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Abstract
In current paper, it is aimed to investigate the entropy generation of electroosmotic flow aggravated by peristaltic pumping

across a non-Darcy porous medium. We have implemented the Darcy Forchheimer model to interpret the permeability of

porous media. The electro-magneto-hydrodynamic flow is considered in a symmetric channel. We have analyzed the flow

characteristics, heat transfer and entropy generation for various values of joule heating parameter c, Hartmann number Hm,

Darcy number X2, Forchheimer number cF and electroosmotic parameter m. It is found that entropy generation increases

for increasing values of Darcy number X2 and Forchheimer number cF.
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Introduction

Entropy production is a material phenomenon which cor-

responds to the degree of disorder in the system. According

to thermodynamics second law, in real-world examples

entropy of the system rises with time and this procedure is

irreversible. As entropy production occurs, the standard/

status of energy reduces. To preserve the energy standard/

status during flow of fluid or to minimize the entropy

production, it is essential to investigate the entropy pro-

duction distribution in the fluid. Proficient energy con-

sumption is the foremost objective while designing the

thermal devices. This target can be accomplished by min-

imizing entropy generation in thermodynamic processes.

With the development of industry and enhanced engi-

neering capabilities, entropy production is perceived as a

suitable solution, in order to get better performance in

industrial procedures. It is not possible to regain the energy

which was lost, but actions can be taken to minimize the

irreversibilities. Bejan [1] was the pioneer researcher to

initiate this idea by means of entropy production mini-

mization. Sciacovelli et al. [2] presented entropy

production analysis as a design tool. Zhao and Liu [3]

studied entropy production for electro-kinetically flowing

fluid in open- and close-ended micro-conduit. Rashidi et al.

[4] investigated the entropy production of steady flow in a

rotating disk having porous medium. Afridi et al. [5] ana-

lyzed the entropy generation of MHD (boundary layer)

stagnation point flow in the existence of joule and friction

heating. Gull et al. [6] investigated the entropy production

of mixed convection Poiseuille flow of MDJN (molybde-

num disulfide Jeffrey nanofluid) and found that the reason

behind the mixed convection is external pressure gradient

and buoyancy force. Saqib et al. [7] studied the entropy

production of electrically conducting, various types of

fractionalized nanofluids moving on a vertical plate of

infinite length embedded in porous medium. Natural con-

vection process within the conduits has been a focus of

extensive research in the last few decades because of its

tremendous applications in engineering in electronic

cooling systems, heat exchangers and nuclear reactors. The

proficient utilization of energy and best possible utilization

of resources have provoked the investigations for improv-

ing the competence of industrial procedures. Some recent

studies exploring the outcomes of entropy analysis are

given in Refs. [8–14].

Micro-fluids got a significant attention in recent few

decades due to its tremendous applications in engineering

and industry. The scientists have used micro-fluids based
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on electrokinetics, as it is very efficient mechanism to

manipulate and control flow of liquid in micro-devices.

Micro-fluidics is also applicable in biological transports

such as DNA concentration, species separation and amal-

gamation of fluids. It can be applied in analysis of different

biochemical reactions. Coulomb force causes the elec-

troosmotic flow, influenced by the electric potential

through the micro-channel. Electroosmosis refers to the

movement of counter ions in the diffused part of electric

double layer. The technique of electro-osmotically flowing

fluid via peristaltic pumping in a non-Darcy porous med-

ium is a physically very significant study as it can be used

in hemodialysis.

Cameselle and Reddy [15] worked on the progress and

improvement in electroosmotic flow for the exclusion of

contaminations from soils. Zhou et al. [16] studied how

electroosmotic process is affected by the material of elec-

trode. Tripathi et al. [17] investigated the peristaltic

movement of electrically conducted fluids under the

influence of transverse magnetic field. Bouriat et al. [18]

experimentally found the zeta potential of grains by using

the electroosmotic technique. Li et al. [19] studied the flow

rate of fluid in microporous medium under the effect of

gravitational and electroosmotic forces.

