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Abstract
This paper presents a numerical study on the unsteady natural convective flow of Newtonian and non-Newtonian fluids in a

square enclosure. A heat source with oscillating heat flux is located on the bottom wall of the enclosure. The top wall is

thermally insulated and the other walls are at a relatively low temperature. The continuity, momentum, and energy

equations for a computational domain encompassing the enclosure are solved numerically using the SIMPLE algorithm.

The flow and temperature fields and the heat transfer performance are examined for different non-Newtonian fluids and

heat source locations. The results are presented for different values of power-law index, Rayleigh number, and fluctuation

period. It is found that the flow and temperature fields vary as the oscillating heat flux is changed. The pseudoplastic non-

Newtonian fluid ðn\1Þ is associated with a higher heat transfer, and the dilatant non-Newtonian fluid ðn[ 1Þ is associated
with a lower heat transfer with respect to the Newtonian fluid. The heat source oscillation period significantly affects the

maximum flow temperature in the enclosure. This study provides useful information for the designers of electronic cooling

systems using non-Newtonian fluids.
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List of symbols
Cp Specific heat J kg�1 K�1

� �

g Gravitational acceleration m s�2ð Þ
h Convection heat transfer coefficient Wm�2 K�1

� �

k Thermal conductivity Wm�1 K�1
� �

j Consistency index Pa snð Þ
L Enclosure length (m)

n Power-law index

Nus Local Nusselt number on the heat source, 1=hsðXÞ
Num Average Nusselt number 1=Ws

R Xsþ0:5Ws

Xs�0:5Ws
NusðXÞdX

p Fluid pressure Pað Þ
�p Modified pressure ðpþ qcgyÞ
P Dimensionless pressure ð�pL2=qa2Þ
Pr Prandtl number ðm=aÞ
q00 Oscillating heat flux Wm�2ð Þ
q000 Amplitude of oscillating heat flux Wm�2ð Þ
Ra Rayleigh number ðgbL3DT=maÞ
t Time (s)

tp Oscillation period sð Þ
T Temperature (K)

u; v Velocity components in x-, y-directions m s�1ð Þ
U;V Dimensionless velocity components ðuL=a; vL=aÞ
wS Heat source length (m)

Ws Dimensionless heat source length ðws=LÞ
xs Distance of the heat source from the left wall ðmÞ
Xs Dimensionless distance of the heat source from the

left wall ðxs=LÞ
x; y Cartesian coordinates (m)

X; Y Dimensionless coordinates ðx=L; y=LÞ
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Greek symbols
a Thermal diffusivity m2 s�1ð Þ
b Thermal expansion coefficient K�1

� �

DT Temperature difference ðq000L=kÞ
l Dynamic viscosity N sm�2ð Þ
la Apparent viscosity N sm�2ð Þ
l0a Dimensionless apparent viscosity

m Kinematic viscosity m2 s�1ð Þ
h Dimensionless temperature ððT � TcÞ=DTÞ
hmax Maximum heat source temperature along its

length

ðhmaxÞmax The highest value of hmax with respect to time

q Density kgm�3ð Þ
s Time in dimensionless form ðat=L2Þ
sp Oscillation period in dimensionless form

ðatp=L2Þ
wmax Maximum stream function

Subscripts
c Cold wall

nf Newtonian fluid

nnf Non-Newtonian fluid

s Heat source

i, j Index

Introduction

Numerical and experimental studies of convective heat

transfer in enclosures filled with Newtonian fluids have

been extensively reported in the literature [1, 2]. Some of

these studies have considered enclosures with time-de-

pendent thermal boundary conditions due to their impor-

tance in practical applications such as heating or cooling in

buildings, storing food, and cooling of electronic compo-

nents. Lage and Bejan [3] examined the effects of oscil-

lating frequency of heat production on natural heat transfer

in a square cavity. Roslan et al. [4] examined the natural

convection heat transfer in an enclosure equipped with a

cylindrical sinusoidal heat source. They demonstrated that

the heat transfer rate increased as a result of increasing the

oscillation of the heat source temperature. The maximum

heat transfer augmentation was obtained for frequencies

between 25p and 30p at a high amplitude and a moderate

source radius. Wang et al. [5] studied unsteady oscillating

heat transfer in a square cavity, where a cylinder with

pulsed temporal temperature rotated at the center of the

cavity. Their results indicated that the fluid flow and the

heat transfer rate were strongly dependent on the pulsed

temperature of the inner cylinder. They argued that the

unsteady heat transfer was considerably higher than the

steady heat transfer under the same conditions.

