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Abstract
This paper investigates forced convection of heat and mass from the catalytic surface of a cylinder featuring non-uniform

transpiration and impinging flows in porous media. The non-equilibrium thermodynamics including Soret and Dufour

effects and local thermal non-equilibrium are considered. Through employing appropriate change of variables, the gov-

erning equations in cylindrical coordinate are reduced to nonlinear ordinary differential equations and solved using a finite

difference scheme. This results in the calculation of the temperature and concentration fields as well as the local and

surface-averaged Nusselt and Sherwood numbers. The conducted analyses further include evaluation of the rate of entropy

generation within the porous medium. It is shown that internal heat exchanges inside the porous medium, represented by

Biot number, dominate the temperature fields and Nusselt number. This indicates that consideration of local thermal non-

equilibrium is of highly important. It is also demonstrated that Dufour and Soret effects can significantly influence the

development of thermal and concentration boundary layers and hence modify the values of Nusselt and Sherwood

numbers. In particular, it is shown that small variations in Soret and Dufour numbers can lead to noticeable changes in the

average Nusselt and Sherwood numbers. Such modifications are strongly dependent upon the type of transpiration and

characteristics of the impinging flow. The present work is the first analysis of non-equilibrium effects upon transport by

stagnation flows around the curved surfaces embedded in porous media.

Keywords Stagnation-point flow � Local thermal non-equilibrium � Coupled heat and mass transfer � Similarity solution �
Soret effect � Dufour effect � Entropy generation

List of symbols
a Cylinder radius

asf Interfacial area per unit volume of porous media

Be Bejan number

Bem Average Bejan number

Bi Biot number Bi ¼ hsfasf �a
4kf

Br Brinkman number Br ¼ lf �k�að Þ2
kf Tw�T1ð Þ

C Fluid concentration

Cp Specific heat at constant pressure

Cs Concentration

D Molecular diffusion coefficient

Df Dufour number Df ¼ D�kf
Cs�Cp

C1
Tw�T1ð Þt

f(g, u) Function related to u-component of velocity

f 0 g;uð Þ Function related to w-component of velocity

h Heat transfer coefficient

hsf Interstitial heat transfer coefficient

k Thermal conductivity
�k Freestream strain rate

k1 Permeability of the porous medium
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km Mass transfer coefficient

kR Kinetic constant

kT Thermal diffusion ratio

NGT Entropy generation number due to heat transfer

NGT ¼ _S000T
_S0000

NGF Entropy generation number due to fluid friction

NGF ¼ _S000f
_S0000

NGD Entropy generation number due to mass transfer

NGD ¼ _S000D
_S0000

Nu Nusselt number

Num Average Nusselt number

P Fluid pressure

P Non-dimensional fluid pressure

P0 The initial fluid pressure

Pr Prandtl number

qw Heat flow at the wall

qm Mass flow at the wall

r Radial coordinate

Re Freestream Reynolds number Re ¼ �k�a2
2t

Rg Gas constant

S(u) Transpiration rate function S uð Þ ¼ U0 uð Þ
�k�a

Sc Schmidt number Sc ¼ t
D

_S000f Rate of entropy generation due to fluid friction

_S000T Rate of entropy generation due to heat transfer

_S000D Rate of entropy generation due to mass transfer

_S0000 Characteristic entropy generation rate

_S000gen Rate of entropy generation

Sr Soret number Sr ¼ D�kf
T1

Tw�T1ð Þ
C1�a

Sh Sherwood number

Shm Average Sherwood number

T Temperature

Tm Mean fluid temperature

u, w Velocity components along (r - u - z)-axis

U0(u) Transpiration

z Axial coordinate

Greek symbols
a Thermal diffusivity

c Modified conductivity ratio c ¼ kf
ks

c* Damköhler number c� ¼ kR�a
2D

1
C1

d Constant parameter d ¼ Rg�D�C1
kf

g Similarity variable, g ¼ r
a

� �2

h(g, u) Non-dimensional temperature

k Permeability parameter,k ¼ a2

4k1

e Porosity

K Dimensionless temperature difference

K ¼ Tw�T1ð Þ
T1

l Dynamic viscosity

t Kinematic viscosity

q Fluid density

/ Non-dimensional fluid concentration

u Angular coordinate

Subscripts
w Condition on the surface of the cylinder

! Far field

f Fluid

s Solid

Introduction

Non-equilibrium thermodynamics are often of significance

in transport of heat and mass in chemically reactive sys-

tems [1, 2]. Most specifically, the thermal diffusion of mass

(Soret effect) and the transport of energy through diffusion

of chemical species (Dufour effect) become noticeable in

the presence of strong thermal and concentration gradients

[2]. Such situations are frequently encountered in chemical

reactors. In porous media, a common manifestation of non-

equilibrium thermodynamics is through local thermody-

namic non-equilibria, which include local thermal non-

equilibrium [3, 4]. Thus, porous thermochemical systems

can involve Soret and Dufour effects and also feature local

thermal non-equilibrium. The former has been already the

topic of a large number of investigations, e.g. [5–7], and

the latter has been confirmed in a few recent studies [8–10].

Nevertheless, comprehensive non-equilibrium analyses of

chemically reactive porous media that take into account all

the preceding effects are rare. Resolving this issue is the

primary objective of the present work.

Surface reactions in general and catalytic reactions in

particular are essential in a wide range of chemical reac-

tors. In such reactors, the catalyst might be deposited on the

surfaces embedded in a porous medium. This is, perhaps,

the reason for the existence of a series of studies on heat

and mass transfer from a flat surface covered with porous

material. A concise survey of these studies is put forward in

the followings. Postelnicu [11] conducted an analysis of

natural convection of heat and mass from the surface of a

vertical flat plate embedded in saturated porous media.

Soret and Dufour effects were considered in this work, and

two-dimensional governing equations were solved numer-

ically through employing a similarity solution [11]. Con-

stant wall temperature and concentration were

implemented as boundary conditions, and a magnetic field

was also applied [11]. It was argued that by intensifying the

magnetic field, the local Nusselt and Sherwood numbers

would increase [11]. This work was then extended to the
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cases with homogeneous chemical reactions with varying

reaction order and Darcian flow in porous media, [12].

Later, Postelnicu [13] investigated the same problem under

a stagnation-point flow and added transpiration of mass to

the flat plate. The effects of variable viscosity on the nat-

ural convection of heat and mass from a vertical, flat plate

covered by porous materials were investigated by Afify [5].

