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Abstract
In the present paper, we numerically investigated the two-dimensional conjugate heat transfer problems in a unitary

computational domain containing both the solid and fluid regions. The physical problem configuration consists of two

adiabatic horizontal walls of finite thickness and two vertical walls; the left one is maintained at hot temperature Th and the

right one is maintained at cold temperature Tc. The lattice Boltzmann method (LBM) based on the BGK model has been

used to simulate laminar natural convection in the partitioned air-filled cavity with a heat-conducting solid. In the interface

boundaries of the heat-conducting solid, the continuity of temperature and heat transfer is considered. A series of numerical

simulation is carried out over a wide range of the Rayleigh number (Ra=103–106), the thermal conductivity ratio kr and the

solid partition thickness (δ=1–95℅) and its horizontal position. The results show that the partition reduces the heat transfer

rate in the cavity. For a centered partition (Xs=0.5), the average Nusselt number decreases almost linearly with partition

thickness for δ≤0.45; however, it increases for δ≥0.45 due to the confinement in the thin fluid regions. For Ra=105, the

heat transfer rate decreases with the partition position until a critical value close to 0.325 and rises slightly until Xs=0.5.

The critical position value decreases with the Ra number increase and it is close to 0.2 for Ra=106 where Nu=3.766. The

heat transfer rate is enhanced with the increase in thermal conductivity. Correlations of the average Nusselt numbers are

obtained as a function of Rayleigh number.
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List of symbols
c Lattice speed

cs Lattice speed of sound

ci Discrete particle speed

f Density distribution functions

feq ρ-equilibrium distribution functions

g Temperature distribution functions

geq θ-equilibrium distribution functions

ωi Weight factor

kf Fluid thermal conductivity (W m−1 K−1)

ks Solid thermal conductivity (W m−1 K−1)

kr Thermal conductivity ratio

m, n Lattice cell numbers

Nu Local Nusselt number=∂θ/∂X
Nu Average Nusselt number=

R 1

Y¼0
Nu dY

p Pressure (Pa)

Ra Rayleigh number=Ra=gβ(Th−Tc)W
3/αυ

Pr Prandtl number=υ/α
T Temperature (K)

Tc Temperature of the cold wall (K)

Th Temperature of the hot wall (K)

u, v Dimensional velocities (m s−1)

U, V Non-dimensional velocities

H Height of the cavity (m)

W Width of the cavity (m)

x, y Coordinates system (–)

X, Y Non-dimensional Cartesian coordinates
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Xs Position of the partition

t Time (s)

Greek symbols
α Thermal diffusivity (m2 s−1)

β Coefficient of thermal expansion (K−1)

Δx Lattice spacing

Δt Time increment (s)

μ Dynamic viscosity (kg m−1 s−1)

ρ Fluid density (kg m−3)

τα Relaxation time for temperature (m2 s−1)

τυ Relaxation time for flow (m2 s−1)

θ Non-dimensional temperature

υ Kinematic viscosity (m2 s−1)

δ Thickness of the conducting body (m)

τ Dimensionless time

Subscript
c Cold surface

f Fluid

h Hot surface

s Solid

Introduction

Solid–fluid conjugate heat transfer (CHT) is commonly

used in heat transfer in engineering devices, such as heat

exchangers, combustion chambers, cooling of electronic

devices, electronic equipment [1–3], the heat transport in

microfuel cells and microchannels [4, 5]. In this context,

many research topics have been published. In the area of

industrial automobile, Ali et al. [6, 7] investigated experi-

mentally the heat transfer inside a car radiator using metal

oxide nanofluid. The use of nano-suspensions increases the

heat transfer rate comparing with the water base fluid. The

increase in the volume concentration enhances the heat

transfer. The heat transfer rates are weakly dependent on

the inlet nanofluid temperature.

Besides, numerical simulations of CHT problems are

performed by many researchers using conventional

numerical methods for solving the governing Navier–

Stokes and energy equations. Finite volume method

(FVM), finite difference method (FDM), and finite element

method (FEM) have been successfully applied [8–10].

However, different material properties at solid–fluid

interface caused some difficulties in simulation of heat

transfer [11, 12]. In addition, the implementation of con-

jugate interface thermal boundary conditions is a chal-

lenging problem, particularly for complex geometries.

Moreover, with the growth of the capacity of computer

machines, new numerical methods are emerging. This is

typically the so-called lattice Boltzmann-type methods

known by the acronym LBM or its ancestor lattice gas

automata (LGA). Based on the evolution of particle dis-

tribution functions of discrete velocities, the LBM method

with its four models (BGK, MRT, entropic and regularized

LBM) has been developed rapidly in recent years and has

received much attention in science and engineering as a

powerful computational tool for solving a large class of

problems. The LBM has been successfully used to solve a

wide range of thermo-fluid problems [13–16]. LBM is

based on mesoscopic scale, which has many advantages

over conventional computational fluid dynamics (CFD)

solvers.

Lu et al. [17] proposed FD-LBM in order to simulate CHT

problems, in which the continuity of heat flux at the interface

between two different media was obtained by modifying the

streaming process to avoid exchanging information directly

between different media because the conventional streaming

process cannot keep heat flux continuous at the interface in

CHT. The distribution functions at the interface can be

obtained by coupling the interface conditions of temperature

and heat flux with non-equilibrium extrapolation. Authors

tested four cases and showed that simple difference method

based on the coupling between two distribution functions has

a good performance in simulating solid–fluid or solid–solid

CHT problems. A promising difference method was pro-

posed by Mohamad et al. [18]. The continuity of heat flux at

the interface was ensured by coupling temperature differ-

ence with a new scaling law of energy distribution function.