Kalidasan et al. [6] investigated the enhancement of natural

convection heat transfer in a square cavity filled with a

nanofluid. The cavity was a forward-facing stepped rect-

angular enclosure with a partition and time-variant tem-

perature on the stepped top wall. Their results revealed that

the heat transfer rate increased with increasing oscillation

range of temperature and decreased with increasing oscil-

lation period of temperature.

In many industrial applications, natural convection has

been considered as the main mechanism of heat transfer

due to its simplicity and low cost. In majority of reported

studies on natural convection, the working fluid is assumed

to be Newtonian. However, this assumption is not valid in

many scenarios as the fluid demonstrates non-Newtonian

behavior. The precise prediction of non-Newtonian fluid

behavior and transient heat transfer is essential to fully

understand the heat transfer mechanism and improve the

design of processes, which are combined with a solid–

liquid phase change. Examples of these processes are

metals and solidification of alloys [7, 8], injection and

molding of polymers [9, 10], freezing of food [11–13], the

processes in which fluid is in the liquid phase, such as the

sterilization of materials liquid food [14, 15] and non-

Newtonian fluid flow in horizontal and vertical ducts

[16–18].

Natural convection of non-Newtonian fluids is a com-

plex problem because adhesive forces should be calculated

by the nonlinear relationship between shear stresses and

deformation rates. The effective viscosity required to

determine the adhesive forces is determined based on the

slope of velocity profile at any particular time [19, 20].

Lamsaadi et al. [21] numerically examined the natural

convection heat transfer in a horizontal rectangular cham-

ber uniformly heated from the side and filled with non-

Newtonian power-law fluids. They also presented an

approximate analytical solution for the heat transfer.

Turan et al. [22] studied the laminar natural convection

heat transfer in a square enclosure filled with a Bingham

fluid. Bingham plastics have a yield stress, and once the

yield stress is exceeded, the materials will be flown. They

found the Nusselt number of the Newtonian fluid to be

greater than that of the Bingham fluid at a constant Grashof

number.

Vinogradov et al. [23] examined the heat transfer per-

formance of non-Newtonian dilatant fluids in square and

rectangular chambers using the power-law model. They

argued that despite the apparent difference in the heat

transfer rate for the Newtonian and non-Newtonian fluids,

the same behavior was observed in the form of transferring

the multicellular flow structure to the single-cell regime.

Matin et al. [24] considered a power-law fluid in a space

between two square ducts at different temperatures and

examined the heat transfer rate for different values of
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power-law index (n), Rayleigh number (Ra), Prandtl

number (Pr), and aspect ratio. Their results showed that the

heat transfer decreased as the power-law index increased

from 0.6 to 1.4.

Jahanbakhshi et al. [25] investigated the effect of mag-

netic field on natural convection heat transfer in an L-

shaped enclosure filled with a non-Newtonian fluid

numerically. The governing equations were solved by

finite-volume method using the SIMPLE algorithm. The

power-law rheological model was used to characterize the

non-Newtonian fluid behavior. It was revealed that heat

transfer rate decreases for shear-thinning fluids (of power-

law index, n\1) and increases for shear-thickening fluids

(n[ 1) in comparison with the Newtonian ones. Thermal

behavior of shear-thinning and shear-thickening fluids was

similar to that of Newtonian fluids for the angle of enclo-

sure a\60� and a[ 60�, respectively.
Kim et al. [26] studied the unsteady natural convection

heat transfer performance of non-Newtonian fluids in a

square enclosure. They used a finite-volume method and

demonstrated that the rheological properties of the fluid

had a significant impact on the transient processes. Lemus-

Mondaca [27] studied the two-dimensional unsteady heat

transfer rate of Newtonian fluids and non-Newtonian fluids

(pseudoplastic and dilatant) in a square enclosure. Guha

and Pradhan [28] studied the heat transfer of non-Newto-

nian power-law fluids over a horizontal plane. They

assumed the flow to be one-dimensional and found that

dilatant non-Newtonian fluids had a larger heat transfer rate

compared to the Newtonian and pseudoplastic non-New-

tonian fluids at a constant Prandtl number.