Most of the liquids in the physiology are transported by

the natural system of pumping known as peristalsis. Such

phenomenon is caused by the continuous wave of area

contraction and extension of a flexible tube holding liquid.

Among the most recent explorations, peristaltic mechanism

is exclusively significant due to its wide-ranging applica-

tions in biosciences, engineering, physiological and

industrial world. Peristaltic pumping is an intrinsic prop-

erty of numerous physiological muscles. Such muscles are

present in gastrointestinal channel, blood vessels, lym-

phatic vessels and ducts of many glands. In industry,

peristaltic transport mechanism is used in finger and roller

pumps, sanitary and in transport of many corroding mate-

rials. In biosciences, it is used in many appliances, for

example in heart–lung machine, catheter and endoscope

and in many others. Currently, due to the extensive appli-

cations of peristaltic transport in several fields, a lot of

work has been done on this topic. First initiative was taken

by Latham [20] who investigated the transport of fluid via a

peristaltic pump. Later on, researchers and scientists con-

tributed a wealth of the literature in the biofluid mechanics.

They studied the peristaltic transport under different con-

ditions with different approaches like analytical, experi-

mental and numerical. Some recent studies are mentioned

in references [21–29].

Peristaltic pumps are used in hemodialysis machines in

order to transfer the fluids. Dialysis machine and special

filter, i.e., artificial kidney (dialyzer) are used to purify the

blood in hemodialysis. The dialyzer (filter or walls with

semipermeable membrane) has two parts: one for blood

and the other for cleaning fluid called dialyzate. A thin

membrane acts as a boundary between these two parts.

Protein, blood cells and other essential components remain

in blood since they are too big in size to pass across the

membrane. Smaller waste particles in the blood, such as

urea, potassium, creatinine and access of fluid, pass

through the membrane (porous) and are washed away.

Hence peristaltic pumps can be utilized for fluid flow and

electroosmosis technique helps in separating essential

components from waste materials with the help of porous

medium.

Transportation of fluids across a porous medium plays a

vital role in many applications, such as geophysics,

chemical reactors, petroleum industries, nuclear reactors,

hydrogeology and environmental sciences. DNA is com-

posed of four building blocks, which are adenine, guanine,

cytosine and thymine. Adenine and thymine are always

attached as a pair, and cytosine and guanine are attached as

a pair. DNA is the sequence of these pairs that acts as a set

of instructions that makes all living things. DNA analysis is

the name given to the interpretation of genetic sequences

and can be used for a wide variety of purposes. It can be

used to identify a species, but can also differentiate indi-

viduals within a species. Capillary electrophoresis plays a

significant role in the advancement of DNA analysis

technologies. Hence electro-osmotically flowing fluid

influenced by peristaltic pumping can also be used in DNA

analysis, which is further used in DNA sequencing, finding

length of DNA and in identification of genetic diseases. An

admirable study on flow across the porous media is by

Starov and Zhdanov [30] who investigated dependence of

permeability on porous medium. Reddy [31] studied the

impact of mass and heat transfer on peristaltic flow along

porous medium. Elshehawey et al. [32] investigated the

peristaltic movement of incompressible fluid through a

porous medium. Noreen [33] worked on magneto-thermo-

hydrodynamic peristaltic flow of Eyring–Powell nanofluid

in asymmetric channel. Khalid et al. [34] studied the MHD

free convection of blood flow with nanotubes, the blood is

flowing on vertical plate (oscillating) immersed in a porous

medium. Khan et al. [35] examined the heat transfer of

nanofluid for the Stokes’ second problem. They found that

fluid motion is opposed by the Hartman number and

porosity. Kouloulias et al. [36] analyzed the flow charac-

teristics of nanofluids during turbulent natural convection.