Koca et al. [19] used the Bejans’ heatline technique to ana-

lyze the effects of a differentially thickness change con-

ductive partition on natural convection heat transfer in an

enclosure. It was found that both heat transfer and flow

strength strongly depend on the thermal conductivity ratio

and Rayleigh number.

Karani and Huber [20] suggested using a source term to

the evolution equation in such a way that temperature and

heat flux continuities were satisfied at the interface. In their

method, the interface was placed halfway between the

boundary lattice nodes.

Benachour et al. [21] made a series of numerical sim-

ulations to develop a new correlation using the Lagrange

polynomial interpolation method for high Rayleigh num-

bers. This method is used for predicting exchange coeffi-

cient and estimating Nusselt number to optimize the design

of walls in buildings. Authors found that the heat transfer

decreases with the increase in the wall thickness of the

building material of the outer wall. The Nusselt number

increases when the Rayleigh number increases.

Khatamifar et al. [22] made a series of numerical sim-

ulation for conjugate natural convection flow and heat

transfer using the finite volume method in a partitioned

differentially heated square cavity. They examined the

effects of partition position and thickness on the unsteady
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conjugate natural convection heat transfer in a differen-

tially heated partitioned enclosure over a wide range of

Rayleigh numbers. The presence of the heat-conducting

solid has significant effects on heat and flow characteristics

in the cavity. In addition, the average Nusselt number is a

decreasing function of partition thickness but is an

increasing function of the Rayleigh number. Finally, the

position of the heat-conducting solid has a negligible

influence on the heat transfer rate for the whole range of

Rayleigh number considered.

The numerical results of Ho and Yih [23] show that heat

transfer in an air-filled partitioned rectangular cavity is

considerably lower than that in a non-partitioned cavity.

Indeed, the presence of a conducting partition in the cavity

has a significant influence on the natural convection heat

transfer characteristics across the cavity.

Saeid [24] used the finite volume method to simulate

conjugate natural convection in two-dimensional vertical

porous layer sandwiched between two equal-thickness

walls. The numerical results indicated that the ratio of the

wall thickness to its height, the wall to porous thermal

conductivity ratio and the Rayleigh number have great

effects on the heat transfer and fluid flow characteristics. It

was found that as the average Nusselt number decreases the

wall thickness increases. The strength of the circulation is

much higher with thin walls and with high thermal con-

ductivity ratio. The numerical results indicated that for

small values of Rayleigh number, the average Nusselt

number is approximately constant.

The earlier research in this area has been conducted by

Wang et al. [25]. Authors proposed a CFD model for

simulating the CHT at the fluid–solid interface using the

LB method. The half-lattice technique was employed to

model the interface. The model has given reasonable

results for steady-state heat conduction problems.

A finite difference approach has been proposed by

Seddiq et al. [26] to deal with the CHT problems, in which

the continuous heat flux at the interface between two dif-

ferent media can be well guaranteed. However, this method

is confined to solids with a square shape at steady state.

Souayeh et al. [27] investigated numerically the steady

laminar natural convection in a water-filled 2D enclosure

containing a rectangular conducting body. To study the

impact on the flow structure and heat transfer characteris-

tics, several parameters are highlighted such as Rayleigh

number, solid–fluid thermal conductivity ratio and different

locations of a conducting body. It was found that the

location of the rectangular conducting body affects only the

flow structure and has no effect on temperature field. By

increasing the Rayleigh number, the gradient of thermal

boundary layer becomes larger. As a consequence, the heat

transfer rate increases. A comparative study was made

between the two cases, vertical and horizontal location of

the conducting bloc. It is found that the mean Nusselt

number is higher for vertically positioned case.

Ben Nakhi and Chamkha [28] made a numerical

investigation in which they studied the influence of length

and inclination angle of heated thin fin attached in the hot

wall of a differentially heated cavity. The FVM is used to

obtain the numerical solution. They found that the con-

sidered parameters have a significant effect on the heat

transfer. Besides, the heat transfers decrease when the

length of the hot fin increases. Depending on the thin fin

length, the behavior of the average Nusselt number changes

when the inclination angle increases. In addition, the

increase in Rayleigh numbers produces a significant aug-

mentation in heat transfer. In fact, as well as the Rayleigh

number, it is possible to enhance or reduce wall heat

transfer by proper selection of both fin inclination angle

and length. In another study, Ben Nakhi and Chamkha [29]

studied numerically the CHT in a square cavity which has

three thick-cooled thick walls and one thin-heated vertical

wall with a heated inclined thin fin attached to its middle.

They found that the thin fin inclination angle, length and

the solid–fluid thermal conductivity ratio have a significant

influence on the heat transfer rate. Besides, the control of

the behavior of heat transfer through an enclosure is done

by means of the selected parameters.

Ismael and Chamkha [30] investigate numerically the

conjugate natural convection in a differentially square

composite vertically layered cavity using the FDM. The

cavity is subdivided from the left: a solid wall, a porous

layer, and a nanofluid layer. It was found that, at low value

of the porous medium permeability and when the porous

layer thickness is greater than 0.5, the natural convection

heat transfer was enhanced when the Rayleigh number is

less than or equal to 104. The solid wall type is found to

play a considerable role in the flow and heat transfer fields.