Kefayati [29] developed a lattice Boltzmann model to

examine the heat transfer of non-Newtonian molten poly-

mer fluids in a square enclosure with sinusoidal boundary

conditions. The argued that the heat transfer decreased with

increasing power-law index. Zhang et al. [30] studied the

heat transfer coefficient and surface frictional coefficient of

non-Newtonian power-law fluids within a boundary layer.

Their results demonstrated that the distribution of the

thermal boundary layer depended on the velocity, the

power-law index, and the Prandtl number. Moraga et al.

[31] investigated three-dimensional natural convection heat

transfer from a container enclosed by an enclosure. The

container was saturated with a non-Newtonian power-law

fluid and was surrounded by the air. The results were

presented in terms of streamlines and isotherms for dif-

ferent Rayleigh numbers.

Crespı́-Llorens et al. [32] experimentally investigated

the heat transfer from pseudoplastic non-Newtonian fluids

in a scraped surface heat exchanger (SSHE). They exam-

ined the pressure drop, heat transfer, and energy con-

sumption for static and dynamic conditions of the scraped

surface with pseudoplastic non-Newtonian fluids. Their

results showed that the SSHE was suitable for industrial

processes using non-Newtonian fluids due to their rela-

tively large heat transfer compared to Newtonian fluids.

The application of non-Newtonian fluids to enhance the

cooling performance of systems with unsteady oscillating

heat flux has been considered by designers in the elec-

tronics industry. However, according to the authors’ best

knowledge, limited research in this field has been reported

in the literature. The aim of the present study is to simulate

Newtonian and non-Newtonian fluids in a square enclosure

with unsteady oscillating heat flux and evaluate the impact

of effective parameters such as power-law index, Rayleigh

number, oscillation, and heat source location on the natural

convection heat transfer.

Problem definition

Figure 1 presents a schematic diagram of the square

enclosure filled with non-Newtonian or Newtonian fluids.

The right and left walls are at a uniform and relatively low

temperature (Tc), and the top wall is thermally insulated.

The bottom wall of the enclosure is partially heated by a

heat source with fluctuating heat flux (q00). The rest of the

bottom wall is thermally insulated. The heat flux is given

by [33],

q00 ¼ q000ð1þ cosð2pt=tpÞÞ

Laminar flow of both Newtonian and non-Newtonian

fluids in the enclosure is considered. The Prandtl number is

pr ¼ 100, and the fluids are assumed to be incompressible.

Tc Tc

y

g

Newtonian and non-Newtonian fluid 

L

L

x

q” = q0 “(1+cos(2πt/tp))

xs
Ws

Fig. 1 A schematic of the geometry
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The Boussinesq approximation is used to take into account

the density variations in the buoyancy force.

Governing equations

In this study, the viscous non-Newtonian fluid is modeled

by the power-law model. The relationship between the

shear stress and the shear rate is given by [19],

Shear stress for non - Newtonian fluid :

sij ¼ 2laDij ¼ la
oui

oxj
þ ouj

oxi

� � ð2Þ

apparent viscosity for non - Newtonian fluid :

la ¼ j 2
ou

ox

� �2

þ ov

oy

� �2
" #

þ ov

ox
þ ou

oy

� �2
( )n�1

2 ð3Þ

where n and j are empirical constants that are known as

consistency and power-law indices, respectively.

