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Abstract
Betulonic acid (BA) is a pentacyclic lupane-type triterpenoid possessing valuable pharmacological activities, exhibiting

very low water solubility. Inclusion complexes between the substance and cyclodextrins (CDs) were obtained in order to

improve its solubility and consequently its bioavailability. The aim of this study was to investigate the guest–host

interaction of BA with γ-cyclodextrin (γ-CD) and its derivative, 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD), in solution

and in solid state in order to prove the formation of inclusion complexes between the components. The kneading method

was used for the inclusion complexes preparation, and different analytical techniques such as thermal analysis, powder

X-ray diffractometry, universal attenuated total reflectance Fourier transform IR spectroscopy (UATR-FTIR) and UV

spectroscopy were employed to investigate the interaction between substances. The stoichiometry of the inclusion complex

BA/HP-γ-CD was found to be 1:1 by employing continuous variation method, and the apparent stability constant was

calculated as 1855.55 M−1 using Benesi–Hildebrand equation. Structural studies of the inclusion complexes were carried

out using molecular modeling techniques in order to explain the complexation mechanism. The results of this study confirm

the formation of inclusion complexes between BA and cyclodextrins both in solution and in solid state.
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Introduction

Natural products have always been an important source of

starting compounds for drug discovery and development

[1–3]. They have played a substantial role in the antitumor

drug development [4, 5], a great majority of antitumor

compounds originate in natural products [4, 6–8]. The

biological active compounds contained in natural products

have special selectivity to cellular targets [3, 9].

Pentacyclic triterpenoids are one of the most abundant

natural compounds in the plant kingdom [4, 8] and, in the

last decade, have received particular attention due to their

important medicinal properties [10–12]. Betulonic acid

(BA, 3-oxolup-20(29)-en-28-oic acid, Fig. 1) is a triter-

penoid with lupane skeleton, presenting poor water solu-

bility (in silico predicted aqueous solubility − 8.0\log

(Sw)\−6.0) [13]. BA and its derivatives have proved

biological activities including antiviral [14–16], anti-in-

flamatory [17, 18], antitumor [4, 19], hepatoprotective

[18, 20], anti-HCMV activity [21], antimicrobial [22],

immunostimulant [23] and antioxidant effects [24].
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Cyclodextrins (CDs) belong to the family of the cyclic

oligosaccharides and possess six, seven and eight glu-

copyranose units linked by α-(1,4) bonds (α, β and γ-cy-
clodextrin, respectively). CDs molecules have torus macro-

ring shape, like a truncated cone, having a hydrophobic

internal cavity and a hydrophilic outer surface, responsible

for their water solubility [25–27]. This particular structure

of CDs offers them the ability to form host-guest inclusion

complexes with a wide variety of drug substances of

appropriate shape and size. The inclusion complex for-

mation is of biomedical and pharmaceutical interest

because of the major changes in drug candidate physico-

chemical and biopharmaceutical properties, such as solu-

bility, chemical reactivity, stability, volatility, melting

point, unpleasant taste or odors, which lead to significant

amelioration of formulation design and improvement of

drugs bioavailability [27–33]. Additionally, CDs can also

reduce ocular and gastrointestinal irritation and prevent

drug-excipient and drug-drug interactions [25, 29, 34].

Thus, the CD complexation results in significant

improvement of drugs formulation design and enhance-

ment of solubility, dissolution and bioavailability of drugs

[25, 35–37].

Some studies have reported the inclusion complexes

formation between pentacyclic triterpenoids such as betu-

linic, oleanolic and ursolic acid, betulin and cyclodextrins,

including β, γ-cyclodextrin and its derivatives [38–44].

In order to overcome the very low water solubility of

betulonic acid, Saxena B et al. [19] have synthesized a

hydrophilic lysinated derivative of drug with anti-prostate

cancer activity. Up to the present, there has been no sci-

entific report on BA inclusion complex with γ-CD and its

derivatives. Following this, the aim of this paper has been

to investigate the molecular encapsulation of BA in γ-cy-
clodextrin and 2-hydroxypropyl-γ-cyclodextrin cavity. The

binary products have been prepared using the kneading

method in molar ratio 1:1. Physicochemical determinations

based on thermal analyses, PXRD, FTIR and UV spec-

troscopy have been used to characterize the inclusion

complexes both in solid state and in solution.

