external force on the NP

clusters. Among these techniques, the use of surfactant is

one of the most efficient methods [49, 50]. Surfactants can

be anionic, cationic, non-ionic and amphoteric [51]. Vari-

ous scholars have used surfactants to make stable nanoflu-

ids. Leong et al. [52] studied the stability and TC of the

carbon nanotube/EG–water nanofluid with/without a sur-

factant. Table 2 summarizes some of the examples of

surfactants.
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Kim et al. [53] applied the SDS and CTAB for dispersing

carbon nanotubes in water and the concentration of each

surfactant was nearly 0.3 mass%. Li et al. [54] focused on

spreading the performance of aqueous copper nanofluids.

They investigated CTAB, SDBS, and Polyoxyethylene (10)

nonyl phenyl ether (TX-10). Their work showed that the

optimum concentration for TX-10, CATB, and SDBS is

0.43%, 0.05%, and 0.07%, respectively. Hemmat Esfe et al.

[55] applied Cetyltrimethylammonium Bromide (CTAB) to

warrant high stability and good dispersion of different

nanofluids.

To have better insight, Table 3 shows the comparison of

different surfactant and nanofluid combinations reported in

the literature.

In this study, for the first time, the TC of cerium oxide/

ethylene glycol–water (50:50) nanofluid has been evaluated.

Stable nanofluid samples containing cerium oxide NPs in

EG–water base fluid were prepared through a two-step

method. The stability and the TC of prepared samples are

examined in the temperature range of 20–50 �C and volume

concentration range of 0.015–0.135%. Characterization of

CeO2 NPs was conducted using the XRD, FTIR, FESM/

EDAX, and elemental mapping techniques. Cetyltrimethy-

lammonium bromide (CTAB) was applied as surfactant to

improve the stability of suspended NPs. Although it seems

that adding surfactant is an efficient and economical

approach to increase the nanofluids stability, the existence of

surfactant can increase the thermal resistance and weakens

the heat transfer performance of nanofluids. The dispersion

behavior of nanofluid samples was examined to confirm

nanofluid stability via different methods. The TC of the

prepared samples was evaluated using the KD2-Pro at tem-

peratures between 20 and 50 �C. In this research, a very

small amount of CTAB was utilized to reduce the disad-

vantage of this method. Table 4 shows the review of the TCE

of nanofluids with mixture of EG–water as base fluid.

According to the results, the CeO2/EG–water nanofluids

with lower solid volume concentrations and at the same

operating temperature range show better TCE in comparison

with other nanofluids.

Experimental

Characterization of nanoparticles

The CeO2 NPs (purity * 99% and average diameter of

8–10 nm) were purchased from TECNAN company

(Spain). Table 5 gives some physical properties of these

NPs.

XRD Investigation

The crystal structure of the CeO2 NPs was evaluated using

a X’Pert Pro diffractometer (PANalytical, UK) equipped

with a copper anode and a Cu Ka radiation source

(k = 0.71 Å). Figure 2 shows the XRD pattern of CeO2

NPs. It is seen that the exact similarity of applied CeO2 NP

with the reference COD card (96-900-9009) which refer to

the cerianite mineral. Miller indices, which related to the

orientation of a surface or a crystal plane also, are given in

Fig. 1.

The Sherrer formula [Eq. (1)] was applied for the esti-

mation of the average crystallite size [61]. In this case, the

average crystallite size of CeO2 NPs is about 121 Å.

d ¼ 0:94k
Bð2hÞ cos h ð1Þ

where d is the average crystalline size (nm), h is the angle

at maximum peak, k stands for the wavelength of the

incident X-ray and B denotes the full width at the half

maximum intensity.