Governing equations include the conservation of mass,

x- and y-momentum, and energy [23].

oU

oX
þ oV

oY
¼ 0 ð4Þ

oU

os
þ U

oU

oX
þ V

oU

oY
¼ � oP

oX
þ Pr�

o

oX
2l0a

oU

oX

� ��

þ o

oY
l0a

oU

oY
þ oV

oX

� �� �� ð5Þ

oV

os
þ U

oV

oX
þ V

oV

oY
¼ � oP

oY
þ Pr�

o

oX
l0a

oU

oY
þ oV

oX

� �� ��

þ o

oY
2l0a

oV

oY

� ��
þ Ra � Pr � h

ð6Þ

oh
os

þ U
oh
oX

þ V
oh
oY

¼ o2h
oX2

þ o2h
oY2

� �
ð7Þ

The governing dimensionless parameters are defined as

follows:

X ¼ x

L
; Y ¼ y

L
; s ¼ at

L2
;U ¼ uL

a
;V ¼ vL

a
;P ¼

�PL2

qa2
;

h ¼ T � Tc

DT
;

Pr� ¼ j=qa2�nL2n�2;

Pr ¼ m
a
; l0a ¼ 2

oU

oX

� �2

þ oV

oY

� �2
" #

þ oV

oX
þ oU

oY

� �2
( )n�1

2

Ra ¼ gbL3DT
ma

;DT ¼ q000L

k

ð8Þ

where n represents the power-law index.

The above-mentioned equations are used for simulating

the Newtonian fluid by considering the power-law index to

be n = 1.

The dimensionless initial conditions for the velocity and

temperature are U ¼ V ¼ 0 and h ¼ 0, respectively.

The non-dimensional boundary conditions are as fol-

lows: U ¼ V ¼ 0 on the walls of the enclosure, h ¼ 0 on

the left and right walls, oh
oY

¼ 0 on the thermally insulated

walls, oh
oY

� �
Y¼0

¼ � 1þ cos 2ps
sp

� �� �
on the heat source,-

where sp ¼ atp=L2 is the dimensionless form of the fluc-

tuating period of the heat flux.

Numerical method

The computational domain is discretized to solve the par-

tial derivative equations. Since these equations are written

for different points of the computational domain, it is

necessary to first divide the computational domain into a

set of points and then assign a part of the domain to any

point. The formulation of control volume, described by

Patankar [34], and the SIMPLE algorithm are used to solve

Eqs. 4–7 along with the initial and boundary conditions.

The advection and diffusion terms are discretized by the

power-law theory using a FORTRAN code. Also, for the

convergence criterion, the maximum residual mass of the

grid control volume is less than 10�7.

After solving the governing equations for U;V; h, other
useful parameters such as Nusselt number are determined.

The local Nusselt number on the heat source is defined by,

Nus ¼
hL

k
ð9Þ

where h is the convective heat transfer coefficient and is

given by,

h ¼ q000
Ts � Tc

ð10Þ

The local Nusselt number is expressed using dimensionless

parameters,

NusðXÞ ¼
1

hsðXÞ
ð11Þ

The average Nusselt number is determined by integrating

Nus along the heat source,

Num ¼ 1

Ws

Z Xsþ0:5Ws

Xs�0:5Ws

NusðXÞdX ð12Þ
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Time step and grid independency

To study the effect of time step on the computational

results, the simulation is carried out for five different time

steps and for a grid resolution of 60� 60. The enclosure is

filled with a non-Newtonian fluid (n ¼ 1:2;Ra ¼ 105; sp ¼
0:04;Ws ¼ 0:5;Xs ¼ 0:5). According to the results

obtained for the periodic-state time history of Num
(Fig. 2a), the optimal time step Ds ¼ sp=4000 is employed

for further simulations. It should be noted that the time step

study is carried out for two different oscillation periods

(sp ¼ 0:4 and 4) and similar results were obtained.

The grid resolution is also considered for five grid sizes

and Ds ¼ sp=100. Figure 2b shows the values of Num for

various grid resolutions. It is found that there is no dif-

ference between the results for the grid sizes larger than

60� 60. Hence, the grid resolution of 60� 60 is used for

further simulations.