Similar to the work of Postelnicu [11, 12], the influences of

a magnetic field as well as the effects of Soret and Dufour

numbers were taken into account [5]. However, Afify

considered a non-Darcian flow with temperature-dependent

viscosity [5]. In another work, the effects of viscoelastic

fluid were also included in the problem by Hayat et al. [14].

Chamkha and Ben-Nakhi [6] took two major steps in the

analysis of magnetohydrodynamic (MHD) convection from

a flat plate embedded in porous media with Soret and

Dufour effects. These authors [6] introduced the added

influences of forced convection through examining mixed

convection and also included thermal radiation by

employing Rosseland approximation. They reported that

the local Nusselt and Sherwood numbers decreased in the

presence of a magnetic field for the free and mixed con-

vection regimes. However, Nusselt and Sherwood numbers

decrease and then increased forming minima as the mixed

convection parameter was increased from free convection

regime to the forced convection regime [6]. The existence

of thermal radiation was reported to reduce the local

Nusselt number and to increase the local Sherwood number

particularly when there is fluid suction through the flat

surface [6]. A similar configuration was analysed by Tsai

and Huang [15], who extended the classical Hiemenz flow

through porous media to heat and mass transferring cases

with Soret and Dufour effect. These authors also consid-

ered the effects of heat of reaction and thermal radiation

and non-uniform wall temperature and concentration [15].

It was concluded that for some mixtures (e.g. hydrogen-air)

with the low and medium molecular weights, the Soret and

Dufour effects are significant and hence should be taken

into consideration [15]. Mohammad Hemmat et al. [16, 17]

considered the problem of mixed convection inside lid-

driven cavities filled with nanofluids. They reported a

comprehensive dataset on fluid flow and heat transfer in

different configurations including square, rectangular, tri-

angular and trapezoidal with varying governing parameters

such as Rayleigh number, Hartmann number, Richardson

number and solid volume fraction [16, 17]. Other related

works can be found in the literature, see, for example,

[18–21] and references therein.

In the work of Prasad et al. [22], Soret and Dufour

effects were included in the magnetohydrodynamic free

convection analysis of a vertical plate embedded in porous

media. Nonlinear and viscous effects were considered in

the momentum transfer, while the wall temperature and

concentration were assumed constant [22]. It was con-

cluded that increasing Soret number and decreasing Dufour

number intensify the local rate of heat transfer (local

Nusselt number) on the surface of the plate with the

opposite effect upon mass transfer rate (i.e. local Sherwood

number) [22]. More recently, Mabood et al. [23] consid-

ered the problem of MHD forced convection of heat and

mass transfer in a chemically reactive flow impinging on a

flat plate. This analysis did not include Soret and Dufour

effects but considered transpiration of mass from the sur-

face of flat plate [23]. Amongst other findings,

Mabood et al. demonstrated the significance of mass

transpiration upon the transport of heat and mass [23]. In a

recent work of Reddy and Chamkha [24], Soret and Dufour

effects as well as thermal radiation were considered in the

problem of MHD forced convection on a flat plate covered

with a porous medium [24]. This investigation also inclu-

ded unsteady and temperature-dependent heat generation

and considered two types of nanofluids [24]. It is worth

mentioning that the general literature on impinging flows

upon stretching surfaces with chemical reactions and Soret

and Dufour effect is rather wide (see for example

[23, 25–27]). However, as the focus of the current work is

on the curved surfaces embedded in porous media, non-

porous configurations are not discussed here.

A few points are well reflected by the preceding survey

of the literature. First, the problem of combined heat and

mass transfer by natural convection and by the inclusion of

Soret and Dufour effects is well studied [6, 15, 22–24].

However, the same under forced convection has received

less attention. Second, MHD effects have been investigated

extensively, e.g. [22–24], and influences of thermal radia-

tion and mass transpiration have been also considered [6].

Third, almost all investigated cases have been concerned

with flows impinging on a flat plate and curved surfaces

have remained unexplored. Importantly, few recent works

on curved surfaces in porous media did not consider

stagnation flows [28, 29]. Fourth, all the existing works

have assumed that local thermal equilibrium (LTE) holds

within the porous medium and local thermal non-equilib-

rium (LTNE) effects have been totally ignored. The current

work aims at releasing the restrictive assumptions stated in

the last two points. In practice, the surfaces in contact with

porous media can be curved. This introduces a new level of

complexity to the analysis of transport phenomena, which

is still largely unexplored. Further, recent works in other

configurations showed that forced convection in porous

media with chemically reactive flows is most likely to

violate the assumption of LTE [9, 30, 31]. Consequently,

analysis of these flows demands an LTNE approach. Given

this, the proceeding part of this work develops an LTNE

model of forced convection of heat and mass over a

cylinder with non-uniform suction/injection of fluid. This is
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then complemented by an evaluation of entropy generation.

It is noted that while there are few studies on entropy

generation in stagnation flows on stretching surfaces, e.g.

[32]. The equivalent problem in porous media that includes

Soret and Dufour effects does not currently exist.

Theoretical and numerical methods

Problem configuration, assumptions
and governing equations

Figure 1 depicts schematically the problem under investi-

gation. This includes a cylinder with radius a centred at

r = 0 covered with a layer of catalyst and embedded in a

porous medium. The surface of the cylinder can include

uniform or non-uniform transpiration with prescribed cir-

cumferential distributions, while the temperature of the

external surface of the cylinder is maintained constant. An

external axisymmetric radial stagnation-point flow of strain

rate of �k impinges on the cylinder. Due to the non-uni-

formity of transpiration, the flow configuration around the

cylinder can be highly un-axisymmetric. The following

assumptions are made through this work.

• The flow is steady, incompressible and laminar.

• The cylinder is assumed to be infinitely long.

• A zeroth-order, temperature-independent, catalytic

reaction [33–35] takes place on the external surface of

the cylinder.

• Thermal diffusion of chemical species (Soret effect)

and transport of energy through mass diffusion (Dufour

effect) are considered.

• The porous medium is homogenous, isotropic and under

local thermal non-equilibrium (LTNE).

• The radiation heat transfer, gravitational effects and

viscous dissipation of the kinetic energy of the flow are

ignored.

• Physical properties such as porosity, specific heat,

density and thermal conductivity are assumed to be

constant, and hence, the thermal dispersion effects are

negligible.

• A moderate range of pore-scale Reynolds number is

considered in the porous medium, and therefore, the

nonlinear effects in momentum transfer are negligibly

small.

It should be noted that a zeroth-order surface chemical

reaction is a fair representation of many catalytic reactions

[36] and is therefore of practical significance.