It is also found that the conduction heat transfer within the

solid wall is affected by the permeability of the porous

layer.

Chamkha et al. [31] conducted a numerical study of

mixed convection heat transfer in a heated square solid

cylinder located at the center of a vented cavity filled with

air. The FDM is used to solve the considering equations.

They found that the heat transfer increases linearly with the

Richardson number for all considered configurations. As

the Richardson and Reynolds numbers increase, the heat

transfer along the hot wall increases while the surface

temperature decreases for the same parameters for all

configurations. The authors found that, in terms of heat

transfer, the performance of the CT configuration is more

pronounced than the CC and CB configurations. The

position of the inner square cylinder has an important role

in the streamline and isotherm contour patterns.
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Chamkha [32] performed a numerical study of CHT in

porous cavity heated by triangular thick wall using the

second-order central differences finite difference

scheme with the successive over relaxation (SOR) method.

It was found that the heat transfer and the circulation

strength are the increasing functions with Rayleigh num-

bers. The increase in the solid wall thickness causes at the

same time the augmentation of thermal resistance and

increases the contact interface. When the thermal conduc-

tivity ratio is less than 0.1, the effect of Ra and D become

more pronounced.

Chamkha and Ismael [33] made a numerical investiga-

tion of natural convection in a differentially heated and

partially cavity filled with nanofluid. The obtained results

show that the heat transfer is an increasing function of Ra

at lower porous layer thicknesses. The use of nanofluid

enhances the convective heat transfer, precisely at low

permeability porous layer. It was found that the addition of

the nanofluid accelerates the flow throughout the cavity.

The convective heat transfer presents a maximum value

corresponding to a critical porous layer thickness for a

considered effective thermal conductivity. The aspect ratio

A=2 corresponds to the best value of convective heat

transfer.

Ismael et al. [34] considered the case of Chamkha et al.

[32], but they focus on the irreversibility of heat transfer

and fluid friction process. The authors conclude that the

considered nanofluid increases the global entropy genera-

tion. The global entropy generation rate is an increase

function of conductivity solid wall. For low Ra, the rate of

entropy generation increases with solid wall thickness for

highly conductive wall. On the other hand, for high Ra, the

maximum of heat transfer corresponds to a critical value of

D=0.7 for conductive solid wall less than 1 and the max-

imum irreversibility appears at D=0.5.

The objective of the present contribution is to simulate

laminar natural convection in a two-dimensional square

cavity partitioned with a conducting solid.

The remainder of this paper is organized as follows: The

section two is devoted to the numerical modeling where the

mathematical formulation, boundary conditions and the

LBM basis are presented. In the third section, the inde-

pendence test and the code validation are performed. The

fourth section is concerned with the results and discussion

where the effect of the partition wall, the effect of wall

thickness, the effects of partition position and Rayleigh

number, the effect of thermal conductivity ratio on the

dynamic and thermal structures and heat transfer rate

measured using the Nusselt number are appraised. Con-

cluding remarks are finally drawn in “Conclusions”

section.

Numerical modeling

Problem statement

The geometry of the problem is shown in Fig. 1. It displays

a two-dimensional partitioned square enclosure. In this

configuration, the horizontal walls are adiabatic, while the

vertical ones are maintained at constant but different

temperatures so that the cavity is heated from the right

vertical wall and cooled from the opposite left vertical one.

A heat-conducting solid partition is placed in the cavity.

All the walls are rigid, and no-slip BC is considered. The

partition walls are heat conducting, with finite thermal

conductivity ks [22]. The fluid flow is assumed to be

laminar and incompressible, and the Boussinesq approxi-

mation is adopted for the variations of the density in the

buoyancy term.

Mathematical formulation and boundary
conditions

The equations governing the dynamic and thermal fields

are the Navier–Stokes coupled with the energy equations,

given as follows:

Continuity equation:

ou
ox

þ ov
oy

¼ 0 ð1Þ

Momentum equations:

ou
ot

þ u
ou
ox

þ v
ou
oy

¼ � 1

q
op�

ox
þ t

o2u
ox2

þ o2u
oy2

� �
ð2Þ

Insulated wall

Insulated wall

W

H

y

x

g g

T = TcT = Th kf kfks

x1

xs

x2

δ

Fig. 1 Physical domain and coordinate system
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ov
ot

þ u
ov
ox

þ v
ov
oy

¼ � 1

q
op�

oy
þ t

o2v
ox2

þ o2v
oy2

� �
þ gb Tf � Tcð Þ ð3Þ

Energy equation for the fluid:

oTf
ot

þ u
oTf
ox

þ v
oTf
oy

¼ a
o2Tf
ox2

þ o2Tf
oy2

� �
ð4Þ

Energy equation for the solid:

o2Ts
ox2

þ o2Ts
oy2

¼ 0 ð5Þ

where p*=p?ρgy and p is the relative pressure.

Where Tc is the temperature of the right vertical wall of

the cavity.