Table 1 TCE of various

nanofluids
References Particles Size/nm Base fluid Concentration/% Max Enhancement

Hemmat Esfe et al. [39] Mg(OH)2 20 EG 0.1–2 0.1–2

Afrand et al. [40] Fe3O4 20–30 Water 0.1–3 0.1–3

Cho et al. [41] Si 200 EG 10,000 mg/L 10,000 mg/L

Chen et al. [42] CNT 10 Water 0.3–1 0.3–1

Glory et al. [43] MWCNT 0.5 Water 0.24 0.24

Angayarkanni et al. [44] TiO2 13 Water 1–4 1–4

Table 2 Common surfactants used by researchers

Type of

surfactant

Most used by researchers

Cationic Distearyldimethylammonium chloride,

benzalkonium chloride, cetrimonium chloride,

cetyltrimethylammonium bromide (CTAB)

Anionic Sodium dodecyl sulfate (SDS), Sodium

dodecylbenzenesulphonate (SDBS)

Non-ionic Polyvinyl pyrrolidone (PVP), Rokacet O7,

Polyoxyethylene (10) nonyl phenyl ether, Tween

X-100, oleic acid, Gum arabic (GA), Tween 80
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FESEM and EDAX examination

Field emission scanning electron microscopy (FESEM)

was performed using ZEISS SIGMA 500 VP FESEM

(ZEISS company, Germany), and the obtained results are

presented in Fig. 2a. It is seen that the average diameter of

NPs is on the order of 15 nm, which is in good agreement

with the XRD analysis. As shown in Fig. 2b, the energy-

dispersive X-ray analysis (EDAX) spectrum of CeO2

demonstrates peaks of Ce and O. Energy-dispersive X-ray

analysis (EDAX) and Mapping was measured by Oxford

instrument, England.

To verify FESEM, the dynamic light scattering (DLS)

analysis was done by ZENZS 3690 NANO SERIES, UK in

two mass concentration of CeO2 NPs. Figure 3 shows the

particle distribution of CeO2 in the base fluid. The findings

revealed that the average particle size of CeO2 NPs is about

8.392 nm and 7.780 nm at solid volume concentration of

0.035% and 0.135%.

Dispersing and nanofluid preparation

To study the TC of nanofluids, the procedure of nanofluid

preparation should be studied. According to the previous
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Fig. 1 XRD pattern of CeO2

NPs

Table 3 Comparison of

different surfactants and

nanofluids

References Particle Surfactant Base fluid

Song et al. [56] Stainless steel SDS, SDBS, CTAB Water

Kim et al. [53] CNT CTAB Water

Ghadimi and Metselaar [57] TiO2 SDS Water

Table 4 TCE of nanofluids with

mixture of EG–water as base

fluid

References Nanoparticle EG/water ratio Concentration/% Max Enhancement

Keyvani et al. [34] CeO2 100:0 0.25–2.5 22

Hemmat Esfe et al. [30] ZnO 40:60 0.1–3 * 35

Ahmadi Nadooshan [58] TiO2/SiO2 30:70 0.125–4 20

Nabil et al. [59] CuO 40:60 0.5–3 22.8

Hemmat Esfe et al. [29] CuO 40:60 0.1–2 * 33.8

Leong et al. [60] Cu/TiO2 50:50 0.2–0.8 9.8

This study CeO2 50:50 0.015–0.135 36.1

Table 5 Some physical properties of CeO2 NPs

Properties Values

Specific surface area (SSA) 85–170 m2 g-1

Nanopowder (CeO2) color Light yellow

Density 7.22 g cm-3

Average particle size (APS) 8–10 nm

Formula weight 172.12 mol g-1

Melting point 2600 �C
Purity 99.721%
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studies, there are two methods for preparing a nanofluid

including the single-step method and the two-step tech-

nique [26]. In this work, as the most common approach, the

two-step technique is used to prepare the nanofluids. In this

technique, NPs, nanofibers, nanotubes, or other nanoma-

terials are initially provided through chemical or physical

procedures. In the next step, the nanosized powders are

spread into a base fluid by using intensive magnetic force

agitation, high-shear mixing, ultrasonic agitation, homog-

enizing, and ball milling. [18].