The governing equations and boundary conditions, in

the cylindrical coordinate system shown in Fig. 1, can be

summarised as follows.

The continuity of mass reads,

ou

or
þ u

r
þ ow

oz
¼ 0 ð1Þ

The transport of momentum in the radial direction is

1

e2
u
ou

or
þ w

ou

oz

� �
¼ � 1

q
op

or

þ t
e

o2u

or2
þ 1

r

ou

or
� u

r2
þ 1

r2
o2u

ou2
þ o2u

oz2

� �

� t
k1

u

ð2Þ

while in the axial direction it takes the form of

Porous media

Surface reaction

U0 (ϕ)

z
r ϕ

a

S (ϕ) = Constant S (ϕ) = Ln (ϕ)

ϕ = π ϕ = 0

Fig. 1 Schematic view of a stationary cylinder under radial stagnation flow of nanofluid in porous media
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1

e2
u
ow

or
þ w

ow

oz

� �
¼ � 1

q
op

oz

þ t
e

o2w

or2
þ 1

r

ow

or
þ 1

r2
o2w

ou2
þ o2w

oz2

� �

� t
k1

w:

ð3Þ

The transport of thermal energy in the fluid phase is

expressed by:

u
oTf

or
þ w

oTf

oz
¼ af

o2Tf

or2
þ 1

r

oTf

or
þ 1

r2
o2Tf

ou2
þ o2Tf

oz2

� �

þ hsf � asf
q � Cp

Ts � Tfð Þ

þ DkT

Cs � Cp

o2C

or2
þ 1

r

oC

or
þ 1

r2
o2C

ou2
þ o2C

oz2

� �

ð4Þ

The last term on the left-hand side of this equation

represents the Dufour effect [33, 34].

Further, the transport of thermal energy in the solid

phase of the porous medium can be written as

ks
o2Ts

or2
þ 1

r

oTs

or
þ 1

r2
o2Ts

ou2
þ o2Ts

oz2

� �
� hsf � asf Ts � Tfð Þ

¼ 0:

ð5Þ

Mass transfer of chemical species is governed by the

following advective–diffusive model, which considers the

thermal diffusion of mass (Soret effect) in addition to the

classical Fickian diffusion of species [14, 32]:

u
oC

or
þ w

oC

oz
¼ D

o2C

or2
þ 1

r

oC

or
þ 1

r2
o2C

ou2
þ o2C

oz2

� �

þ DkT

Tm

o2Tf

or2
þ 1

r

oTf

or
þ 1

r2
o2Tf

ou2
þ o2Tf

oz2

� �
:

ð6Þ

In Eqs. (4–6), the subscripts ‘‘f’’ and ‘‘s’’ refer to the

fluid and solid properties, respectively. The velocity

boundary conditions of the momentum equations are as

follows:

r ¼ a : w ¼ 0; u ¼ �U0 uð Þ ð7Þ

r ¼ 1 : w ¼ 2�kz; u ¼ ��k r � a2

r

� �
ð8Þ

Also, the two boundary conditions with respect to u
(angular coordinate) are expressed by

u r; 0ð Þ ¼ u r; 2pð Þ; ou r; 0ð Þ
ou

¼ ou r; 2pð Þ
ou

ð9Þ

Equation (7) denotes the no-slip conditions on the

external surface of the cylinder. Further, Eq. (8) indicates

that the viscous flow solution approaches, in a manner

analogous to the Hiemenz flow, the potential flow solution

as r ! 1 [37–39]. This can be verified by starting from

the continuity equation in the followings. � 1
r

o ruð Þ
or

¼ ow
oz

Constant ¼ 2�kz and integrating in r and z directions with

boundary conditions, w = 0 when z = 0 and u = - U0(u)
when r = a.

The boundary condition for the transport of thermal

energy is given by

r ¼ a : Tf ¼Tw ¼ Constant;

Ts ¼Tw ¼ Constant

r ¼ 1 : Tf ¼T1

Ts ¼T1

ð10Þ

and the two boundary conditions with respect to the

angular coordinate, u, are

Tf r; 0ð Þ ¼ Tf r; 2pð Þ; Ts r; 0ð Þ ¼ Ts r; 2pð Þ
oTf r; 0ð Þ

ou
¼ oTf r; 2pð Þ

ou
;

oTs r; 0ð Þ
ou

¼ oTs r; 2pð Þ
ou

ð11Þ

in which Tw is the cylinder surface temperature and T! is

the freestream temperature.

The boundary condition for the transport of mass is

given by

r ¼ a :
oC

or
¼ � kR

D
¼ Constant;

r ¼ 1 : C ! C1

ð12Þ

in which D is the molecular diffusion coefficient and kR is

the kinetic constant for a zeroth-order chemical reaction

[28, 29]. Further, C! is the freestream concentration. The

two boundary conditions with respect to angular coordi-

nate, u, are

C r; 0ð Þ ¼ C r; 2pð Þ
oC r; 0ð Þ

ou
¼ oC r; 2pð Þ

ou
:

ð13Þ

Self-similar solutions

A reduction of the governing Eqs. (1–6) is developed

through applying the following similarity transformations.

u ¼ �
�k � a
ffiffiffi
g

p f g;uð Þ; w ¼ 2�kf 0 g;uð Þ½ �z; p ¼ qf�k
2a2P;

ð14Þ

where g ¼ r
a

� �2
is the dimensionless radial variable. It is

important to note that it has been already demonstrated that
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Eq. (3) has a negligible contribution with the flow field

[40]. Hence, this equation is discarded in the similarity

solution. Transformations (14) satisfy the two-dimensional

version of Eq. (1) automatically, and their substitution into

Eqs. (2) and (3) leads to the following system of coupled

differential equations.

e2 gf 000 þ f 00 þ 1

4g
o2f 0

ou2

� �
þ Re 1þ ff 0 � f 0ð Þ2

h i
þ e2

� k 1� f 0½ �
¼ 0 ð15Þ

P� P0 ¼ � 1

2e2
f 2

g

� �

� 1

e
f 000

Re
� 1

4Re
r
g

1

1

g2
o2f

ou2
dg

� �
þ k
Re

r
g

1

f

g
dg

� �

� 2
1

e2
þ k
Re

� �
z

a

	 
2

;

ð16Þ

in which Re ¼ �k�a2
2t is the freestream Reynolds number, k ¼

a2

4k1
is referred to as permeability parameter, and prime

indicates differentiation with respect to g. Considering

Eqs. (6), (7) and (8), the boundary conditions for Eqs. (14)

and (15) are written as

g ¼ 1 : f 0 1;uð Þ ¼ 0; f 1;uð Þ ¼ S uð Þ; ð17Þ

g ! 1 : f 0 1;uð Þ ¼ 1; ð18Þ

f g; 0ð Þ ¼ f g; 2pð Þ; of g; 0ð Þ
ou

¼ of g; 2pð Þ
ou

; ð19Þ

in which S uð Þ ¼ U0 uð Þ
�k�a is the transpiration rate function.