Experimental

Materials

Betulin, as starting material, was obtained in our laboratory

by Soxhet extraction from the white outer birch bark (Be-

tula pendula) [45]. The functionalizated method for the BA

obtaining was previously described by our group [45]:

Betulin was oxidized with freshly prepared Jones’ reagent

(consisting in dissolved CrO3 in a mixture of concentrated

H2SO4 and water) in acetone. After purification procedure,

BA heaving purity[96% was obtained. γ-CD and HP-γ-
CD were purchased from Cyclolab R&L Ltd (Budapest,

Hungary). The substances were used as received. All other

chemicals and reagents were of analytical grade.

Characterization of inclusion complexes
in solution

All spectrophotometric measurements were recorded using

SPECTRONIC UNICAM—UV 300 UV-VISIBLE double

beam spectrophotometer with 1 cm matched quartz cells.

Stoichiometry and stability constant
determination

The stoichiometry of the BA/γ-CD and BA/HP-γ-CD
inclusion complexes was investigated by Job’s method

[29, 46]. Job plot was obtained from UV spectrophoto-

metric measurements. For this purpose, equimolar 2.29

10−4 M solution of BA and CDs (γ-CD and HP-γ-CD,
respectively) prepared in 0.1 M phosphate buffer (pH 8.5)
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was mixed to a standard volume, varying the molar ratio,

but keeping the total concentration of the species constant.

An analogous dilution set of the BA stock solution was

prepared using the same solvent. After stirring, the absor-

bance was measured at 205 nm for all solution, and the

difference in absorbance ΔA (ΔA=A0–A) of BA in the

presence (A) and in the absence (A0) of CDs was plotted

against BA mole fraction R; R=[BA]/{[BA]?[CD]}.

The apparent stability constant of the BA/HP-γ-CD
inclusion complex was determined employing Benesi–

Hildebrand model. The spectrophotometric data were col-

lected for BA in the presence of increasing concentration of

CD and also under free complexation conditions. The BA

concentration was maintained constant, at 1.759910−4 M

in 0.1 M phosphate buffer (pH 8.5), and the CD concen-

tration was varied from 0 to 1.759910−3 M, in the same

solvent. The absorption spectra were recorded in the range

of 200–230 nm, using 1.0 cm quartz cells.

The binding constant determination is achieved by using

the changes in absorbance at maximum wavelength of 205

for BA in the presence of increasing CD concentration. The

stability constant value for the 1:1 inclusion complex can

be obtained by means of the Benesi–Hildebrand equation

[29, 46, 47]

1

DA
¼ 1

De � ½BA� � K � ½CD� þ
1

De � ½BA� ð1Þ

where Δε is change in molar attenuation coefficient, ΔA is

change in absorbance and K is stability constant.

Preparation of solid inclusion complexes BA/γ-CD
and BA/HP-γ-CD

The kneading method in 1:1 molar ratio was used to pre-

pare the inclusion complexes. This method was applied

because of its simplicity, accessibility, rapidity and eco-

nomical advantages in comparison with other methods

[48]. The amounts of 0.0389 g BA and 0.1111 g γ-CD were

weighed, and the obtained mixture was pulverized in a

mortar and triturated with 0.15 g ethanol-water solution

(1:1, m/m). In the case of BA/HP-γ-CD inclusion complex

preparation, 0.0378 g BA and 0.1119 g HP-γ-CD were

weighed and the obtained mixture was pulverized and

triturated with 0.15 g ethanol-water solution (1:1, m/m) in

order to get a homogeneous paste. The paste thus obtained

was kneaded for 45 min, and during this process, a few

drops of solvent were added in order to ensure a suit-

able consistency. The product was dried at room temper-

ature and then in the oven, at 40 °C for 24 h. The dried

kneaded products named BA/γ-CD and BA/HP-γ-CD were

pulverized and passed through a 75 µm size sieve.

Characterization of solid-state inclusion
complexes

Thermal analysis

TG/DTG/HF measurements were performed using a Perkin

Elmer DIAMOND TG/DTA instrument. In these experi-

ments, the samples of about 3–4 mg were placed in the

aluminum crucibles. The thermal behavior of BA, γ-CD,
HP-γ-CD, the binary systems BA/γ-CD and BA/HP-γ-CD
has been studied under air atmosphere at a flow rate of

100 mL min−1, in the temperature range of 40–500 °C, with
heating rate of 10 °C min−1.