Validation

In order to verify the present simulations, the natural

convection heat transfer of non-Newtonian power-law fluid

in two centered square ducts at constant temperatures [24]

is investigated where n ¼ 0:6; 1:0; 1:2, AR ¼ 0:25,Pr ¼
100, and e = 0. Figure 3 shows that the present results are

in agreement with the results of Matin et al. [24]. In

addition, the results are compared with the results of

Turan et al. [35], who simulated the steady laminar natural

convection in a two-dimensional square enclosure with

side walls being under a constant temperature. The enclo-

sure is filled with a non-Newtonian power-law fluid. The

Nusselt number is compared with the results of Turan et al.

[35] for different power-law indices (n ¼ 0:6; 1:0; 1:2),

Ra ¼ 104; 105, and Pr ¼ 100. The results are presented in

Table 1. It is observed that the present results are in good

agreement with the results of Turan et al. [35] with a

maximum error of less than 4%.

Results

The effects of fluid type

In this section, an enclosure filled with non-Newtonian or

Newtonian fluids is considered. An oscillating heat source

with a length of Ws ¼ 0:5 and oscillating period of sp ¼
0:04 is located in the center of the bottom wall of the

enclosure (Xs ¼ 0:5). The Rayleigh number is Ra ¼ 105,

the Prandtl number is Pr ¼ 100, and the modified Prandtl

number is Pr� ¼ 1:0. In addition, the power-law effects are

considered for shear-thinning or pseudoplastic fluids

0
0.00

20

40

60

Grid 20  20

Grid 40  40

Grid 80  80

Grid 100  100

Grid 60  60

N
u m

N
u m

100

120
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0.02 0.04
τ

τ

0.06 0.08

0.00 0.02 0.04 0.06 0.08

Δτ = τp/40
Δτ = τp/400
Δτ = τp/4000
Δτ = τp/40000
Δτ = τp/400000

(a)

(b)

×
×
×
×

×

Fig. 2 a Average Nusselt number for different time steps and

b average Nusselt number for different grid resolutions

3.0

Line

Symbols Matin et al. [24]

Present work

5

10

15

20

25

30

35

3.5 4.0 4.5

n = 1.4,1.0,0.6

Log Ra

5.0 5.5 6.0

N
u m

Fig. 3 Code validation for Newtonian (n = 1) and non-Newtonian

(n ¼ 0:6; 1:4) fluids against the results of Matin et al. [24] for

e ¼ 0;Pr ¼ 100;AR ¼ 0:25
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(n\ 1), Newtonian fluids (n = 1), and shear-thickening or

dilatant fluids (n[ 1).

Figure 4 shows the periodic-state time history of Num
and the maximum temperature of the heat source (hmax) for

three periods of oscillation, from the initial time to peri-

odic-steady-state situation. In order to investigate the

variation of Num and hmax, the relative heat flux (q00=q000) is

plotted above the figure. It is observed that the oscillations

of Num and hmax have the same response frequency with a

low phase change.

It is also demonstrated that the heat transfer (the Nusselt

number) decreases and the maximum temperature increa-

ses with the power-law index. Based on Eq. 13, it is con-

cluded that the apparent viscosity and the shear stress

increase with the power-law index, which leads to an

increase in the heat transfer. On the other hand, it can be

stated that increasing the apparent viscosity results in a

decrease in the buoyancy force and the heat transfer.

Increasing heat transfer from the heat source reduces its

maximum temperature, which plays an important role in

designing the electronic components.

Shear stress in terms of strain rate and apparent viscosity

is given by [19]:

syx ¼ m _cyx
� �n! l ¼ m _cyx

�� ��� �n�1 ð13Þ

Figures 5 and 6 show the streamlines and isothermal

lines, respectively, for non-Newtonian (dashed lines) and

Newtonian (solid lines) fluids. As q00=q000 profile shows,

these plots are drawn for a periodic-steady-state situation.