Studies cited above were established on Darcy law to

include the porous medium. But in numerous conditions,

flow rates become high or have irregular porosity due to

which Darcy law becomes irrelevant. In the case of non-

Darcy flow, the kinetic energy and the inertial forces vary

considerably due to the expansion and contraction of fluid

in the porous media. Due to these consequences, flow will
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show signs of non-linearity regarding velocity. To explain

this turbulent and nonlinear behavior, Forchheimer [37]

added a non-Darcy expression to the Darcy equation. Many

researchers have focused on an important behavior of non-

Darcy flow, i.e., good deliverability and performance

inside a tank. Non-Darcy approach is also applicable across

the fractured and porous rocks which may happen during

high flux and insertion of waste fluids into underground

configurations. Begum et al. [38] investigated the mixed

convective flow of nanofluids in non-Darcy porous med-

ium. Wu [39] studied the immiscible fluids by both ana-

lytical and numerical approaches in non-Darcy porous

medium. Veyskarami et al. [40] investigated the impact of

throat curvature on fundamental properties of non-Darcy

porous medium.

Technique of electroosmosis in porous medium is used

in many applications of geoenvironmental and geotechni-

cal engineering, oil and gas organizations and bio-envi-

ronmental sciences. The accumulated toxic heavy metal

ions which lead to serious health and environmental issues

are also removed from soil by this method. It is also used in

dewatering and consolidation of soft clay which is a reason

for land sliding. Gupta et al. [41] investigated the universal

formulae for electroosmosis in porous medium. Tripathi

[42] studied the electroosmosis peristaltic heat flow

through a finite porous channel.

Being encouraged from the above discussion, we have

analyzed the entropy generation minimization in elec-

troosmotic flow provoked by peristaltic pumping across a

non-Darcy porous medium. Such analysis has not been

done before and we encourage researches to pay attention

in this direction. Objectively system performance is

investigated by the combine effects of magnetohydrody-

namics and electroosmotic phenomena in a non-Darcy

porous medium via peristalsis. The deviations in Nusselt

number and Bejan number under the manipulation of

relatable parameters are also generated.

Mathematical model and analysis

Let us examine the heat transfer of peristaltic flow induced

by electroosmosis through a non-Darcy porous medium.

Consider that the biofluid (fulfilling the Newtonian viscous

model) is flowing in non-Darcy porous medium under the

impact of electric field and magnetic field. The temperature

of conduit wall is constant and it is denoted as Tw, while

temperature of bulk fluid is denoted as T.

Consider two-dimensional flow (~x; ~y) of a viscous fluid

in a micro-channel, in which wave propagation is along ~x

direction. Furthermore, the flow is symmetric about the

middle line of the conduit, i.e., ~y ¼ 0: Let ~y ¼ ~h ~x;~tð Þ and

~y ¼ �~h ~x;~tð Þ are the upper and lower boundaries of the

conduit, respectively, as shown in Fig. 1. Moreover,

assume that the electric field with strength E0 and magnetic

field with strength B0 are acting together on biofluid flow.

The electric field is exerted in the direction parallel to

length of micro-channel which provides the required

compelling force for electrokinetic flow.

Due to symmetric channel, it is enough to study the

characteristics of fluid flow in the domain 0� ~y� ~h. The

geometry of wall [42] is:

~h ~x; ~yð Þ ¼ dh � ~b1 cos
2 p
k

~x� c1~tð Þ: ð1Þ

Here dh is representing the semichannel width, while b1,

k and c1 depict the amplitude, wavelength and velocity of

the wave, respectively.

Electrical potential distribution

The Poisson–Boltzmann equation [43, 44] is used to

describe the electric potential in the micro-channel.