Powder X-ray diffractometry

X-ray diffraction patterns of BA, γ-CD, HP-γ-CD and of

the binary systems BA/γ-CD and BA/HP-γ-CD were

obtained using a Bruker D8 Advance powder X-ray

diffractometer, at ambient temperature, in the range of 10°–
45° angular domain (2θ). The samples were irradiated with

Ni-filtered CuKα radiation (40 kV, 40 mA).

Fourier transform infrared spectroscopy

The FTIR spectra were recorded using a Perkin Elmer

SPECTRUM 100 device. The data were collected directly

on solid samples, in the spectral domain 4000–600 cm−1 on

an UATR device. Spectra were built up after a number of 16

coadded acquisitions, with a spectral resolution of 4 cm−1.

Molecular modeling

The Gaussian program suite at DFT/B3LYP/6-311G for BA

optimization was used. The γ-CD X-ray crystal structure

(with 5E70 code and X-ray diffraction at 2.33 Å resolution)

was taken from the Protein Data Bank [49] and then opti-

mized with the Gaussian software Hartree–Fock/6-311G. The

HP-γ-CD molecular structure was modeled by adding eight

hydroxypropyl moieties to the γ-CD structure, attached to the

primary hydroxyl groups from carbon six D-glycopyranosyl

units, then optimized in the same manner (DFT/B3LYP/6-

311G). The molecular docking analysis was performed using

the AutoDock 4.2.6 software together with the Auto-

DockTools, (a molecular viewer and graphical support for

setup and analysis of docking runs). The preparation of γ-CD
host molecule involves adding all the hydrogens, computing

the Gasteiger charge; the grid box was created using Autogrid

4 with 50940940 Å in x, y and z directions with 0.375 Å

spacing. All the calculations were performed in vacuum.

For the docking process, we chose the Lamarckian

genetic algorithm (Genetic Algorithm combined with a

Betulonic acid—cyclodextrins inclusion complexes 2789

123



local search), with a population size of 150 and a number

of 30 runs. We exported all AutoDock results in the

PyMOL molecular visualization system [50].

Results and discussion

Characterization of inclusion complexes
in solution

Stoichiometry and stability constant determination

According to the continuous variation method [51], the

stoichiometry of the inclusion complex is given by the

value of the molar ratio R that corresponds to the maximum

concentration of the complex. The molar ratio is identified

when the absorbance (a physical parameter which is

directly related to the complex concentration) was mea-

sured for a series of samples having continuously varied

molar fraction of its components [29, 46, 52]. The maxi-

mum absorbance variation (ΔA) for BA, as shown in

Fig. 2a, is reached, when BA mole fraction is 0.667 in the

presence of γ-CD, which may indicate that the main stoi-

chiometry of BA/γ-CD inclusion complex is 2:1. In the

case of BA/HP-γ-CD inclusion complex formation, the

maximum variation in absorption is observed for R=0.5,

thus indicating that the stoichiometry is 1:1 (Fig. 2b).

The Benesi–Hildebrand method is one of the common

strategies for estimation of the stoichiometry and binding

constant of the inclusion complexes [29, 46, 47]. For the

purpose of confirming the 1:1 stoichiometry of the BA/HP-

γ-CD inclusion complex and calculating its stability con-

stant, changes in the absorption intensity of BA at 205 nm

have been evaluated as a function of HP-γ-CD concentra-

tion. A hypochromic shift is observed in the absorption

maxima of BA in the presence of HP-γ-CD compared with

pure BA, supporting the hypothesis of an inclusion complex

formation. Also, from Fig. 3a it can be seen an increase of

BA absorption intensity as a consequence of increasing HP-

γ-CD concentrations. The variation of the absorbance ΔA=A
−A0 was calculated as the difference between BA absor-

bance in the presence of different HP-γ-CD concentrations

and the pure BA absorbance.

For the aim of verifying the inclusion complex stoi-

chiometry, a double reciprocal plot was represented, 1/

ΔA versus 1/[HP-γ-CD], as it is shown in Fig. 3b. A good

linear relationship was achieved when 1/ΔA was plotted

against 1/[HP-γ-CD], (R2=0.9884), confirming the 1:1

stoichiometry of the BA/HP-γ-CD inclusion complex.