The flow and heat transfer reach a periodic steady state

after several periods. In the figures, five different times a–e

of the cyclical state of the oscillatory mode of the heat

source at Ra ¼ 105 are shown. These times, referred to

Figs. 5 and 6, are as follows:

½ðaÞ s ¼ 0:34; ðbÞ ¼ 0:34þ sp=4; ðcÞ ¼ 0:34þ sp=2; ðdÞ
¼ 0:34þ 3sp=4; ðeÞ ¼ 0:34þ sp�

As it can be seen, the power of the vortices decreases by

increasing the power-law index which leads to a decrease

in the heat transfer. It is also concluded from the isotherms

that the density of isothermal lines on the heat source

increases with the power-law index which results in a

reduction in heat transfer and an increase in the tempera-

ture around the heat source. The values of wmax and hmax

are presented in these figures for comparison. Streamlines

of Newtonian and non-Newtonian fluids demonstrate that

the vortices of pseudoplastic fluids with n = 0.6 and

n = 0.8 are stronger than those of Newtonian fluids. Hence,

a higher heat transfer is expected. Similarly, isothermal

lines on the heat source are denser for the Newtonian fluid

compared to non-Newtonian ones which leads to larger

hmax.

It is also observed that the vortices of dilatant fluids are

weaker and smaller than those of Newtonian fluid. This is

associated with a reduction in the heat transfer. Isotherms

of dilatant fluids have a higher density around the heat

source compared to those for the Newtonian fluid. This

leads to larger hmax and a lower heat transfer. Physically,

pseudoplastic fluids are more dilute than dilatant fluids.

This makes it possible to change their density more when

Table 1 Comparison of the present results with the results of

Turan et al. [35] for a square enclosure at Pr = 100

Ra Nu

n = 0.6 n = 1.0 n = 1.4

Turan et al. [35] 104 5.70903 2.40512 1.35514

105 12.98500 4.72576 2.28945

Present study 104 5.93148 2.42125 1.32541

105 13.29871 4.59123 2.22142

Max difference (%) 3.89 2.75 2.63

0.00 0.02 0.04 0.06

τ
0.08 0.10 0.12

0.00

0.05

0.10

θ m
ax

N
u m
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0
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0.0

q
”/q

” 0

0.5
1.0
1.5

2.0

n = 0.6
n = 0.8
n = 1.0
n = 1.2
n = 1.4
n = 1.6

Fig. 4 Periodic-state time history for Num and hmax for Newtonian

and non-Newtonian fluids at Ra ¼ 105 and sp ¼ 0:04
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Fig. 5 Streamlines for pseudoplastic and dilatant (solid lines) fluids in comparison with Newtonian one (dotted lines) at Ra ¼ 105
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they are under thermal flux. The density change leads to

change of buoyancy forces. This means larger buoyancy

forces cause stronger rotation of the vortices in the enclo-

sure, which results in a higher heat transfer rate. The shape

of the vortices also illustrates this very well. For the

pseudoplastic fluid, the vortices are larger and stronger than

the dilatant fluids and cover a larger area of the enclosure.

It is worth noting that the minimum value of hmax occurs at

ðcÞ ¼ 0:34þ sp=2, where the magnitude of the heat flux is

zero due to the absence of a source of heat production

inside the enclosure. This is true while the minimum value

of wmax for stage (c) occurs just for the case n = 0.6. For

the other cases, this is observed at the distance between

(c) and (d) due to the phase delay of the oscillatory state.

The effects of Rayleigh number

In this section, the effects of Rayleigh number on the heat

transfer and fluid flow are presented. A non-Newtonian

dilatant fluid (n = 1.2) is considered, and the oscillation

period is sp ¼ 0:04.

Figure 7 shows the average Nusselt number on the heat

source and the maximum temperature in the enclosure for

three oscillating periods at different Rayleigh numbers. In

addition, q00=q000 is plotted for better understanding of the

results. It is found that the heat transfer increases and the

maximum temperature decreases as the Rayleigh number

increases. Num reaches its maximum when hmax is mini-

mum. According to the definition of Rayleigh number, an

increase of the Rayleigh number corresponds to an increase

in the heat flux and therefore an increase in the heat

transfer. In the initial oscillation period, the average Nus-

selt number is greater than that for the later oscillatory

periods due to a higher gradient temperature between the

fluid and the surface. Eventually, the average Nusselt

number reaches a uniform periodic state. The figure shows

a delayed phase generated by the increase of the Rayleigh

number.