The following non-dimensional variables are introduced to

proceed with the numerical solution of the above-men-

tioned equations:

X ¼ x

W
; Y ¼ y

W
; U ¼ uW

a
; V ¼ vW

a
; p ¼ p�W2

qa2
;

h ¼ T � Tc

Th � Tc
; Ra ¼ gb Th � Tcð ÞW3

at
; s ¼ ta

W2
;

Pr ¼ t
a

The non-dimensionalized continuity, momentum and

energy equations can be expressed as:

oU
oX

þ oV
oY

¼ 0 ð6Þ

oU
os

þ U
oU
oX

þ V
oU
oY

¼ � oP
oX

þ Pr
o2U
oX2

þ o2U
oY2

� �
ð7Þ

oV
os

þ U
oV
oX

þ V
oV
oY

¼ � oP
oY

þ Pr
o2V
oX2

þ o2V
oY2

� �
þ RaPrh

ð8Þ
ohf
os

þ U
ohf
oX

þ V
ohf
oY

¼ o2hf
oX2

þ o2hf
oY2

ð9Þ

o2hs
oX2

þ o2hs
oY2

¼ 0 ð10Þ

The non-dimensional boundary conditions are defined as

follows:

U ¼ V ¼ 0 atX ¼ 0;W and Y ¼ 0;W
h ¼ 1 atX ¼ 0 and h ¼ 0 atX ¼ W
oh
oY

¼ 0 at Y ¼ 0;W

oh
oX

� �
fluid

¼ kr
oh
oX

� �
solid

atX ¼ X1; X2

8>>>>><
>>>>>:

ð11Þ

where the thermal conductivity ratio is defined as kr=ks/kf.

The local Nusselt number evaluating the heat transfer

rate at the active vertical walls is defined as follows:

Nulocal ¼ oh
oX

ð12Þ

The average Nusselt number Nu is defined as follows:

Nu ¼
Z1

0

Nulocal dY ¼
Xn
0

Nui ð13Þ

Lattice Boltzmann method basis

The lattice Boltzmann equation (LBE) was originated from

Ludwig Boltzmann’s kinetic theory of gases. It explains

and predicts how the properties of atoms and molecules

(microscopic properties) determine the phenomenological

(macroscopic) properties of matter. The distribution func-

tion (probability of finding particles within a certain range

of velocities at a certain range of locations at a given time)

replaces tagging each particle, as in molecular dynamic

simulations.

Flow and temperature fields

The distribution functions are calculated by solving the

LBE, which is a special discretization of the kinetic

Boltzmann equation:

ofk
ot

þ ckrfk ¼ Dt
st

f
eq
k � fk

� � ð14Þ

After introducing Bhatnagar–Gross–Krook (BGK) [35]

approximation, the Boltzmann equation was reformulated

consisting of two steps: collide and stream. The collision

step is defined as follows:

fk xþ ckDt; t þ Dtð Þ ¼ fk x; tð Þ þ Dt
st

f
eq
k x; tð Þ � fk x; tð Þ� �

ð15Þ
The streaming step represents the advection of the fluid

particles. This can be written as:

fk xþ ckDt; t þ Dtð Þ ¼ fk x; t þ Dtð Þ ð16Þ
The exchange of momentum and energy is achieved

through particles collision and streaming. For non-

isothermal problems, the LBM utilizes generally two dis-

tribution functions f and g, for the flow and temperature

fields, respectively. In this study, the temperature field is

simulated by D2Q9 new distribution function gi. The cor-

responding LBE without source/sink term is:

gk xþ ckDt; t þ Dtð Þ ¼ gk x; tð Þ þ Dt
sa

g
eq
k x; tð Þ � gk x; tð Þ� �

ð17Þ
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The present study examines two-dimensional problem

by square lattice with nine velocities (D2Q9 model). The

velocity vectors of the D2Q9 model are shown in Fig. 2.

For the D2Q9 model, the discrete velocities set ck are

written as:

ck ¼ ckx
cky

� �

¼ 0 1 0 �1 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1

� �
ð18Þ

The distribution functions for the next time step are then

computed with the post-streaming distribution functions

and the equilibrium distribution functions. For the D2Q9

model, feq and geq are given by the following:

f
eq
k ¼ qxk 1þ 3

ck:ui
c2

þ 9 ck:uið Þ2
2c4

� 3u2i
2c2

" #
ð19Þ

g
eq
k ¼ hxk 1þ 3

ck:ui
c2

h i
ð20Þ

For simulation of heat transfer in the solid part, equi-

librium distribution function is as follows:

g
eq
k ¼ hxk ð21Þ

where the values of ωk are as follows:

x0 ¼ 4=9; xk¼1�4 ¼ 1=9; xk¼5�8 ¼ 1=36 ð22Þ
The LB method is nowadays a powerful numerical

technique, based on kinetic theory, for simulating fluid

flow and heat transfer [36–40], and has many advantages in

comparison with conventional CFD methods mentioned

previously.

The dynamic and thermal macroscopic quantities are

computed as:

qðx; tÞ ¼
X8
k¼0

fk ð23Þ

qðx; tÞuiðx; tÞ ¼
X8
k¼0

ckfk ð24Þ

hðx; tÞ ¼
X8
k¼0

gk ð25Þ

where the kinematic viscosity υ and the thermal diffusivity

α are related to the flow and heat relaxation times as

follows:

t ¼ st � 1

2

� 	
c2sDt a ¼ sa � 1

2

� 	
c2sDt ð26Þ

where cs is the lattice speed of sound and equals c2s ¼ c=3.

LBM boundary conditions treatment for fluid flow

One of the important and crucial issues in LBM simulation

of flow and temperature is accurate implementation of the

boundary conditions. Therefore, we need to determine

appropriate equations for calculating those distribution

functions f and g, for the flow and temperature at the

boundaries for a given physical condition. The domain is

divided into (n?1)9(m?1) nodes with n=m, so n2 square

cells and will be confound in the following the node (xi, yi)

and (i, j).