The value of the apparent stability constant was obtained

using Benesi–Hildebrand Eq. (1), as a ratio of the intercept

to slope of the straight line in the Benesi–Hildebrand

double reciprocal plot. The stability constant value was

determined as K1:1=1855.55 M−1.

Characterization of solid-state inclusion
complexes

Thermal analysis

In order to evaluate the interaction between BA and CDs,

the thermal behavior of the pure substances and their

kneaded products was investigated using TG, DTG and HF.

TG, DTG and HF thermoanalytical curves of BA, γ-CD,
HP-γ-CD and their inclusion complexes are shown in

Fig. 4a–e.

The TG/DTG curves of BA reveal a multistage

decomposition process in air atmosphere (Fig. 4a). A good

thermal stability of the substance is noticed, the fist mass

loss starting up at 222 °C with a DTGmax=273 °C (Δm=

12%), followed by another process which begins at 286.7 °
C, DTGmax=307.6 °C (Δm=41%). These two mass loss
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Fig. 2 Job’s plot for BA/γ-CD (a) and BA/HP-γ-CD (b) inclusion complexes from absorbance measurements
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steps are accompanied by a strong exothermic effect in HF

curve (Tpeak=310 °C), which probably corresponds to the

thermo-oxidations of the triterpenic moiety. The BA

heating at 525 °C induces a total mass loss of 100% [53].

The thermoanalytical curves of γ-CD present a small

mass loss between 40 and 130 °C (Δm=9.4%) corre-

sponding to the loss of crystal water (Fig. 4b); a stability

stage of dehydrated γ-CD is noticed between 130–260 °C,
but after 260 °C the mass loss process continues. The γ-CD
melting occurs at 318.6 °C, as the endothermic peak of the

HF curve shows.

The TG/DTG curves of HP-γ-CD indicate a mass loss

up to 100 °C (Δm=8.4%) due to the cyclodextrin dehy-

dration (Fig. 4d), followed by a thermal stability stage in

the temperature range of 100–265 °C. The HF curve

reveals the HP-γ-CD melting at 334.5 °C.
The thermal profiles of the binary systems reveal dif-

ferences in comparison with those of the pure substances

(Fig. 4c, e). The thermoanalytical curves of BA/γ-CD
kneaded product present a mass loss process between 40

and 95 °C (Δm=8.2%) corresponding to γ-CD dehydration;

in the temperature range of 95–225 °C a stability stage is

observed, but after 225 °C the mass loss process continues.

It is also noticed a marked reduction in intensity of the

DTG peak corresponding to the BA first mass loss step in

the range 200–400 °C and a shift toward higher tempera-

ture (DTGmax=285 °C). The HF curve of the binary system

BA/γ-CD indicates the significant reduction and the dis-

placement of both melting endothermic peak of γ-CD (i.e.

308 °C) and the BA thermo-oxidations exothermic peak (i.

e., 328.4 °C), as compared with the parent substances.

Furthermore, the endothermic peak corresponding to the

HP-γ-CD melting exhibits a marked reduction in its

intensity and shifts to lower temperature (i.e., 322.6 °C) in
the HF curve of the BA/HP-γ-CD kneaded product and

also, the exothermic peak due to the thermo-oxidations of

the BA triterpenic moiety is shifted to higher temperature

(i.e., 331.6 °C).
The thermal analysis represents a valuable technique

regarding the evaluation of the interactions between CDs

and drug substances. The melting point of the guest

molecules which are embedded in CDs cavity generally

shifts to a different temperature and decreases its intensity

or disappears [54, 55]. The area reduction and the shift

toward a higher temperature of the thermo-oxidations of

BA or shift toward a lower temperature of the melting

peaks of CDs in the kneaded products indicate a molecular

interaction between the guest and host molecules.

The results obtained by using the thermal analysis

indicate a molecular interaction between the BA and CDs,

through the inclusion complexes formation when the

kneading method was employed.

Powder X-ray diffractometry

The powder X-Ray diffractograms of BA, γ-CD, HP-γ-CD
and BA/γ-CD, respectively, BA/HP-γ-CD inclusion com-

plexes are depicted in Fig. 5.