Figures 8 and 9 show the streamlines and isotherms,

respectively, for a non-Newtonian dilatant fluid, n = 1.2,

(solid lines), and Newtonian fluid (dotted lines) for dif-

ferent Rayleigh numbers. These figures are presented for a

periodic steady state, when the flow and heat transfer reach

a steady-state condition after several periods. Five different

times a to e are presented from the cyclical oscillatory

mode of the heat source, which are shown at the top of the

figure. As shown in Fig. 8, two vortices are formed with

respect to the symmetry of the enclosure. These vortices

become stronger and denser and occupy a larger area of the

enclosure as the Rayleigh number increases. Similarly, it

can be seen from Fig. 9 that the density of isothermal lines

on the heat source increases with increasing Rayleigh

number, indicating a higher heat transfer. The buoyancy

forces in the enclosure are strengthened as the Rayleigh

number is increased. This results in strengthening of the

vortices in the enclosure and causes higher heat transfer

from the heat source to the cold walls.

A comparison between the streamlines for the non-

Newtonian dilatant fluid (solid lines) and the Newtonian

fluid (dotted lines) reveals that the vortices corresponding

to Newtonian fluid are larger and stronger for different

Rayleigh numbers. This is due to the dilution of Newtonian

fluid versus dilatant fluid, which makes the buoyancy for-

ces have a higher power for the Newtonian fluid. This

means generating larger and stronger vortices and higher

heat transfer from the heat source to move the side of the

cold walls. As Fig. 9 depicts, the isotherms of Newtonian

fluid have a lower density compared to the dilatant fluid

leading to higher heat transfer. It is worth noting that with

increasing time from a to e, the heat transfer initially

increases and then decreases to reach its initial value (see

2.0

1.5

1.0

0.5

0.0

Ra = 103

Ra = 104

Ra = 105

Ra = 106

Ra = 107

300

250

200

150

100

50

0

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.00 0.02 0.04 0.06 0.08 0.10 0.12

q”
/q

 0”
N

u m
θ m

ax

τ

Fig. 7 Periodic-state time history of Num and hmax for a non-

Newtonian fluid with power-law index n ¼ 1:2 and sp ¼ 0:04 at

different Rayleigh numbers
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Figs. 7, 9). The lowest amount of hmax occurs at a time

between (c) and (d), where the heat flux has the lowest

value. This can be observed in Fig. 8. It should be noted

that the minimum value of hmax does not occur at point (c)

for lower Rayleigh numbers (Ra ¼ 104; 105) due to the

phase delay (see Table 2). However, it occurs at point (c)

or close to the time for a larger Rayleigh number

(Ra ¼ 106).
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Table 2 presents the time of ðNumÞmax for the time

interval s ¼ 0:34 and s ¼ 0:38 ¼ 0:34þ sp. The time

delay is generated from the point ðcÞ ¼ 0:34þ sp=2, where

the heat flux has the minimum value. At a high Rayleigh

number (Ra ¼ 106), the phase delay is less than the point
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Fig. 9 Isotherms at different Ra and time stages for non-Newtonian fluid with n ¼ 1:2(solid lines) and Newtonian fluid (dashed lines)
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ðcÞ ¼ 0:34þ sp=2 and the phase delay increases as the

Rayleigh number decreases.

The variation in the heat source maximum temperature

ðhmaxÞmax is shown in Fig. 10 when the periodic steady

state is reached. In fact, the values of ðhmaxÞmax in each case

are equal to the oscillation peaks indicated in Fig. 7. It

should be noted that ðhmaxÞmax is a critical design parameter

for electronic components. A decrease in the amount of

ðhmaxÞmax results in an improvement in the performance of

electronic components. As shown in Fig. 10, ðhmaxÞmax

decreases with Rayleigh number due to an increase in the

heat transfer and a decrease in the temperature. In addition,

as the power-law index increases, the heat source maxi-

mum temperature increases. In fact, with increasing n, the

concentration of fluid increases and the fluid moves more

slowly. As a result, the shear stresses in the fluid become

weaker and subsequently decrease the movement and the

strength of vortices. This results in the accumulation of

heat in the enclosure and therefore increases the maximum

temperature.