Note that Eqs. (15) and (16) are the complete form of

Eqs. (10) and (12) in Ref. [40].

To non-dimensionalise the energy Eq. (4), the following

transformation is introduced [40, 41],

hf g;uð Þ ¼ Tf g;uð Þ � T1
Tw � T1

: ð20Þ

Substitution of Eqs. (14) and (20) into Eq. (4) and ignoring

the small dissipation terms yields

gh00f þ h0f þ
1

4g
o2hf
ou2

þ Re � Pr � f � h0f
� �

þ Bi hs � hfð Þ þ Df

� Pr g/00 þ /0 þ 1

4g
o2/
ou2

� �

¼ 0

ð21Þ

in which Bi ¼ hsfasf �a
4kf

is the Biot number and Df ¼
D�kT
Cs�Cp

C1
Tw�T1ð Þt is the Dufour number and the boundary con-

ditions reduce to:

g ¼ 1 : hf 1;uð Þ ¼ 1 ð22aÞ
g ! 1 : hf 1;uð Þ ¼ 0 ð22bÞ

hf g; 0ð Þ ¼ hf g; 2pð Þ; ohf g; 0ð Þ
ou

¼ ohf g; 2pð Þ
ou

: ð23Þ

Substitution of Eqs. (14) and (20) into Eq. (5) yields

gh00s þ h0s þ
1

4g
o2hs
ou2

� Bi � c hs � hfð Þ ¼ 0; ð24Þ

in which c ¼ kf
ks
is the modified conductivity ratio, while the

boundary conditions reduce to:

g ¼ 1 : hs 1;uð Þ ¼ 1 ð25aÞ
g ! 1 : hs 1;uð Þ ¼ 0 ð25bÞ

hs g; 0ð Þ ¼ hs g; 2pð Þ; ohs g; 0ð Þ
ou

¼ ohs g; 2pð Þ
ou

: ð26a; bÞ

To transform the mass transport Eq. (6) into a dimen-

sionless form, the following transformation is introduced,

/ g;uð Þ ¼ C g;uð Þ � C1
C1

: ð27Þ

Substitution of Eqs. (14) and (20) into Eq. (6) results in

Pr g/00 þ /0 þ 1

4g
o2/
ou2

� �
þ Sr � Sc gh00f þ h0f þ

1

4g
o2hf
ou2

� �

þ Re � Pr � Sc f � /0ð Þ
¼ 0

ð28Þ

in which Sc ¼ t
D

is the Schmidt number and Sr ¼
D�kT
Tm

Tw�T1ð Þ
C1�a is the Soret number, while the boundary con-

ditions reduce to:

g ¼ 1 : /0 1;uð Þ ¼ �c� ð29aÞ
g ! 1 : / 1;uð Þ ¼ 0 ð29bÞ

where, c� ¼ kR�a
2D

1
C1

is the Damköhler number.

/ g; 0ð Þ ¼ / g; 2pð Þ; o/ g; 0ð Þ
ou

¼ o/ g; 2pð Þ
ou

: ð30a; bÞ

Equations (15), (21), (24) and (28), together with the

boundary conditions (17–19), (22–23), (25–26), (29) and

(30), are solved numerically using an implicit, iterative tri-

diagonal finite difference method similar to that discussed

in Ref. [42].

Nusselt and Sherwood numbers

For the current problem with isothermal boundaries, the

local heat convection coefficient and rate of heat transfer

for fluid phase are defined as
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h ¼ qw

Tw � T1
¼

�kf
oTf
or

� �
r¼a

Tw � T1
¼ � 2kf

a

ohf 1;uð Þ
og

; ð31Þ

and

qw ¼ � 2kf

a

ohf 1;uð Þ
og

Tw � T1: ð32Þ

Hence, Nusselt number on the surface of the cylinder

can be written as

Nu ¼ h � a
2kf

¼ �h0 1;uð Þ: ð33Þ

Similarly, the local mass transfer coefficient and rate of

mass transfer are defined as

km ¼ qm

Cw � C1
¼

�D oC
or

� �
r¼a

Cw � C1
¼ � 2D

a

o/ 1;uð Þ
og

: ð34Þ

and

qm ¼ � 2D

a

o/ 1;uð Þ
og

Cw � C1: ð35Þ

Hence, Sherwood number can be expressed as

Sh ¼ km � a
2D

¼ �/0 1;uð Þ: ð36Þ

Entropy generation

Considering the assumption stated in Sect. 3.1, the volu-

metric rate of local entropy generation in the problem is

given by [41, 43]:

_S000gen ¼ _S000f þ _S000T þ _S000D

_S000f ¼ 2l
T1

ou

or

� �2

þ u

r

	 
2

þ ow

oz

� �2
" #

þ l
T1

1

r

ow

ou

� �2

þ ow

or

� �2

þ 1

r

ou

ou

� �2
" #

þ l
k1T1

u2 þ w2
� �

_S000T ¼ kf

T2
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Using the similarly variables given in Eqs. (14) and

(37), the local entropy generation reduces to

_S000T ¼ 4kf : Tw � T1ð Þ2
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in which

NGT ¼
_S000T
_S0000

; NGF ¼
_S000f
_S0000

;NGD ¼
_S000D
_S0000

and _S0000 ¼ 8kf � Tw�T1ð Þ2t
�k�a4�T2

1
are the non-dimensional entropy

generations due to heat transfer, fluid friction, mass transfer

and the characteristic entropy generation rate, respectively.

The dimensionless form of the volumetric rate of local

entropy generation (NGT, NGF, NGD) can be written as

follows.
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ð39Þ

where K ¼ Tw�T1ð Þ
T1

is the dimensionless temperature dif-

ference, d ¼ Rg�D�C1
kf

is the diffusive constant parameter, and

Br ¼ l �k�að Þ2
kf Tw�T1ð Þ is the Brinkman number. The Bejan number,
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defined as the ratio of entropy generation due to heat

transfer to the total entropy generation, is used to facilitate

understanding of the mechanisms of entropy generation.