The XRD pattern of BA had one broad peak and many

undefined, diffused peaks with low intensities, reflecting

the amorphous nature of substance, while the diffraction

pattern of γ-CD contains a number of sharp and intense

peaks at 2θ 12.03; 13.64; 15.13; 16.23; 18.42, reflecting its

crystalline nature. The binary system BA/γ-CD diffracto-

metric profile presents different degrees of changes in

comparison with those of the pure substances. Thus, the

characteristic diffraction peaks of γ-CD have disappeared

in the XRD pattern of kneaded product, while there can be

noticed the appearance of some broad peaks indicating that

a new amorphous solid phase is formed.
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The diffraction pattern of HP-γ-CD indicates its amor-

phous structure. The binary system BA/HP-γ-CD diffrac-

togram emphasizes its amorphous nature, different from

that of BA, by the two broad peaks and many undefined,

diffused peaks with low intensities, similar to that of pure

cyclodextrin.

The XRD analysis suggests that new compounds with an

amorphous state have probably been formed.

UATR-FTIR analysis

The UATR-FTIR spectra of pure BA, γ-CD, HP-γ-CD and

the BA binary products with CDs are presented in Fig. 6.

The IR spectra of the kneaded products have been evalu-

ated as compared to those of the pure substances in order to

assess the inclusion complexes formation.

The UATR-FTIR spectral pattern of BA shows a strong

band at 1698 cm−1 associated to the C=O stretching
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vibration of ketone and carboxyl group. It also presents

other characteristic bands for the carboxyl group (the C–O

stretching at 1180 cm−1, the hydrogen bonded O-H stretch

vibration at 3442 cm−1), for the vinylidene group (the C=C

stretching vibration at 1642 cm−1 [45], the C–H stretch

vibration at 3081 cm−1) and for the lupan skeleton (the sp3

C-H stretching vibration from CH3 and cycle CH2 at 2947

and 2867 cm−1, the CH2 scissoring at 1459 cm−1 and the

methyl C-H antisymmetric/symmetric bending at

1459 cm−1 and 1376 cm−1, respectively) [45, 56]. The band

located at 888 cm−1 can be assigned to either the C-H out-

of-plane bending from vinylidene group or the antisym-

metric cyclohexane ring stretching vibration [56, 57].

The FTIR spectra of the CDs indicate a broad band

between 3600 and 3000 cm−1 associated to the O-H

stretching vibration and characteristic peaks that corre-

spond to the C-H stretching vibration from CH2 (at

2927 cm−1 for γ-CD; 2926 cm−1 for HP-γ-CD), to C–H

bending from CH2 (1365 cm−1 for γ-CD; 1366 cm−1 for

HP-γ-CD), to the C–C–O stretching vibration from C–OH

(1021 cm−1 for γ-CD; 1014 cm−1 for HP-γ-CD) and to the

skeletal vibration involving α 1-4 linkage (at 935 cm−1 for

both γ-CD and HP-γ-CD). These data are in agreement

with previously reported results [58].

The IR spectra of the kneaded products reveal major

differences in comparison with the corresponding parent

substances. As can be seen, almost all BA characteristic

peaks have either reduced their intensity and shift to other

wavenumbers or have disappeared in the IR spectrum of

the binary compounds. Spectral data indicate that the BA
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characteristic bands corresponding to the carboxyl group,

vinylidene group and the BA bands from 1376 and

888 cm−1 are present neither in BA/γ-CD kneaded product

nor in BA/HP-γ-CD binary system. Furthermore, the BA

CH2 scissoring band is still present in the BA/HP-γ-CD
kneaded product spectrum and shifted to 1452 cm−1, but is

no more present in the spectrum of the BA/γ-CD binary

product and the BA band assigned to C-H stretching

vibration from CH3 shifted from 2947 cm−1 in the pure

compound to 2940 cm−1 in both inclusion complexes

spectra, as a consequence of BA-CDs interaction when the

kneading method was employed. Also, the bands assigned

to C-H stretching vibration in CDs spectra shifted to

2940 cm−1 in spectra of inclusion complexes.

The results of the spectral analysis reveal changes in the

characteristic bands of the pure compounds, thus indicating

an interaction between the BA and CDs through the

inclusion complexes formation.

Molecular modeling

Molecular modeling is a powerful tool that theoretical

chemistry employs for quantitative predictions on host-

guest interaction [52].