The effects of periodicity

The oscillating period of heat generation plays a critical

role in the electronic cooling mechanism [36]. It is valuable

to know how the maximum temperature of the heat source

and the heat transfer change with the oscillation period.

Figure 11 shows the periodic-state oscillation of Num and

hmax for three complete periodic cycles at different oscil-

lation periods. The enclosure is filled with a non-Newto-

nian dilatant fluid with n = 1.2 at Ra = 105. For a better

comparison of the periodic results, dimensionless time on

the horizontal axis is normalized by sp. It can be seen that

as the oscillation period increases, the heat has more time

to interact with the flow field, and as a result, the amplitude

of oscillation for both Num and hmax increases. The fluid

flow reaches the periodic steady state more quickly as the

fluid oscillation period increases. There is not any notice-

able change in the value of Num and hmax for the oscillation

periods greater than 0.4.

Table 2 Time of ðNumÞmax for the time interval s ¼ 0:34 and s ¼
0:38 ¼ 0:34þ sp and the phase delay from the point ðcÞ ¼ 0:34þ
sp=2 for different Rayleigh numbers

Ra sjðNumÞmax
sjðNumÞmax

Phase delay

104 0:3620 0:34þ sp=2þ 0:0020 0:0020

105 0:3615 0:34þ sp=2þ 0:0015 0:0015

106 0:3610 0:34þ sp=2þ 0:0010 0:0010
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The effects of heat source location

Figure 12 shows the effect of the heat source location on

the cooling performance of the enclosure. The study is

carried out for both non-Newtonian and Newtonian fluids

for Ra ¼ 105, sp ¼ 0:04, and Ws ¼ 0:5. The value of

ðhmaxÞmax is determined at different locations of the heat

source on the bottom wall of the enclosure. It is demon-

strated that ðhmaxÞmax increases as the power-law index (or

apparent viscosity) increases. This is associated with a

decrease in the heat transfer of the enclosure. This is due to

the reduction in the strength of the vortices as the buoyancy

forces are weakened. On the other hand, it can be observed

that the location of the heat source on the lower wall does

not have a significant effect on the heat transfer for both

Newtonian and non-Newtonian fluids. Therefore, it is

possible to place thermal elements in any place on the wall

only based on the structural design requirements of the

cooling device.

Conclusions

Natural convection heat transfer in a square cavity filled

with Newtonian and non-Newtonian power-law fluids is

studied numerically. The influence of different effective

parameters such as power-law index, Rayleigh number,

oscillation, and heat source location on natural convection

heat transfer is investigated. It is found that the heat gen-

erated by the heat source causes an oscillatory behavior of

thermal and flow fields as well as thermal parameters such

as Num and hmax. The oscillation of these parameters fol-

lows the oscillation of the heat source with the same

response frequency and a phase shift. The heat transfer

decreases and the maximum temperature of the heat source

increases with increasing power-law index. For non-New-

tonian fluids, the apparent viscosity and the shear stress

increase as the power-law index increases. On the other

hand, an increase in the apparent viscosity results in a

decrease in buoyancy forces and also in the heat transfer.

In general, the heat transfer of non-Newtonian pseudo-

plastic fluids is larger than Newtonian fluids and lower than

dilatant fluids at similar conditions. It is also found that

increasing the Rayleigh number is associated with increase

in the strength of buoyant flow circulation cells, enhancing

the heat removal from the heat source and therefore,

decreasing the heat source maximum temperature. As the

oscillation period increases, the heat has more time to

interact with the flow field. As a result, the oscillation range

increases for Num and hmax. The fluid flow reaches a

periodic steady state more quickly as the fluid oscillation

period increases. There is not any noticeable change in the

value of Num and hmax for the oscillation periods greater

than 0.4.

The location of the heat source on the lower wall does

not have a significant effect on the heat transfer of New-

tonian and non-Newtonian fluids. Therefore, it is possible

to place thermal elements in any place on the wall that

satisfies the design of cooling device. The authors believe

that the findings of the present study will provide useful

information for the electronics industry to keep the elec-

tronic components in safe and efficient operation condi-

tions under oscillating heat production.
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