Bejan number for the current problem is expressed as

Be ¼ NGT þ NGD

NGF þ NGT þ NGD

: ð40Þ

Grid independency and validation

To ensure about the grid independency of the numerical

simulations, the surface-averaged values of Nusselt, Sher-

wood and Bejan numbers were calculated for mesh sizes of

51 9 18, 102 9 36, 204 9 72, 408 9 144 and 819 9 288.

Table 1 shows that there are no considerable changes in

these quantities for the (g, u) mesh sizes of (204 9 72),

(408 9 144) and (8169 9 288). Thus, a (408 9 144) grid

in g - u directions was used for the computational domain

reported in the present work. A non-uniform grid was

applied in g-direction to capture the sharp gradients around

the external surface of the cylinder, and a uniform mesh

was implemented in u direction. The computational

domain extends over umax = 360� and gmax = 15. In this

expression, gmax corresponds to g ? !, which for all

investigated cases is located outside the momentum, ther-

mal and concentration boundary layers. As the conver-

gence criterion in the numerical simulations, when the

difference between the two consecutive iterations became

less than 10-7, the iterative process was terminated. On the

basis of the implemented numerical scheme, the numerical

error estimated to be of O(Dg)2 [41, 42].
Tables 2 and 3 show that in the limit of very large

porosity and permeability (no porous material) and in the

absence of mass transfer, the numerical solutions devel-

oped in Sect. 2 reproduce the results of Wang [44] and

Gorla [45] for stagnation flow over a cylinder. Further,

although not shown here, it was confirmed that in the limit

of large Biot numbers the current LTNE results reduce to

the LTE results reported in Ref. [40].

Results and discussion

Temperature, concentration and entropy
generation fields

In the current problem, the flow field is the result of

interactions between the stagnation flow and the transpi-

ration from the surface of the cylinder. Since the fluid was

assumed to have constant density, the heat and mass

transfer do not influence the flow and hence the hydrody-

namics discussed in Ref. [40] remain unaltered. Nonethe-

less, because of the importance of the flow field it is briefly

discussed here. Figure 2 shows the dimensionless radial

velocity field (f) when the non-uniform transpiration,

shown in Fig. 1, is in place. It is clear from this figure that

in the regions of 0� [ u [ 135� there exists a low

velocity region, whereas in the rest of the cylinder cir-

cumference there is a strong flow towards the centre.

Transpiration of mass in the form of blowing and it is

interaction with the impinging flow has resulted in the

radially stagnant flow in the first quarter of the cylinder

cross section. In other parts, however, suction of mass is in

the direction of the impinging flow, which results in a

uniform flow towards the centre of the sphere. Figure 2

further indicates that the extent of low-speed region is

dependent upon the Reynolds number of the external flow

and in general increases as the Reynolds number becomes

smaller. It will be later shown that the state of the flow

around the cylinder greatly influences the transport.

Figures 3–5 depict the solid and fluid dimensionless

temperature fields within the porous medium and under

varying parameters and for non-uniform transpiration. The

influences of Biot number are shown in Fig. 3. It is clear

from this figure that for low values of Biot number there

are significant differences between the temperature distri-

butions in the fluid and solid phases. Nonetheless, as the

numerical value of Biot number increases, these differ-

ences diminish and for high Biot number (i.e. Bi = 100) the

two temperature distributions are very similar. The influ-

ences of non-uniform transpiration are completely notice-

able in Fig. 3. At low values of Biot number, there is a

nearly uniform circumferential temperate distribution in

the solid phase. Yet, this is clearly not the case in the fluid

phase, in which there is a strong heat transfer in the region

of the circumference with fluid blowing (see Fig. 1). In

other regions, however, the thickness of thermal boundary

layer is generally low. As Biot number increases, the

temperature distribution within the solid phase becomes

increasingly more non-uniform and variations become

limited to small area near the surface of the cylinder. This

is to be expected as the strong heat exchanges between the

solid and fluid phases at high values of Biot number hinder

Table 1 Grid independence study at Df ¼ 1:0; Bi ¼ 0:1; Sr ¼
0:5; Re ¼ 5:0; k ¼ 10; Sc ¼ 0:1

Mesh size Num Shm Bem

51*18 3.40873 0.64293 0.51128

102*36 3.37256 0.61564 0.46537

204*72 3.31557 0.56738 0.38112

408*144 3.22049 0.45275 0.33831

816*288 3.22048 0.45273 0.33822
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diffusion of heat away from the hot surface of the cylinder.

In the limit of high Biot number, the extracted heat from

the solid phase causes an increase in the thickness of the

thermal boundary layer. This can be readily verified in

Fig. 3a through comparing the high-temperature region at

the back of the cylinder (90�\u\ 360�) for different

values of Biot number.

Figure 4 shows the effects of Dufour number on the

temperature field within the porous medium. Increasing

Dufour number strengthens the thermal energy received by

the fluid phase due to the diffusion of mass. It is therefore

not surprising that at high Dufour numbers the region of

hot fluid within 0\u\ 90� has been extended. Interest-

ingly, however, this has little effects upon the temperature

distribution in the solid phase. Reynolds number appears to

have a pronounced effect on the temperature field (see

Fig. 5). At low values of Reynolds number, representing a

gentle impinging flow, Fig. 5a shows that the fluid tem-

perature, in almost the entire investigated domain, has been

influenced. However, as the flow impingement becomes

stronger, two noticeable events happen. First, thickness of

the thermal boundary layer in the region of

90�\u\ 360� decreases. This is due to the well-known

effect of flow velocity on the boundary layer thickness,

which in this case is further intensified by the action of

mass suction. Second, in the region of 0�\u\ 90� the

heat transfer is significantly enhanced, and thus, a larger

volume of the fluid phase in this part of the domain
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Re = 10 Re = 100

Re = 1.0Re = 0.1Fig. 2 Non-dimensional radial

velocity (f) for different values

of Reynolds numbers for

e ¼ 0:9; k ¼ 10

Table 2 Comparison between

the present work and the results

of Wang [44] in the limit of

very large porosity and

permeability

g Re = 1.0 Re = 10

Wang [44] Present work Wang [44] Present work

f f
0

f f
0

f f
0

f f
0

1.2 0.02667 0.25302 0.02693 0.25993 0.06638 0.58982 0.06631 0.06610

1.4 0.09665 0.43724 0.09652 0.43710 0.21400 0.84821 0.21393 0.21379

1.6 0.19836 0.57315 0.19828 0.57329 0.39532 0.94852 0.39541 0.39535

1.8 0.32361 0.67444 0.32365 0.67438 0.58919 0.98380 0.58914 0.58926

2.0 0.46674 0.75054 0.46683 0.75046 0.78731 0.99522 0.78735 0.78729

Table 3 Comparison between the present work and the results of

Gorla [45] in the limit of very large porosity and permeability

Re f h

Gorla [45] Present work Gorla [45] Present work

0.01 0.12075 0.12051 0.84549 0.84557

0.1 0.22652 0.22659 0.73715 0.73701

1.0 0.46647 0.46683 0.46070 0.46045

10 0.78731 0.78725 0.02970 0.02983
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becomes hot. This is caused by the interactions between the

high momentum impinging flow and the blowing of the

fluid from the surface of the cylinder. These two opposing

flows tend to generate thick hydrodynamic and thermal

boundary layers. Thus, a large volume of fluid can almost

reach thermal equilibrium with the surface of the cylinder.