In this work, the considered base fluid was the 50:50

EG–water mixture. Table 6 gives some thermophysical

properties of deionized water and EG. The certain amount

of CTAB was added to the base fluid and sonicated for

about 5 h by ultrasonic probe sonicator to get a 0.1% mass

concentration solution. The required amount of CeO2 is

then calculated using Eq. (2). In fact, sonication of the

nanofluid samples was done to gain better dispersion of

NPs by removing the agglomerations of NPs.

u ¼
W
q

� �
CeO2

W
q

� �
CeO2

þ W
q

� �
basefluid

2
64

3
75� 100 ð2Þ

where u is the NP concentration, W is the mass and q is the

density.
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Fig. 2 FESEM image of CeO2 NPs at 950,000 magnification (a) and
EDAX spectrum of CeO2 NPs
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Fig. 3 Particle distribution of

nanofluid a 0.035% and

b 0.135%
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FTIR

The FTIR was applied to assess the formation of surfactant.

In the FTIR spectrum, which is presented in Fig. 4, one

peak at 3016 cm-1 is observed in the mas (N–CH3) feature

for the surfactants [62]. The absorption band at 2918 cm-1

was the characteristic peak for C–H stretch. Indeed, the mas
(CH3) feature located in a frequency lower than 2956 cm-1

indicates the crystalline structure and a crystalline phase

occurs when the msym (CH2) frequency is lower than

2849 cm-1 [63–65]. The C–H stretching vibration- sym

appeared at 2849 cm-1. Two features of 1462 and

1472 cm-1 are related to the CH2 scissoring region

[66, 67]. CH2 Wagging Region for the CTAB molecules

occurs between 1300 and 1400 cm-1 [68]. Also, the peak

at 1398 cm-1 is within the region of course. d sym(N–

CH3) and m(C–N) are also noticed at 1398 and 909 cm-1,

respectively, and they are in good agreement with the data

in the literature [57]. Meanwhile, the peak appeared at

725 cm-1 was due to the C–H out-of-plane deformation

vibration [69]. Therefore, the tail was also detected as a

triplet peak at 0.90 mg L-1.

Critical micelle concentration (CMC)

CMC is one of the main parameters for the evaluation of

surfactants. In fact, CMC is the concentration in which

surfactant mixture starts to form micelles in large scale.

Electrical conductivity method is the simplest approach to

define CMC. For this purpose, various concentrations of

CTAB were prepared and the electrical conductivity of

samples was measured. The results are depicted in Fig. 5.

The sharp change in the slope indicates the CMC point of

CTAB.

Stability investigation

The value of zeta potential is proportional to the stability of

colloidal dispersions. Consequently, high-zeta-potential

nanofluids, regardless of the type of surface charge, remain

well stable, while low-zeta-potential nanofluids are unsta-

ble. According to the literature, the zeta potential values

less than - 25 mV or more than ? 25 mV can be con-

sidered as the stable fluids [70, 71]. For analyzing the

agglomeration of NPs, the Zetasizer Nano Z (MALVERN

ZENZS 3690 NANO SERIES, UK) was applied to study

the zeta potential values of the samples. It was found that

the zeta potential of the nanofluids with NP concentration

of 0.015% and 0.135% are ? 54.1 mV and ? 59.9 mV,

respectively (See Fig. 6). In the observation process, the

prepared samples were examined in terms of the sedi-

mentation of particles (Fig. 7), and it was found that the

prepared nanofluids samples are stable for minimum

3 weeks.

Table 6 Some thermophysical properties of water and EG

Parameters Water EG

Purity (Deionized water) Extra pure 99.5%

Molar mass 18.015 g mol-1 62.07 g mol-1

Boiling point 100 �C 197.3 �C
Thermal conductivity 0.6 W m-1 K-1 0.244 W m-1 K-1

Density 998.21 kgm-3 1113.2 kgm-3
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Fig. 4 FTIR spectra of CTAB
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TC evaluation

To study the TC of CeO2/EG–water nanofluid, five nano-

fluid samples with volume concentrations of 0.015%,

0.035%, 0.07%, 0.105%, and 0.135% are prepared using a

cationic surfactant (CTAB) and the ultrasonic vibrator. To

evaluate the TC of all nanofluids, a KD2-Pro thermal

properties analyzer (Decagon devices, USA) was used. In

this instrument, the well-known hot wire method is used.