r2 ~/ ¼ � qe
ee0

; ð2Þ

where ~/; qe; e; e0 are electroosmotic potential, net ionic

charge density, dielectric constant and permittivity of free

space, respectively. Permittivity of free space is a constant

and its value is 8:854� 10�12 Fm�1: The possibility of

detecting an ion at a specific point within electric double

layer (EDL) is proportional to Boltzmann factor e
�ze ~/
KBTav

� �

where z; e;KB; Tav depict the valence of ions, electron

charge, Boltzmann constant and the average temperature,

respectively. The number densities of positive ðnþÞ and

negative ions ðn�Þ can be explained by the Boltzmann

equation as:

n� ¼ n0e
� ze ~u

KBTavð Þ; ð3Þ

where in the buffer solution the average number of nega-

tive and positive ions are denoted by n0. When in the

micro-channel there is no gradient of ionic concentration in

the axial direction, the distribution of ionic concentration is

believed to be valid. In a unit fluid volume, the total charge

is taken as [45].

qe ¼ ez nþ � n�ð Þ ¼ �2n0ez sinh
ez ~u
KBTav

� �
: ð4Þ

Now, with the help of Eqs. (3) and (4) we approximate

the Poisson–Boltzmann Eq. (2) as:

d2 ~/
d~y2

¼ �2n0ez

ee0
sinh

�ze ~/
KBTav

 !
: ð5Þ
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In order to proceed with dimensionless variables, we

introduce:

d ¼ dh

k
;Re ¼ qc1dh

l
; b ¼ UHS

c1
;UHS ¼ E0ee0f

l
;

m ¼ l
q
;Hm ¼ B0dh

ffiffiffi
r
l

r
;X2 ¼ d2h

k�
;

/ ¼
~/
f
; y ¼ ~y

dh
; x ¼ ~x

k
; t ¼ c1~t

k
; h ¼

~h

dh
; b1 ¼

~b1
dh

;

h ¼ T � Tw
qdh
k

; p ¼ ~pd2h
c1kl

; u ¼ ~u

c1
;

v ¼ ~v

c1d
; cF ¼ ck�

d2hc1

m
ffiffiffiffiffi
k�

p ;Pr ¼ lcp
K

;Br ¼ lc21
qdh

; c ¼ rdhE2
0

q
;

ð6Þ

in which / and f are the electroosmotic potential and zeta

potential of the medium, d denotes the wave number, q is

the heat flux, Re is the Reynolds number, b is the mobility

of the medium, UHS;Hm;X
2 are the Helmholtz–Smolu-

chowski velocity, Hartmann number and the Darcy num-

ber. Further cF is Forchheimer number where ck�ffiffiffiffi
k�

p represents

the non-Darcy coefficient and Pr;Br; c; m are the Prandtl

number, Brinkman number, joule heating parameter and

the kinematic viscosity, respectively.

By using the non-dimensional variables defined in

Eq. (6), Eq. (5) becomes

d2/
dy2

¼ d2h

k2Da
sinh a/ð Þ; ð7Þ

where a a is parameter for ionic energy and is equal to zef
KBTav

and kD is the Debye length which is defined as

ezð Þ�1 ee0KBTav
2n0

� �1
2

. Because of symmetry of potential func-

tion across the middle line of the channel, we use the

following boundary conditions:

d/
dy

¼ 0 at y ¼ 0;

/ ¼ 1 at y ¼ h:

ð8Þ

Moreover, we suppose that wall zeta potential is suffi-

ciently small such that Debye–Hückel linearization

approximation is applicable. The linear Poisson–Boltz-

mann equation is solved, by using the boundary conditions

given in Eq. (8) to obtain the potential distribution function

as:

/ ¼ coshðmyÞ
coshðmhÞ ; ð9Þ

where m is known as electroosmotic parameter and is

defined as dh
kD
. Suppose that electric and magnetic field are

simultaneously acting upon flowing biofluid. Due to low

electric conductivity, we suppose that magnetic Reynolds

number is also very low, and hence, we can neglect the

induced magnetic field from the current study.