AutoDock(1) is an automated procedure for predicting

the interaction of ligands with their macromolecular tar-

gets. An ideal procedure should be able to find the global

minimum in the interaction energy between the substrate

and the target protein, exploring all available degrees of

freedom for the system. AutoDock thus combines two

methods to achieve these goals: rapid grid-based energy

evaluation and efficient search of torsional space. The

conformations are then evaluated using a semi-empirical

free energy force field. The force field includes six pair-

wise evaluations (V) and an estimate of the conformational

entropy lost upon binding ð�SconfÞ:
�G ¼ VboundL�L � VunboundL�Lð Þ

þ VboundP�P � VunboundP�Pð Þ
þ VboundP�L � VunboundP�L þ�Sconfð Þ

where L refers to the “ligand” and P refers to the “protein”

in a ligand-protein docking calculation. Each of the pair-

wise energetic terms includes evaluations for dispersion/

repulsion, hydrogen bonding, electrostatics and

desolvation:

V ¼ Wvdw

X

i;j

Aij

r12ij
� Bij

r16ij

 !
þWhbond

X

i;j

Cij

r12ij
� Dij

r10ij

 !

þWelec

X

i;j

qiqj

�ðrijÞrij þWsol

X

i;j

SiVj � SjVi

� �
e �r2

ij
=2r2ð Þ

The weighting constants W have been optimized in

order to calibrate the empirical free energy based on a set

of experimentally determined binding constants. The first

term is a 6/12 potential for dispersion/repulsion interac-

tions. The parameters are based on the Amber force field.

The second term is a directional H-bond term based on a

10/12 potential. The parameters C and D are assigned to

give a maximal well depth of 5 kcal mol−1 at 1.9 Å for

hydrogen bonds with oxygen and nitrogen, and a well

depth of 1 kcal mol−1 at 2.5 Å for hydrogen bonds with

sulfur. The function E(t) provides directionality based on

the angle t from ideal H-bonding geometry. The third term

is a screened Coulomb potential for electrostatics. The final

term is a desolvation potential based on the volume of

atoms (V) that surround a given atom and shelter it from

solve nt, weighted by a solvation parameter (S) and an

exponential term with distance-weighting factor ∫ = 3.5 Å

[59].

The free energy of binding that we will attempt to

estimate is calculated as ΔbindG=ΔH−TΔS, where the

ΔH represents the enthalpic, and ΔS the entropic contri-

bution (only a negative ΔG value is energetically favorable

and the process is considered spontaneous).

The binding free energy values are calculated as fol-

lows: −8.90 kcal mol−1 for BA/γ-CD inclusion complex, −
5.29 kcal mol−1 for the 2 BA/γ-CD inclusion complex and

−5.95 kcal mol−1 for the BA/HP-γ-CD. The negative

binding free energy values hint that the inclusion com-

plexation process is favorably driven by enthalpy, thus

confirming the interaction between the host molecules,

namely γ-CD and HP-γ-CD, and the guest BA molecules.

According to our data, the BA/HP-γ-CD inclusion complex

is more stable than the 2 BA/γ-CD, because it has a lower

value of binding free energy. Figures 7 and 8 present the

theoretical BA/γ-CD and BA/HP-γ-CD inclusion com-

plexes, as rendered in the PyMOL molecular visualization

system. Figure 7 shows the molecular modeled inclusion

complex BA/γ-CD, simulated in 2:1 molar ratio.

Figure 8 presents the molecular modeling images of the

BA/HP-γ-CD inclusion complex.

Our molecular docking results bring out a structural

insight about BA interactions with both γ-CD and HP-γ-
CD, which supports the experimental results that indicate

the formation of inclusion complexes between the BA and

the two host cyclodextrins. However, in our future studies,

we will investigate also the influence of complexation over

decomposition mechanism of inclusion complexes, by

already established protocols in our research group

[60–64].
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Conclusions

In this study, the inclusion complexes of BA and two CDs,

γ-CD and HP-γ-CD were prepared and evaluated by

experimental and theoretical approaches. Job’s method

indicated a 1:1 stoichiometry for the BA/HP-γ-CD inclu-

sion complex and 2:1 stoichiometry in the case of BA/γ-
CD inclusion complex. The results obtained for the solid

inclusion complexes evaluation, using techniques such as

the thermal analysis, UATR-FTIR spectroscopy and PXRD

clearly demonstrate that the binary products possess dif-

ferent physicochemical properties in relation to the pure

compounds. The above results indicate that the kneading

method leads to formation of solid-state complexes

between BA and the two cyclodextrins.
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