As indicated in Fig. 5b, the effects of thermal equilibrium

are much less significant on the solid phase. This results in

distinctively different solid and fluid temperature distribu-

tions at high Reynolds numbers.

Figure 6 illustrates the influences of Damköhler and

Schmidt numbers upon the concentration field. Figure 6a

clearly shows that increasing Damköhler number results in

significant intensification of the concentration field. This is

to be expected as the chemical kinetics of the surface are

stronger at higher Damköhler numbers. At low values of

Schmidt number, which can be viewed as large mass dif-

fusivity, the concentration filed is fairly uniform. This is

due to the fact that at this limit the mass transfer is diffu-

sion dominated, and therefore, the hydrodynamic non-
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Fig. 3 Effects of Biot number on a hf(g, u), b hs(g, u), Df ¼ 1:0; Sr ¼ 0:5; Re ¼ 10; Sc ¼ 0:1; k ¼ 10
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uniformities have rather insignificant effects. However, as

the Schmidt number grows in value and thus the mass

diffusivity becomes relatively smaller than the kinematic

viscosity, the concentration field becomes increasingly

more affected by the flow field. Figure 6a and b demon-

strates the effects of non-uniform transpiration upon the

concentration field. Most noticeably, thickening of the

concentration boundary layer for the part of the circum-

ference with blowing transpiration is evident in these

figures.

The spatial distributions of Bejan number with varying

Brinkman number and permeability parameter are shown

in Fig. 7. Part a of this figure shows that at low Brinkman

numbers the numerical value of Bejan number is relatively

high for most of the domain. Brinkman number is pro-

portional to the square of the flow strain rate, and thus, low

Brinkman number indicates a low momentum impinging

flow. This allows for the development of thick thermal and

concentration boundary layers and renders higher values of

Bejan number. Figure 7a shows that as the value of

Brinkman increases, the region with finite value of Bejan

number becomes increasingly small and ultimately it

becomes limited to a narrow region close to the surface of

the cylinder. As already discussed, the existence of blow-

ing around the first quarter of the cylinder circumference

thickens the boundary layers and enlargers the region of

finite Bejan number. Figure 7b demonstrates the pro-

nounced effect of the permeability parameter on Bejan

number. With high permeability of the porous medium

(low values of permeability parameter), the transfer pro-

cesses take place more conveniently and therefore a large

fraction of the investigated area experiences temperature

and concentration gradients. This results in finite values of

Bejan number for most of the domain. Increasing the

permeability parameter, or decreasing the permeability of

the porous medium, affects Bejan number in two different
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Fig. 4 Effects of Dufour number on a hf(g, u), b hs(g, u), Bi ¼ 0:1; Sr ¼ 0:5; Re ¼ 5:0; Sc ¼ 0:1; k ¼ 10

Analysis of transport from cylindrical surfaces subject to catalytic reactions and non-uniform… 669

123



ways. First, it hinders the transfer processes within the

porous medium and limits the temperature and concentra-

tion gradients to a region close to the cylinder walls.

Second, it boosts the frictional loss and consequently

increases the entropy generation through fluid flow mech-

anism. Both of these tend to reduce Bejan number and

result in very low values of this parameter at large value of

permeability parameter.

The thermal and flow entropy generations have been

further investigated as shown in Fig. 8. The distributions of

flow entropy for different values of Brinkman number are

shown in Fig. 8a. It is inferred from this figure that by

increasing the strain rate of the impinging flow (increasing

Brinkman number) the average value of flow entropy

generation increases. Nonetheless, this increase is not

uniform and features a complex structure, particularly for

large Brinkman number. This behaviour stems from the

complicated two-dimensional nature of the flow field in the

current problem. Despite its apparent complexity, sup-

pression of the flow entropy generation within the region
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Fig. 5 Effects of Reynolds number on a hf(g, u), b hs(g, u), Df ¼ 1:0; Bi ¼ 0:1; Sr ¼ 0:5; Sc ¼ 0:1; k ¼ 10
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experiencing blowing of mass is clear. This is due to the

slow motion of the fluid in this region (see Fig. 2), which

reduces the frictional entropy generation. The influences of

Biot number upon the thermal entropy generation are

shown in Fig. 8b. This figure indicates that regardless of

the value of Biot number, there is little thermal entropy

generation in the region of the domain with blowing. This

can be explained by noting that, as shown in Figs. 2–5, the

slow flow in this region is almost isothermal and thus does

not include strong temperature gradients and thermal

entropy generation. Figure 8b further shows that increasing

the Biot number and the resultant increase in the heat

exchanges between the fluid and solid phases widen the

region with finite thermal entropy generation. Tables 2–5

provide the numerical values of the average Bejan number

for different values of the pertinent parameters. In partic-

ular, Table 4 shows that by increasing Reynolds number

the value of Bejan number increases substantially. This is

consistent with the behaviour observed in Fig. 5, in which

increasing Reynolds number results in thinner thermal

boundary layers and thus more intense thermal gradients.

Also Table 4 shows that enhancing the permeability

parameter reduces Bejan number. Significant increases in

the flow friction at lower values of permeability of the

porous medium and the subsequent increase in the flow

irreversibility are the reason of this behaviour.