Flow analysis

Nield [46] modeled the heat transfer and flow of the fluid

through the porous medium. Following Eqs. (3) and (8) of

[46], the governing equations for electro-osmotically

flowing fluid influenced by the peristaltic pumping in a

non-Darcy porous medium become nonlinear in nature and

are stated here as:

Channel wall

Porous medium

Wavelength

Tw = constt

–Y

Y

y = 0

y = h B

E

X

b1

C1

dh

y = –h

λD

λ
Fig. 1 A geometrical portrayal

of flow regime in the presence

of electric field E (applied in the

axial direction) and magnetic

field B (applied in the transverse

direction). A peristaltic wave is

traveling with the wave velocity

(c1), amplitude (b1) and wave

length (k) in a micro-channel

through a non-Darcy porous

medium
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o~u

o~x
þ o~v

o~y
¼ 0 ð10Þ

q
o~u

o~t
þ ~u

o~u

o~x
þ ~v

o~u

o~y

� �
¼ � o~p

o~x
þ l

o2~u

o~x2
þ o2~u

o~y2

� �
� r~B2

0~u

þ qE0 �
l
k�

~u� qck�ffiffiffiffiffi
k�

p ~u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~u2 þ ~v2;

p

ð11Þ

q
o~v

o~t
þ ~u

o~v

o~x
þ ~v

o~v

o~y

� �
¼ � o~p

o~y
þ l

o2~v

o~x2
þ o2~v

o~y2

� �
� l
k�

~v

� qck�ffiffiffiffiffi
k�

p ~v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~u2 þ ~v2;

p

ð12Þ

qcp
o~T

o~t
þ ~u

o~T

o~x
þ ~v

o~T

o~y

� �
¼ K

o2 ~T

o~x2
þ o2 ~T

o~y2

� �
þ Uþ r~B2

0~u
2

þ r ~E2
0 þ

l
k�

~u2 þ ~v2
� �

þ qck�ffiffiffiffiffi
k�

p ~u2 þ ~v2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~u2 þ ~v2
ph i

;

ð13Þ

where U represents the viscous dissipation and mathe-

matically expressed as:

U ¼ l 2
o~u

o~x

� �2

þ2
o~v

o~y

� �2

þ o~u

o~y
þ o~v

o~x

� �2
" #

:

Here ~u; ~vð Þ are components of velocity along ~x and ~y
direction, respectively. q; ~p and l depict the density, pres-

sure and viscosity of fluid, respectively, and it is supposed

that the electric field E0 is constant and is imposed in the

axial direction. Magnetic field B0 is applied in the trans-

verse direction of fluid flow. Moreover, k� and ck�=
ffiffiffiffiffi
k�

p
are

the permeability of porous medium and the non-Darcy

coefficient. Further we supposed that it is a fully developed

flow and axial velocity is dependent on ~y and ~t only.
In peristaltic flows when the fluid is forced to flow due

to the sinusoidal displacements of the tract boundaries, the

fluid gains some velocity as well as kinetic energy. The

viscosity of the fluid takes that kinetic energy and converts

it into internal or thermal energy of the fluid. Consequently,

the fluid is heated up and heat transfer occurs. This phe-

nomenon is modeled by the energy equation with dissipa-

tion effects. Dissipative heat transfer is the most important

and essential feature of peristaltic flows and cannot be

neglected.

Using the non-dimensional variables in Eq. (6), into

Eqs. (10–13), our Eq. (10) is satisfied and Eqs. (11–13)

capitulate:

Red
o

ot
þ u

o

ox
þ v

o

oy

� �
u ¼ � op

ox
þ d2

o2u

ox2
þ o2u

oy2

� �

� H2
m þ X2

� �
uþ bm2/

� cFu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ d2v2;

q
ð14Þ

Red3
o

ot
þ u

o

ox
þ v

o

oy

� �
v ¼ � op

oy
þ d2 d2

o2v

ox2
þ o2v

oy2

� �

� d2X2v� d3cFv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ d2v2;

q

ð15Þ

RePrd
oh
ot

þ u
oh
ox

þ v
oh
oy

� �
¼ d2

o2h
ox2

þ o2h
oy2

� �
þ c

þ Br 2d2
ou

ox

� �2

þ2d2
ov

oy

� �2

þ ou

oy
þ d2

ov

ox

� �2
" #

þ BrX2 u2 þ d2v2
� �

þ cFBr u2 þ d2v2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ d2v2
p� �

þ H2
mBru

2:

ð16Þ

Implementing the approximation of long wavelength

and low Reynolds number on Eqs. (14–16) as proposed by

Jaffrin and Shapiro [47] and Shapiro et al. [48] (i.e., neglect

the terms containing d and higher powers of d), we get the
reduced equations as:

op

ox
¼ o2u

oy2
� H2

m þ X2
� �

uþ bm2/� cFu
2; ð17Þ

op

oy
¼ 0; ð18Þ

o2h
oy2

þ cþ Br
ou

oy

� �2

þ H2
m þ X2

� �
Bru2 þ cFBru

3 ¼ 0:

ð19Þ

By using cross-differentiation, we will now eliminate

pressure term from the dimensionless Eqs. (17) and (18)

and can write it as a single nonlinear differential equation.

o3u

oy3
� H2

m þ X2
� � ou

oy
þ bm2 o/

oy
� cF

o

oy
u2
� �

¼ 0: ð20Þ

Now let us define w, the stream function as u ¼ ow
oy
; v ¼

� ow
ox
; satisfying the continuity Eq. (10). Equations (17),

(19) and (20) can be written in terms of stream function as:

op

ox
¼ o3w

oy3
� H2

m þ X2
� � ow

oy
þ bm2/� cF

ow
oy

� �2

; ð21Þ

Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic… 1995

123



o2h
oy2

þ cþ Br
o2w
oy2

� �2

þ H2
m þ X2

� �
Br

ow
oy

� �2

þcFBr
ow
oy

� �3

¼ 0;

ð22Þ

o4w
oy4

� H2
m þ X2

� � o2w
oy2

þ bm2 o/
oy

� cF
o

oy

ow
oy

� �2

¼ 0;

ð23Þ

where the boundary conditions in terms of w, the stream

function, are:

o2w
oy2

¼ 0; w ¼ 0;
oh
oy

¼ 0 at y ¼ 0

ow
oy

¼ 0; w ¼ F; h ¼ 0 at y ¼ h;

ð24Þ

where h is the dimensionless form of wave traveling along

channel. Here we have introduced two extra stream func-

tion boundary conditions in order to find the solution of

differential equation of order four. The flow rate F in its

non-dimensional form is defined as F ¼ Q0e
�At, while A

and Q0 are constants. The negative or the positive flow

rates are dependent on the value of constant Q0. If Q0\0,

then F\0; similarly, F[ 0 if Q0 [ 0. The positive flow

rate indicates that the flow is in the direction of peristaltic

pumping. Negative flow rate refers to the situation when

flow is in the opposite direction of peristaltic motion, also

known as reverse pumping. Kikuchi [49] investigated

experimentally that with time there is an exponential

decrease in the blood flow rate. Further it is suggested that

the changes in the flow rate are independent of structural

details of micro-channel.

Solution method

In order to obtain an analytical solution, we aim to solve

the higher-order differential Eqs. (21–23) by using pertur-

bation technique about cF parameter.

w ¼ w0 þ cFw1 þ OðcFÞ2 ð25Þ

p ¼ p0 þ cFp1 þ OðcFÞ2 ð26Þ

F ¼ F0 þ cFF1 þ OðcFÞ2 ð27Þ

h ¼ h0 þ cFh1 þ OðcFÞ2: ð28Þ

Zeroth-order system

o4w0

oy4
� H2

m þ X2
� � o2w0

oy2
þ bm2 o/

oy
¼ 0; ð29Þ

op0

ox
¼ o3w0

oy3
� H2

m þ X2
� � ow0

oy
þ bm2/ ¼ 0; ð30Þ

op0

oy
¼ 0 ð31Þ

o2h0
oy2

þ cþ Br
o2w0

oy2

� �2

þ H2
m þ X2

� �
Br

ow0

oy

� �2

¼ 0;

