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Abstract
The aim of current investigation is to model NEPCM behavior in an air heat exchanger storage unit by means of FVM.

Unsteady governing equations are obtained including single-phase model for NEPCM. Thermal properties of paraffin are

enhanced with dispersing CuO nanoparticles. The geometry was symmetric, and so there is no need to simulate the whole

domain. Converting liquid to solid makes the air flow warmer and helps the ventilation of building. Wavy wall was

employed to accelerate the discharging rate. Outputs reveal that dispersing nanoparticles leads to propagation of solid front.

Discharging rate enhances with augmenting amplitude of inner wall.
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List of symbols
g Gravity

Tm Solidification temperature

C Mushy zone constant

NEPCM Nano-enhanced PCM

Lf Latent heat coefficient

k Thermal conductivity

Ts Solidus temperature

PCM Phase change material

Tl Liquidus temperature

Greek symbols
a Thermal diffusivity (m2 s-1)

q Fluid density

/ CuO concentration

Subscripts
f Base fluid

p Particle

nf Nanofluid

Introduction

Possibility of saving large amount of energy and great

energy density are main characteristics of PCMs. Solar air

heating units are one of the nice applications of them. In

recent years, NEPCM was offered to use instead of pure

PCM. In this way, is storage energy enhanced.

Bondareva et al. [1] utilized alumina to enhance thermal

properties of PCM in a cooling unit. They concluded that

performance is augmented with adding alumina. Innovative

shape of heat storage system has been suggested by

Sheikholeslami et al. [2]. They also utilized nano-sized

particles to expedite discharging. Raizah et al. [3] scruti-

nized non-Newtonian nanofluid free convection within an

open porous tank. They employed power law model for

working fluid. Inorganic nanomaterial has been dispersed

into water by Sheikholeslami and Mahian [4] during

solidification. Influence of magnetic field has been
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employed by them. Aly et al. [5] investigated thermo-dif-

fusion impacts on nanomaterial convective flow inside a

porous annulus. Innovative uses of nanomaterial for

renewable energy have been simulated by Sajid and Ali

[6]. Simulation of discharge phenomena has been carried

out by Sheikholeslami et al. [7]. They assumed that con-

duction is the main mode for solidification. Alsabery et al.

[8] scrutinized two-phase nanofluid convection within a

tank with two-lid wall. Ali et al. [9] simulated the transient

problem of blood flow in an artery. They assumed the

nano-pharmacodynamic migration of working fluid.

Soomro et al. [10] utilized the Prandtl fluid model for

nanomaterial flow over a plate. Yadav et al. [11] investi-

gated the pulsating nanomaterial flow inside a porous

domain in appearance of electric field. Reaching the

effective working fluid is a challenge in recent years

[12–29].

The focus of the present work is on discharging process

of PCM in a wavy duct. Using nanoparticles and wavy

walls makes the solidification rate to intensify. Such system

can be used for heating of buildings. FVM is utilized to

simulate various cases to clarify the impact of concentra-

tion of nanomaterial and amplitude of wavy wall on

solidification.

Mathematical model and problem
demonstration

In the current paper, 2D air heat exchanger with wavy

walls has been considered. As shown in Fig. 1, the annulus

space is filled with paraffin with CuO nanoparticles. The

properties of both PCM and nanoparticles are reported in

Table 1. The laminar air flow was considered in inner

channel. The cold air becomes warmer due to solidifica-

tion. Unsteady forced convection has been considered. Free

convection can be neglected in discharging process. The

geometry was symmetric, and so there is no need to sim-

ulate the whole domain. The unsteady governing flow and

temperature equations are expressed as:
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C ¼ 105; e ¼ 10�3 are mushy zone and small number

constant.

knf ; lnf ; qCp

� �
nf
; Lnf ; and qnf ; can be calculated as:
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Table 1 Properties of CuO and paraffin

Property n-octadecane CuO nanoparticle

Solid Liquid

Fusion point/�C 28 28 –

l� 103=Pa s – 3.85 –

k=w m�1 K�1 0.358 0.148 18

b� 105=K�1 – 91 29

Cp=J kg
�1 K�1 1934 2196 540

q=kg m�3 865 770 6500

L=J kg�1 – 243,500 –

a 5–10 mm
λ 22.222 mm
h 50 mm
l 25 mm
L 1 m

y = a sin (πx/λ)
Symmetry

Symmetry
2a

NEPCM

Outlet

h
l

L

Inlet

λ

Fig. 1 Present channel and mesh sample
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Liquid fraction and total enthalpies are defined as:

k ¼
0 T\Ts
T � Ts

Tl � Ts
Ts\T\Tl

1 T\Tl

8
><

>:
ð10Þ

He ¼ hþ kL ð11Þ

h ¼ href þ
Z T

Tret

Cp

� �
nf
dT ð12Þ

Results and discussion

The focus of the current article is on solidification of PCM

inside thermal storage for building application. CuO

nanoparticles are added into pure PCM (n-octadecane).

PCM exists on outer channel and air flows inside the

sinusoidal duct. During solidification, air becomes warmer

and exits the channel with higher temperature. Finite vol-

ume method based on ANSYS Fluent 18.2 is employed to

model mathematical equations which are obtained with

assumption of neglecting free convection and homogenous

model for nanomaterial. The first assumption is valid for

solidification because conduction mode is dominant in this

kind of phase change.
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a ¼ 5 mm; / ¼ 0:05
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The enthalpy porosity method [30] is employed for

zones which are full of PCM. The value of 0.2 has been

selected as velocity under-relaxation factor. To be sure

about the correctness of the present model and code, we

reproduced the outputs of previous experimental paper

[31]. Solidification front was compared and reached nice

agreement. Besides, validation figure indicates that free

convection cannot affect discharging process (Fig. 2).

Figure 3 illustrates the impact of a; / on liquid fraction

of NEPCM. During this transient phenomena, liquid is

converted to solid. In liquid fraction contours, red and blue

colors signify the liquid and solid phases, respectively.

Thus, liquid fraction profile is reduced with time. This

graphs demonstrated that dispersing CuO into PCM leads

to greater solidification rate. Supportive effect of /

becomes lower with the use of wavy surface. Increasing

amplitude of sinusoidal wall results in augmentation of

discharging rate. Minimum full solidification time is 36.2 h

which belongs to case with the greatest a; /. Distributions
of liquid fraction and temperature during solidification are

depicted in Figs. 4–7. Liquid starts to freeze in zones near

the inlet air flow. As time passes, solidification front

propagates along the duct. The top right side of channel

becomes solid in greater time. As amplitude of wavy

channel rises, discharging rate is enhanced and solidifica-

tion completed in lower time. The left side has lower

temperature than the right side. As time reaches full time

discharging, temperature of airflow and left-side PCM

becomes equal.
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Conclusions

In the current simulation, discharging of NEPCM has been

modeled via FVM. Wavy duct has been considered, and

CuO nanoparticles have been dispersed into paraffin. Cold

airflow enters the inner duct and becomes warmer in outlet

section. Zones near the outlet of airflow require longer time

to complete discharging. Employing wavy channel with

greater amplitude needs lower time in comparison with

smaller amplitude. Liquid fraction reduces with rise of

time. Reaching zero value of liquid fraction indicates the

full solidification. Volume fraction of CuO has reverse

relationship with liquid fraction.
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