The samples were placed inside a glass vessel (15 mL)

where the sensor was fixed vertically to reduce the error of

measurement. The samples were maintained at several

temperatures using a constant temperature water bath.

After the temperature of the sample reached the required

temperature, the sample was kept at that temperature for

further 30 min to ensure temperature equilibrium before

each measurement. The accuracy of the KD-2 device was

tested by measuring the TC of 50:50 EG–water mixture

and comparing the results with those of the ASHRAE [72]

and Sundar et al. [33]. (See Fig. 8.) The obtained results

showed that the device works properly and the error of the

device is less than 3%.
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Results and discussion

Figure 9 illustrates the variations of TC of CeO2/EG–water

nanofluid versus temperature for various NP concentra-

tions. It is clear that the TC of nanofluid enhances by rising

both the volume concentration and temperature. In addi-

tion, it is seen that the TCE is higher at higher

temperatures.

Figure 10 demonstrates the TCE of nanofluid samples in

various temperatures and volume concentrations. Accord-

ing to the findings, the highest TCE is 36.13% which

belongs to the NP with volume concentration of 0.135% at

50 �C.
Figure 11 depicts the variations of the TCR (i.e., ratio of

nanofluid TC and base fluid TC) versus NP concentration

and temperature. The obtained results reveal that the TCR

Fig. 7 Images of the dispersed nanofluids a after 2 days and b after

10 days
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augments by boosting the volume concentration of NPs.

Brownian motion and collisions between particles in high

temperature are the main reasons for this observation. The

results also demonstrate that the TCR intensifies with

growing volume concentrations of NPs. Furthermore, the

maximum TCR (i.e., 1.3613) is observed at 50 �C and

volume concentration of 0.135%.

New correlation

According to the best knowledge of the authors, there is not

an accurate and simple correlation for estimation of the

TCE and TC of dispersed CeO2 in 50:50 EG–water mix-

ture. Equations (3) and (4) are proposed for the estimation

of TCE and TC of CeO2/EG–water nanofluid, respectively.

Thermal conductivity enhancement

¼ 0:152057T þ 78:1569uð%Þ þ 2:01932T :uð%Þ
þ 4:02839 ð3Þ

Thermal conductivity ¼ 0:00143474T þ 0:25939uð%Þ
þ 0:00882305T :uð%Þ
þ 0:366217

ð4Þ

These correlations are valid in the volume concentration

range of 0.015–0.135% and temperature range of

20–50 �C. According to the coefficient of volume con-

centration in both equation, it can be concluded that the

volume concentration of CeO2 NPs has more influence on

TCE and TC values as compared with the temperature.

Figure 12 shows the predicted values of TCE and TC

versus the actual values. The high value of R2 indicates the

accuracy of equations in the prediction of TCE and TC.

Conclusions

In this study, the stable CeO2/EG–water nanofluid was

successfully prepared and the stability of prepared samples

was evaluated. The TC of the prepared nanofluid samples

with 0.015%, 0.035%, 0.07%, 0.105%, and 0.135% solid

volume concentrations were evaluated in the temperature
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range of 20–50 �C. The findings confirmed that the TCR of

the nanofluid could improve by boosting both the temper-

ature and NP volume concentration. Additionally, it was

found that the TC of CeO2/EG–water nanofluid improves

up to 36.13% when temperature and solid volume con-

centration are at the highest value. In addition, a new

correlation was proposed for predicting the TC and TCE of

nanofluid.

Future work

It is suggested that the rheological behavior of this nano-

fluid also be examined in order to be able to evaluate its

efficiency using hydrothermal analysis of heat exchangers

containing this nanofluid.
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