ð32Þ

o2w0

oy2
¼ 0; w0 ¼ 0;

oh0
oy

¼ 0 at y ¼ 0

ow0

oy
¼ 0; w0 ¼ F; h0 ¼ 0 at y ¼ h:

ð33Þ

First-order system

o4w1

oy4
� H2

m þ X2
� � o2w1

oy2
� o

oy

ow0

oy

� �2

¼ 0; ð34Þ

op1

ox
¼ o3w1

oy3
� H2

m þ X2
� � ow1

oy
� ow0

oy

� �2

¼ 0; ð35Þ

op1

oy
¼ 0 ð36Þ

o2h1
oy2

þ 2Br
o2w0

oy2

� �
o2w1

oy2

� �

þ 2 H2
m þ X2

� �
Br

ow1

oy

� �
ow0

oy

� �
þ Br

ow0

oy

� �3

¼ 0; ð37Þ

o2w1

oy2
¼ 0; w1 ¼ 0;

oh1
oy

¼ 0 at y ¼ 0

ow1

oy
¼ 0; w1 ¼ 0; h1 ¼ 0 at y ¼ h:

ð38Þ
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Zeroth-order solution

w0 ¼ e�Lyðm2ðL2 þ m2Þðe2LyC1 þ C2Þ þ eLyL2L2 sinhðmyÞÞ
þ C3 þ yC4b1;

ð39Þ
dp0

dx
¼ d1 � C4L

2 þ b1L
2L2mð�L2 þ m2Þ; ð40Þ

dp0

dy
¼ 0; ð41Þ

h0 ¼ E1 þ yE2 þ a4e
�2Lyð�16BreLyL2ða5ðe2LyC1 þ C2Þ

þ a2C4e
Lyða3Þ2 þ a7ða1ðe2LyC1 � C2Þ

þ a3b1ðe2LyC1 þ C2Þm2ÞÞÞ þ coshðmyÞ
� a8e

2Ly coshð2myÞ � 2m2ð8BreLyL2ða9eLy

� mða6ð�e2LyC1 þ C2Þ þ a1ð2a2ðe2LyC1 þ C2ÞL
þ a10ð�e2LyC1 þ C2ÞÞÞÞ sinhðmyÞ
þ ða3Þ2ð�2a1Brð�e2LyC1 þ C2Þ
� ð4C4e

Ly þ a3b1ðe2LyC1 þ C2Þm2Þ
þ a21Brðe4LyC2

1 þ C2
2 � 4C1C2e

2LyL2y2Þ
þ eLyða11 þ eLyða12eLy þ y2a14ÞÞ þ a13e

2Ly sinhð2myÞÞÞÞ:
ð42Þ

First-order solution

w1 ¼ C7 þ yC8 þ b3ðe�2LyðeLyðe2LyC1 þ C2Þb4 coshðmyÞ
� b5e

Lyð�C4e
Lyð4L4 � 5L2m2 þ m4Þ

þ ð�e2LyC1 þ C2Þm2b6Þ sinhðmyÞ þ b7ððL2

� 4m2Þðb8 � b9e
4Ly � b10C1e

3Lyð�5þ 2LyÞ
þ C2b10e

Lyð5þ 2LyÞ � 6eLyðe2LyC5 þ C2ÞÞ þ b11e
2Ly;

ð43Þ
dp1

dx
¼ �C2

4 � C8L
2 þ 4C1b10b3b7L

5 � 4C2b10b3b7L
5

þ 6b3b7L
5ðb8 þ b9Þ þ 2C4b1L

3m2ðC2 � C1Þ
þ 16b10b3b7L

3m2ðC2 � C1Þ � 24b3b7L
3m2ðb8 þ b9Þ

� b21L
4L22m

2 þ 2C4b1Lm
4ðC1 � C2Þ

� C2
1b

2
1L

6m4 þ 2C1C2b
2
1L

6m4 � C2
2b

2
1L

6m4

þ 2b11b3b7mðL2 � m2Þ þ mðC4ð�2b1L
2L2

þ b3b5ðL2 � m2Þ2ð4L2 � m2ÞÞ
þ ðC2 � C1Þm 2b21L

3L2mðL2 � m2Þ
�

þ b3ð3b4Lþ b5b6mð2L2 þ m2ÞÞ
�
;