The incoming unknown distribution functions pointing

to the fluid zone at boundary nodes must be specified. For

the no-slip boundary condition, bounce-back boundary

condition is applied on all solid boundaries. This means

that incoming distribution functions are equal to outgoing

ones after the collision [41]. For instance, for the east

boundary, the following conditions are imposed:

6

3

7 4 8

1

2 5

C6 C2 C5

C1C3

C7 C4 C8

Δx = Δy =1 

Fig. 2 Flow domain

discretization using the D2Q9

model (left) and the nine-speed

square lattice of the D2Q9

model (right)
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f6 n; jð Þ ¼ f8 n; jð Þ; f7 n; jð Þ ¼ f5 n; jð Þ; f3 n; jð Þ ¼ f1 n; jð Þ
ð27Þ

LBM boundaries treatment of temperature field

Bounce-back boundary condition (adiabatic) is used on the

north and the south boundaries. For instance, for the north

boundary, the following conditions are imposed.

g7 i;mð Þ ¼ g7 i;m� 1ð Þ; g8 i;mð Þ ¼ g8 i;m� 1ð Þ;
g8 i;mð Þ ¼ g8 i;m� 1ð Þ ð28Þ

The temperature at east and west walls is known, θ=1
and θ=0, respectively. Since we are using D2Q9, the

unknowns for the west wall are g1, g5, g8 which are eval-

uated as:

g1 0; jð Þ ¼ hh x 1ð Þ þ x 3ð Þð Þ � g3 0; jð Þ
g5 0; jð Þ ¼ hh x 5ð Þ þ x 7ð Þð Þ � g7 0; jð Þ
g8 0; jð Þ ¼ hh x 8ð Þ þ x 6ð Þð Þ � g6 0; jð Þ

8<
: ð29Þ

The unknowns for the east wall are g3, g6, g7 which are

evaluated as:

g3 n; jð Þ ¼ �g1 n; jð Þ; g6 n; jð Þ ¼ �g8 n; jð Þ;
g7 n; jð Þ ¼ �g5 n; jð Þ ð30Þ

LBM conjugate heat transfer treatment

In the present model, the temperature and the heat flux at

the interface can be kept continuous naturally. Solving the

last line of Eq. (11) for the temperature at the interface

leads to:

At X=X1

h i; jð Þ ¼ hf i� 1; jð Þ þ kr � hs iþ 1; jð Þ
1þ kr

ð31Þ

At X=X2

h i; jð Þ ¼ kr � hs i� 1; jð Þ þ hf iþ 1; jð Þ
1þ kr

ð32Þ

Grid independence test and code validation

Enclosure without partition

The results presented in Table 1 show the maximum stream

function magnitude and the average Nusselt number Nu

variations with different grid sizes for an enclosure without

partition wall. For Ra=105, we notice the convergence of

the two physical quantities by increasing the mesh reso-

lution. For the grid mesh 2009200 and 2509250, the

change of the Nusselt number holds in the third and the

change of the |ψ|max does not exceed 0.2%. We adopt 200

9200 number of grid as sufficient to obtain the accurate

results for the present problem for Ra≤105.
The choice of this grid is confirmed by the horizontal

velocity at the mid-width, the vertical velocity at the mid-

height of the cavity and the temperature profile at the mid-

width. To test the grid independence, numerical simula-

tions were performed as shown in Fig. 3 for Ra=105 using

different numbers of grid. We notice that the horizontal

velocity, the vertical velocity and the temperature profile

are similar for fairly large meshes.

In the following, we will adopt the grid resolutions 1002

for Ra=103 and Ra=104, 2002 for Ra=105 and 2502 for Ra

=106. Table 2 shows a comparison of the average Nusselt

numbers obtained with the present code and those available

in the literature for a differentially heated cavity at dif-

ferent Rayleigh numbers. From this table, we noticed that

the obtained results show a good agreement with the last

findings. The deviation of the mean Nusselt number

according to numerical studies does not exceed 1.35% for

all Rayleigh numbers. The maximum deviation according

to the experimental study carried out by Baϊri [42] is

6.59%.

Enclosure with partition

A second test case of our model for the differentially

heated cavity with CHT was performed in comparison with

the present FE COMSOL results [52] for kr=6.22 and Ra=

105. The temperature profiles and the local Nusselt number

of the hot wall are depicted in Fig. 4. The results show an

excellent agreement. The present and the COMSOL Nus-

selt numbers are 2.139 and 2.1142, respectively, thus a

deviation close to 1.173%.

In order to test the effect of the grid mesh, we used the

vertical velocity profile at the mid-height of the cavity for

different numbers of grid (Fig. 5). This figure shows us that

the velocity is the same even for fairly large meshes.

The two used test cases with and without partition show

the high correctness and credibility of the present code.

The emerging results were compared with well-chosen

high-resolution schemes of the FV, FE, FD and LB

methods as well as experimental measurements, and an

Table 1 Average Nusselt numbers obtained with different grid

meshes for Ra=105

Grid mesh 50950 1009100 1509150 2009200 2509250

Nu 4.382 4.495 4.516 4.522 4.524

|ψ|max 10.505 9.826 9.710 9.669 9.649
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excellent agreement was obtained. The present code and

grid resolution will be used in the following to analyze and

discuss the convective flow and heat transfer inside parti-

tioned square cavity.