Nusselt and Sherwood numbers

The circumferential distributions of Sherwood and Nusselt

numbers are depicted in Figs. 9–12. Figure 9 shows the

angular variations of Sherwood number for different values

of Reynolds number and permeability parameter. The

strong effect of Reynolds number on the distribution of

Sherwood number is evident in Fig. 9a. For low values of

Reynolds number, the distribution is more and less uniform

with an increase at around 0�/360�. This is because in the

non-uniform transpiration case shown in Fig. 1, 0� is a

singular point in which transpiration changes from suction

to blowing. Thus, this point effectively provides a
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Fig. 6 Variations of /(g, u) for
different values of a Damköhler

number, b Schmidt number,

Df ¼ 1:0; Bi ¼ 0:1; Sr ¼ 0:5;
Re ¼ 10; Sc ¼ 0:1; k ¼ 10
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stagnation spot in the flow where the boundary layers start

to develop. As a result, the values of Sherwood and Nusselt

number are generally quite high at this point and then drop

u increase. This statement remains correct for all graphs in

Figs. 9–12. As reflected in Fig. 9a and further quantified in

Table 4, on average, increasing the Reynolds number

boosts the value of Sherwood number on the cylinder. This

observation is in keeping with the physical anticipation,

which correlates Sherwood number with Reynolds number

in forced convection problems. Figure 9b reflects the

effects of permeability parameter on the distribution of

Sherwood number. In general, permeability appears to

have a modest effect on the Sherwood number (also see

Table 4). This is particularly the case at around 0� and 360�
for which there is a sharp increase in Sherwood number.

Further, it seems that Sherwood number varies only within

a specific range of permeability parameter. For instance,

increasing the permeability parameter from 1000 to 5000 in

Fig. 9b results in almost no increase in Sherwood number.

Figure 10a reveals a strong positive correlation between

Damköhler number and Sherwood number. This correla-

tion appears to be nearly linear, in which increasing

Damköhler number from 1 to 4 increases the Sherwood

number by almost four times. It should be noted that due to

the implementation of a zeroth-order surface reaction in the

current problem, increases in Damköhler number can be

viewed as increasing the surface mass flux. This intensifies

the radial gradient of the concentration and through

Eq. (34) enhances the mass convection coefficient and

Sherwood number. Figure 10b shows that the effect of

Soret number on Sherwood number varies with the sign of

Soret number. In general, Soret number can be either

positive or negative [46–48]. It is clear in Fig. 11b that for

positive values of Soret number increasing this parameter

results in the reduction of Sherwood number in a large

fraction of the circumference. However, this trend is

reversed for negative values of Soret number. Interestingly,

for values of u close to 0� (or 360�) Sherwood number

becomes independent of Soret number. This is due to the
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0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

0.4
0.365
0.33
0.295
0.26
0.225
0.19
0.155
0.12
0.085
0.05

0.4
0.365
0.33
0.295
0.26
0.225
0.19
0.155
0.12
0.085
0.05

0.4
0.365
0.33
0.295
0.26
0.225
0.19
0.155
0.12
0.085
0.05

Br = 0.5

Br = 2.0

Br = 3.0

λ = 1

λ =100

λ = 1000

Fig. 7 Variation of Be g;uð Þ for
different values of a Brinkman

number, b Permeability

parameter, Df ¼ 1:0; c� ¼
1:0; K ¼ 1:2; Sr ¼ 0:5; Re ¼
10; Sc ¼ 0:1; k ¼ 10

672 R. Alizadeh et al.

123



small thickness of the concentration boundary layer and

hence the high strength of the primary mass transfer pro-

cess in this region, which overrules the secondary influ-

ences of Soret effect.

Figure 11 illustrates the effects of permeability param-

eter and Biot number on the numerical value of Nusselt

number. Similar to that discussed with respect to Sherwood

number in Fig. 9, Nusselt number appears to be rather

insensitive to the changes in the permeability of the porous

medium (see Fig. 11a).Yet, Biot number does have

noticeable effects upon the Nusselt number. For u [8 0�,
increasing Biot number results in an increase in Nusselt

number. However, in the rest of the circumference the

numerical value of Nusselt number decreases through

increasing Biot number. This behaviour is consistent with

that observed in Fig. 3 on the temperature field of the fluid

phase. Figure 3a shows that for 0� [ u [ 80�, which

coincides with the blowing transpiration, the thickness of

thermal boundary layer decreases by increasing the Biot

number. This causes an increase in the radial temperature
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gradient and thus enhances the Nusselt number. In the rest

of the circumference, increasing Biot number thickens the

thermal boundary layer and therefore the value of Nusselt

number decreases. Table 5 shows that the surface-averaged

value of Nusselt number decreases by increasing Biot

number. The extent of this reduction is quite considerable,

rendering Biot number an important factor influencing the

overall rate of heat transfer.

Figure 12 demonstrates the very significant effects of

Reynolds number on Nusselt number. As expected, there

exists a strong positive correlation between Reynolds

number and Nusselt number, which becomes particularly

noticeable for Re[ 10 (see also Table 4). Figure 12b

shows that increasing Dufour number results in the

reduction of Nusselt number. This finding can be confirmed

by noting that in Fig. 4 the thickness of thermal boundary

layer increases as Dufour number increases. Dufour effect
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Table 4 Effects of the Reynolds

number and permeability

parameter on average Nusselt,

Sherwood and Bejan numbers,

Df ¼ 1:0; Bi ¼ 0:1; Sr ¼ 0:5;
Re ¼ 5:0; Sc ¼ 0:1; k ¼ 10

Re Num Shm Bem k Num Shm Bem

0.1 0.8971695 0.443059 0.00578 1.0 3.205473 0.466725 0.60713

1.0 1.26642 0.447404 0.06297 10 3.220482 0.467238 0.24494

10.0 5.764884 0.493643 0.35508 100 3.265595 0.468522 0.02995

50.0 23.37334 0.541747 0.56438 1000 3.315928 0.469534 0.00301

100 39.66380 0.526908 0.83239 5000 3.338552 0.469857 0.00060
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represents diffusion of mass contributing to the diffusion of

thermal energy (see Eq. 4). Hence, strengthening Dufour

effect is analogous to increasing the thermal conductivity

of the fluid, which results in thickening the thermal

boundary layer. At the same time, it increases the share of

diffusion in the heat transfer process, while does not alter

the advection mechanism and thus reduces the value of

Nusselt number. Table 6 includes the numerical values of

Nusselt number for different values of Dufour number. The

important point in this table is the sensitivity of the non-

dimensional parameters upon changes in Dufour and Soret

numbers. For example, changing Dufour number from 0.5

to 0.7 results in 6.5% variation in Nusselt number. Further,

Table 7 shows that increasing Prandtl number leads to a
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Table 5 Effects of the Biot number and modify conductivity ratio on the average Nusselt, Sherwood and Bejan numbers Df ¼ 1:0; Bi ¼
0:1; Sr ¼ 0:5; Re ¼ 5:0; Sc ¼ 0:1; k ¼ 10

Bi Num Shm Bem c Num Shm Bem

0.1 3.220736 0.467238 0.24494 0.1 3.219995 0.467249 0.33605

1.0 3.123544 0.468257 0.24614 1.0 3.220482 0.467242 0.24888

10 2.855847 0.470786 0.25402 2 3.220979 0.467235 0.24296

100 2.555287 0.473962 0.25930 5 3.222246 0.467218 0.23936

200 2.488446 0.47513 0.26001 10 3.223841 0.467198 0.23817
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Fig. 12 Variation of Nu for different values of a Reynolds number, b
Dufour number, Df ¼ 1:0; Bi ¼ 0:1; Sr ¼ 0:5; Re ¼ 1:0; Sc ¼
0:1; k ¼ 10
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significant increase in Nusselt and Sherwood numbers.