Results and discussion

Numerical simulations are carried out for natural convec-

tion CHT for partitioned cavity. As mentioned above, the

governing parameters are the thickness of the conducting

body, Rayleigh numbers and thermal conductivity ratio.

The results are shown in terms of streamlines, isotherms,

the average and local Nusselt numbers. The air is chosen as

a working fluid having Pr=0.71.

Effect of the partition wall on heat transfer rate

The aim of this part is to compare the heat transfer in the

two cases with and without conducting wall for Rayleigh

numbers (103≤Ra≤106). Figure 6 shows that the conduct-

ing partition has a significant influence on the heat transfer

intensity at the active wall. The heat transfer rate is con-

siderably reduced in the case of partitioned cavity. By

analyzing the figure, it is noticed that the local Nusselt

number decreases at the active wall for all Rayleigh

numbers.

The impact of the partition wall on the rate of heat

transfer for different Rayleigh numbers is presented in

Fig. 7. The figure shows that the average Nusselt number of

the cavity with CHT is lower than that without partition

wall. The Rayleigh number has a great influence on the

augmentation of heat transfer in the cavity. Heat exchange

in the cavity increases with the increase in Rayleigh

number due to the augmentation of the heat intensity. By

introducing the conducting partition wall, we observe that

the Nusselt number value undergoes a substantial reduc-

tion. In the case with partition, the block plays a damping

rule countering the convective currents inside the cavity by

altering the dynamic behavior and enhancing the confine-

ment and buoyancy stability.

Effect of wall thickness

The wall thickness effect on the flow structure and iso-

therms is depicted in Fig. 8 for kr=6.22 and Ra=105. It is

observed that the thickness of partition does not have an

important effect on the streamlines structure. As seen from

the figure, two circulation cells are formed in each part of

the enclosure and the flow structure are generally centro-

symmetric. By increasing the thickness of the conducting

body, the size of the formed circulation cells decreases and

the streamlines become very tight. Both formed
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circulations rotate in a clockwise direction. As the wall

thickness increases, the strength of the circulation within

the cavity decreases and the absolute value of ψ decreases

by increasing the wall thickness. As an example, |ψ|max=

6.264, 3.022 and 0. 0013 for, respectively, a wall thickness

δ=0.1, 0.4 and 0.95.

For a wall thickness tending to the unity, the pressure

inside each part of the enclosure increases because the

distance between the active wall and the partition decrea-

ses. The confinement of the flow induces a strong dynamic

and thermal coupling between the different boundaries of

the enclosure.

Figure 9 shows the isotherms at different values of

conducting body thickness. It can be seen clearly from that,

by increasing the thickness value δ of the partition wall, the
isotherms become parallel to both sides of the conducting

body and active walls. For δ≤0.5, the temperature field

undergoes a deviation in the solid–fluid interface. For δ[
0.5, the isotherms become strictly parallel in the entire of

the cavity. Obviously, as the wall thickness increases, the

heat transfer mechanism changes from convection-domi-

nant regime to conduction-dominant regime. By increasing

the wall thickness δ, the intensity the temperature gradient

becomes low and the convective motion is more dumped.

This is more expressed at mid-height: the horizontal

Table 2 Comparison of the

present and literature results at

different Rayleigh numbers

Reference Approach Rayleigh numbers Ra

103 104 105 106

Present grid size 1002 1002 2002 2502

Present study LBM 1.127 2.256 4.522 8.825

Djebali et al. [43] LBM 1.115 2.226 4.508 8.713

Dixit and Babu [45] LBM 1.118 2.256 4.519 8.817

Kuznik et al. [48] LBM 1.117 2.246 2.518 8.792

Khatamifar et al. [22] FVM 1.117 2.244 4.521 8.825

Moumni et al. [49] FVM 1.117 2.244 2.521 8.824

Hortman et al. [50] FVM – 2.244 4.521 8.825

De Vahl Davis [44] FDM 1.118 2.243 4.519 8.799

Khanafer et al. [46] FDM 1.118 2.245 4.522 8.826

Mobedi [47] FDM 1.117 2.240 2.510 8.803

Kalita et al. [51] Fourth-order FDM 1.118 2.245 2.522 8.829

Baϊri [42] Exp. 1.112 2.168 4.228 8.243

Max dev. from num. (%) 1.08 1.35 0.31 1.29

Dev. from exp. study (%) 1.33 3.77 6.5 6.59
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temperature gradient is non-constant at low δ (nonlinear

variation); however, it is visibly constant at high values of

δ, leading to a linear variation of X-coordinates.

Figure 10 shows the temperature profiles θ(X, 0.5) pre-
senting the transient evolution of the heat transfer in the

domain. The temperature profiles present a centro-sym-

metric behavior (X=0.5, Y=0.5). By increasing the thick-

ness δ, the temperature field follows a quasi-linear

variation at mid-height and for high thickness values. This

behavior is more expressed at low δ values. The tempera-

ture profile follows a linear variation when δ rises toward 1.
Besides, the temperature profile decreases linearly in the

wall and in each part of the cavity for δ≥0.45.
Figure 11 depicts the variation of the local Nusselt

number at different partition thicknesses δ. It is shown that

the local Nusselt number Nu(y) on the active walls

decreases with increasing vertical coordinate and with

increasing partition thickness until a critical value is near

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Y
Y

Y

Y
Y

Y

Y
Y

Y

X X X

X X X

X X X

δ = 0.05 δ = 0.1 δ = 0.2

δ = 0.3 δ = 0.4 δ = 0.5

δ = 0.6 δ = 0.7 δ = 0.8

Ψmax = 0.0075

Ψmin = – 0.08

Fig. 8 Streamlines at different partition thicknesses for Ra=105, kr=6.22 and Xs=0.5

Conjugate natural heat transfer scrutiny in differentially heated cavity partitioned with a… 3075

123



0.5. This is attributed to the partition dumping effect of the

convective current from the hot to the cold wall. Since δ≈
0.5, as the wall thickness increases, the variation of the

local Nusselt number becomes constant. The thermal

communication is controlled by the conduction-dominant

mode between the hot and cold walls which becomes more

enhanced. This will increase the degree of heating and

cooling on both walls.

Figure 12 shows the variation of the LB average Nusselt

number at different wall thicknesses compared with the FE

results obtained by COMSOL. A good agreement can be

observed for the values obtained by the two approaches. A

change in the isotherms (in temperature gradients) is noted.

Such an effect has an impact on the average Nusselt

number, which tends to decrease with the increase in the

thickness of the wall. The partition exerts a lower driving
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Fig. 10 Temperature profile θ(X, 0.5) at different values of conducting body thickness for Ra=105, kr=6.22 and Xs=0.5
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force on each part of the enclosure and thus reduces the

heat transfer for δ≤0.45.
By increasing the thickness of the wall (δ≥0.45), the

distance between the partition and the active walls

decreases to favor the confinement, which leads to an

increased heat exchange with the partition. In addition, we

observe an increase in the mean Nusselt number for δ≥0.5.
The convective currents become much accelerated. In

addition, the rotational movement of the fluid adjacent to

the hot and cold active walls improves the heat transfer

through the enclosure.

Figure 13 shows the flow structure at different positions

of the wall partition from the cavity for different Rayleigh

numbers. It may be observed that by decreasing the dis-

tance between the partition and the hot wall at Ra=103 and

104 a convective recirculation is formed in the big zone of

the cavity. By increasing more the Ra number, we notice

the formation of a convective small recirculation in the

small zone of the cavity. This behavior is observed for Xs=

0.25 and Xs=0.75. For Ra=106 (Xs=0.25 and 0.75), we

notice the development of the flow and the formation of

two convective recirculation in the big zone of the cavity.

The flow becomes unstable.

Effect of partition position and Rayleigh number

For Xs=0.5, a formation of two symmetrical circular

structures is marked. The strength of these recirculations is

weakened by increasing the Ra number. For instance at Xs

=0.25, ψmin=−0.545, −3.397 and −8. 071 for, respectively,

Ra=103, 104 and 105.

Figure 14 shows a succession of the isotherms contours

at different positions of the conducting body for different

Rayleigh numbers. The isotherms confirm the behavior of

the flow structure. The isotherms are parallel near the

smaller zone leading to a decrease in temperature gradient

in this zone. With increasing Ra number, the heat transfer

mechanism varies from conduction-dominant regime to

convection-dominant regime.

By analyzing the temperature profile at different posi-

tions of the wall partition and different Ra numbers

(Fig. 15), the temperature decreases in the small zone of the

cavity for Xs=0.25 and Xs=0.75 according to an affine line

with a slope greater than that of the temperature in the solid

conductor. For Xs=0.25, the temperature presents a sym-

metrical character at mid-height and its profile is centro-

symmetric of center (X=0.5, Y=0.5). At low Rayleigh

numbers, the temperature decreases linearly. By increasing

more the Rayleigh number, the temperature profile keeps

the symmetrical character; however, it decreases linearly.
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In Fig. 16, the local Nusselt number takes higher values in

the leading edge of the hot surface (X = 0) and decreases by

increasing the vertical coordinate Y. For Xs = 0.25, the local

Nusselt number follows a symmetric behavior; this is explained

by the symmetrical character of the convective flow. For

Xs= 0.25, the heat transfer is more important at the cold wall

than at the hotwall; indeed, the localNusselt number at the cold

wall is greater than that at the hot wall. At Ra = 106, the local
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Nusselt number is more important at the hot wall, this is due to

the interaction between the two structures, and this last

increases the local heat transfer. ForXs = 0.75, the local Nusselt

number becomes more important at the hot wall execpted Ra =

106 the local Nusselt number becomes greater at the cold wall.

This behavior is due to the unsteadiness. In addition, with
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decreasing partition position, the local Nusselt number

increases. For instance, for Xs = 0.75 at Y = 0, the Nuavg is

close to 11; the same is for Xs = 0.75. Besides, the Nusselt

number increases with increasing Rayleigh number.

Figure 17 presents the variation of the average Nusselt

number at different positions of the conducting solid for dif-

ferent Rayleigh numbers. The average Nusselt number

increases with the partition. This is noticed forRa=104 and Ra

=105. For Ra=103 and Ra=106, the average Nusselt number is

the same. Besides, the average Nusselt number increases with

increasing Rayleigh number. The average Nusselt numbers at

Xs=0.25 and Xs=0.75 are the same due to symmetry.