This table also shows that the average Nusselt number

decreases significantly through increasing Schmidt num-

ber, while this results in an increase in Sherwood number.

The strong dependency of Nusselt number on Schmitt

number is because of the relatively large value of Dufour

number (Df = 1 in Table 7.

The preceding analyses have consistently reflected the

strong effects of transpiration on the different characteris-

tics of the system under investigation. Table 8 reports the

results of a more systematic study on these effects in which

the average Nusselt, Sherwood and Bejan numbers have

been calculated for two different types of transpiration and

for different values of Reynolds number. It is clear from

Table 8 that the numerical values of all these dimension-

less numbers are smaller in the case of non-uniform tran-

spiration in comparison with those under uniform

transpiration. The difference increases with increasing

Reynolds number and becomes quite significant for Re

C 1. This is particularly true for the average Nusselt

number, for which changes in the type of transpiration can

alter the numerical values by a few folds. The trend can be

explained by noting the strong influences of transpiration

upon the thickness of the thermal and concentration

boundary layers as shown in Figs. 4–7. It is well known

that convection coefficients and therefore Nusselt and

Sherwood number are directly affected by changes in the

boundary layer thicknesses. Transpiration in the form and

Table 6 Effects of the Dufour and Soret numbers on the average Nusselt, Sherwood and Bejan numbers, Df ¼ 1:0; Bi ¼ 0:1; Sr ¼ 0:5; Re ¼
5:0; Sc ¼ 0:1; k ¼ 10

Df Num Shm Bem Sr Num Shm Bem

0 1.505025 0.4447174 0.073723 1.0 3.347261 0.442378 0.27476

0.3 1.389658 0.4454825 0.070535 0.5 3.220482 0.467238 0.24494

0.5 1.312042 0.4460121 0.068493 0 3.106401 0.490807 0.21471

0.7 1.233863 0.4465574 0.066516 - 0.5 3.003221 0.513099 0.18537

1.0 1.115537 0.4474048 0.063668 - 1.0 2.909463 0.534128 0.15905

Table 7 Effects of the Prandtl and Schmidt numbers on the average Nusselt, Sherwood and Bejan numbers, Df ¼ 1:0; Bi ¼ 0:1; Sr ¼
0:5; Re ¼ 5:0; Sc ¼ 0:1; k ¼ 10

Pr Num Shm Bem Sc Num Shm Bem

0.1 1.275279 0.446008 0.21568 0.1 3.220482 0.467238 0.24494

0.4 1.876843 0.464525 0.26379 0.3 2.949883 0.510148 0.28647

0.7 2.535935 0.466559 0.29134 0.5 2.564346 0.534332 0.29457

1.0 3.220482 0.467238 0.34494 0.7 2.040797 0.546210 0.31606

10 21.91962 0.471026 0.56484 1.0 0.8648166 0.556300 0.34644

Table 8 Effects of the transpiration function on the average Nusselt, Sherwood and Bejan numbers when Df ¼ 1:0; Bi ¼ 0:1; Sr ¼ 0:5; Re ¼
5:0; Sc ¼ 0:1; k ¼ 10

Re S(u) = - Ln(u) S(u) = 1

Num Shm Bem Num Shm Bem

0.1 0.9893366 0.439396 0.00702 1.101475 0.4402421 0.0078428

1.0 1.043759 0.43666 0.06407 1.544002 0.4454198 0.08159

10 2.105123 0.389614 0.32792 6.525319 0.4996093 0.37733

50 7.806557 0.2747252 0.52580 27.24693 0.6035224 0.52354

100 13.07772 0.2423429 0.53741 48.329 0.609331 0.70796
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blowing and suction of fluid change these thicknesses and

either help or hinder the transport process. In the non-

uniform transportation case, the overall effect is to thicken

the boundary layers and therefore to decrease Nusselt,

Sherwood and Bejan numbers.

Conclusions

A set of semi-similar solutions were developed for the

problem of forced convection of heat and mass from the

surface of a cylinder embedded in porous media and sub-

ject to a stagnation flow. The problem includes zeroth-

order chemical reactions on the surface of the cylinder as

well as a non-uniform transpiration and an impinging flow.

The conducted analyses considered the non-equilibrium

thermodynamics including the local thermal non-equilib-

rium in the porous medium and coupled heat and mass

transfer through Soret and Dufour effects. To the best of

authors’ knowledge, none of these have been investigated

in the curved surfaces embedded in porous media. The

major findings of this study can be summarised as follows:

• It was shown that the numerical value of Biot number

can considerably influence the temperature fields of the

fluid and solid phases in the porous medium and thus

affect the average Nusselt number. This clearly reflects

the importance of considering local thermal non-

equilibrium in the problem under investigation.

• Variation of Dufour number appears to have consider-

able effects on the fluid temperature but does not

noticeably change the temperature of the solid phase of

the porous medium.

• Changes in Reynolds number strongly affect the fluid

temperature. However, they have much limited influ-

ences upon the temperature of the solid phase. Also,

increases in Brinkman number enhance Bejan number

in a highly non-uniform way.

• It was shown that small variations in Soret and Dufour

numbers can lead to noticeable changes in Nusselt and

Sherwood numbers. This reflects the significance of

these secondary mechanisms of transport and also

highlights the importance of predicting the temperature

and concentration fields accurately.

• Non-uniform transpiration has a strong effect upon the

temperature and concentration fields and hence majorly

influences the average Nusselt, Sherwood and Bejan

numbers. Further, the circumferential distribution of

Sherwood and Nusselt numbers is shown to be highly

sensitive to transpiration on the surface of the cylinder.

It follows that consideration of non-equilibrium ther-

modynamics and particularly local thermal non-equilib-

rium is an important necessity in the analysis of the porous

thermochemical systems such as that investigated in this

study.
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