The effect of partition position on the average Nusselt

number is shown in Fig. 18 for different values of Xs for Ra=

105 and Ra=106. For Ra=105, the heat transfer rate decreases

with the partition position until a critical value close to 0.325

and rises slightly until Xs=0.5. The critical position value

decreases with the increase in Ra number and it is close to 0.2

for Ra=106 where Nu=3.766. For Xs≥0.325, the average

Nusselt number remains almost constant, indicating a negligi-

ble effect. This observed effect of the partition positionwas also

reported by Khatamifar et al. [22] for 0.25≤Xs≤0.75 and

Kahveci [53]where it has been found that the effect of the body

position on the average Nusselt number is very weak.

Effect of thermal conductivity ratio

Figure 19 shows the flow structure at different thermal

conductivity ratios and different Rayleigh numbers. The

variation of thermal conductivity has not an effect on the

flow structure. The flow is unicellular on either sides of the

partition, and diagonal symmetric streamlines are almost

identical. By observing the values of the stream function,

the flow keeps its symmetrical behavior.

The isotherms at different thermal conductivity ratios

are presented in Fig. 20. The contours of temperature are

parallel at low values of kr and Ra. The heat transfer across

the air cavities is evidently conductive dominated, as
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indicated by the uniformly distributed isotherms. By

increasing the thermal conductivity ratio, the isotherms

become vertical in the partition region. The existence of

plateaus in the core regions may be observed. The iso-

therms in the cavity with CHT appear to be increasingly

deformed and crowded into the vicinity of the solid wall.

The average heat transfer rate across the cavity with

CHT is the primary quantity of practical interest in this

study. Figure 21 presents the variation of the average

Nusselt number with the thermal conductivity ratio at dif-

ferent Rayleigh numbers. It can be found that for low

Rayleigh numbers the heat transfer rate appears to be

slightly affected by the increase in thermal conductivity

ratio. For Ra=103 and Ra=104, the heat transfer rate is less

affected by varying the thermal conductivity ratio. For Ra=

105 and Ra=106, the average Nusselt number increases for

kr\6.22 and converges to constant value for high kr values.

Heat transfer correlation

Several correlations are cited in the literature for the

average Nusselt numbers for the two following cases:

● Non-partitioned enclosure Karayiannis et al. [54] give a

correlations as follows:

Nu ¼ 0:155Ra0:29 for Ar ¼ H

W
¼ 1 ð33Þ

Nu ¼ 0:247A�0:20
r Ra0:26 for 2�Ar ¼ H

W
� 10

ð34Þ

The present study is concerned with the case Ar=1.

● Cavity with conjugate heat transfer For this case, many

correlations are proposed. For instance, the correlation

proposed by Duxbury [55]:

Nu ¼ 0:339A�0:25
r Ra0:25 N þ 1ð Þ�1:25 ð35Þ

where N is the number of partitions inside the cavity.

Nishimura et al. [56] proposed a similar correlation, but

he assumed a thin partition in the cavity.

Nu ¼ 0:29A�0:25
r Ra0:25 N þ 1ð Þ�1

For Ar ¼ H

W
� 1

ð36Þ
More recently, Souayeh et al. [27] developed the fol-

lowing correlation which incorporates the effect of Ray-

leigh number and the dimensionless conducting block

location Xs.

Nu = A Xsð Þ þ B Xsð Þ � Ra
1
2 ð37Þ

Based on the correlation of Karayiannis et al. [55], the

mean Nusselt number obtained from aforementioned cor-

relation with the numerical results for a non-partitioned

enclosure is presented in Fig. 22. It is clear that Nu

increases with increasing Ra. This figure approves a linear

dependency of the variation of the average Nusselt number.

A good agreement is observed in the figure.

For the case of an enclosure with CHT and based on

correlation of Duxbury [55] and Nishimura et al. [56], the

comparison of the empirical correlation with the numerical

average Nusselt number is depicted in Fig. 23. From the

figure, it is seen that the average Nusselt number increases

linearly with the Rayleigh number.
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Conclusions

In this paper, a numerical investigation of natural CHT in a

differentially heated cavity divided by a conducting solid

has been performed using LBM. The numerical simulation

is carried over a wide range of the Rayleigh number 103–

106. The effects of wall thickness, the wall position and

Rayleigh number as well as the effect of the thermal con-

ductivity ratio are studied. The distribution of streamlines,

isotherms, local and the averaged Nusselt number is used in

order to understand the behavior of the flow and the mode

of heat transfer. The main conclusions of this work can be

summarized as follows:

● The presence of partition in the cavity has a significant

influence on the natural convection heat transfer

characteristics.

● The rate of heat transfer decreases with increasing wall

thickness for δ≤0.5. When δ tends toward 1, the

average Nusselt number increases.

● The average Nusselt number is more affected by the

position of the wall partition but is an increasing

function of the Rayleigh number.

● The variation of thermal conductivity ratio increases the

rate of heat transfer.

The mainly studied thermal conductivity ratio is kr=

6.22. The air thermal conductivity at home temperature is

close to 0.026. By multiplying the last value by 6.22, the

solid thermal conductivity is close to 0.16. Such a value is

characteristic of materials used in the building such as

cellular concrete, wood, wood fiber-board and wood par-

ticle board, which presents a fallout of specific applications

of partitioning of premises in the building.

Besides, it has been shown that the Lattice Boltzmann

method is a powerful approach for investigating heat and

fluid flow problems in multiphase media as well as for its

simplicity of coding and its reasonable convergence CPU

time in such stationary problems. In the following steps,

MHD effects in microgeometries will be accounted for as

an issue of important interest.
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