ð44Þ

dp1

dy
¼ 0; ð45Þ

h1 ¼ E3 þ E4yþ a46ð�C1e
3Lya32 � 36ðaA3

4

þ 16C1a2C2b1b10b3b7L
4m2ðL2 � m2Þ

þ C4L
2ð4C8 þ b1m

2a34ÞÞy2

þ 36e2Lyð�3C2
1C4b

2
1m

4ðL2 � m2Þ2 � 4a17b3b7LðC4b9

þ 2C1b1Lm
2ðL2 � m2Þð3C5 þ C1b10ð�2þ LyÞÞÞÞ

� 36e2Lyð�3C2
2C4b

2
1m

4ðL2 � m2Þ2 þ 4a17b3b7LðC4b9

� 2C1b1Lm
2ðL2 � m2Þð�3C5 þ C1b10ð2þ LyÞÞÞÞ

� a47e
LyðC1b1ma26 þ 4a2b3b7L

2ð2C2b1b9Lm
2ðL2 � m2Þ

þ C4ð6C5 þ C1b10ð�7þ 2LyÞÞÞÞ
þ a47e

�LyðC2b1ma26 þ 4a2b3b7L
2ð2C2b1b9Lm

2ðL2 � m2Þ
þ C4ð6C5 þ C1b10ð�7þ 2LyÞÞÞÞ
� a35 coshð3myÞ þ a38ða44 � e�2Lya18 � e2Lya19

� a36e
Lyð6a2C5b1b3b7L

2L2mðLþ mÞ � C1ðC4ðLþ mÞa43
þ a2b1b10b3b7L

2L2mðm� 2L2yþ Lð7� 2myÞÞÞÞ
� a37e

�Lyð6a2C6b1b3b7L
2L2mð�Lþ mÞ

� C2ðC4ðL� mÞa42 þ a2b1b10b3b7L
2L2mðm� 2L2y

þ Lð7� 2myÞÞÞÞðcoshðmyÞ þ sinhðmyÞÞ
þ a38ða44 � e2Lya20 � e�2Lya21

� a37e
Lyð6a2C5b1b3b7L

2L2mð�Lþ mÞ
� C1ðC4ðL� mÞa42 þ a2b1b10b3b7L

2L2mðmþ 2L2y

� Lð7þ 2myÞÞÞÞ � a36e
�Lyð�6a2C6b1b3b7L

2L2mðLþ mÞ
þ C2ðC4ðLþ mÞa40 þ a2b1b10b3b7L

2L2mðmþ 2L2y

þ Lð7þ 2myÞÞÞÞ � ððcoshðmyÞ þ sinhðmyÞÞ2ðcoshðmyÞ
þ sinhðmyÞÞ þ 9a22e

�LyL2ðC4e
Lya29

þ 4b1m
2ðC2ðL� 2mÞ2ðLþ mÞa27

þ C1e
2LyðL� mÞðLþ 2mÞ2a28ÞÞð� coshð2myÞ

þ sinhð2myÞÞ � 9a22e
�LyL2ð�C4e

Lya29

� 4b1m
2ðC1ðL� 2mÞ2 � ðLþ mÞa27C2a28ðL� mÞ

� ðLþ 2mÞ2a28ÞÞðcoshð2myÞ þ sinhð2myÞÞÞÞ;
ð46Þ

whereC1 � C8;E1 � E4; b1 � b11 and a1 � a47 are constants

and obtained by Mathematica software. By putting the zer-

oth- and first-order solution of stream function w, pressure
gradient dp=dx and temperature h in Eq. (27–30), we get the
final first-order solution forw; dp=dx and h. By using velocity
distribution and temperature profile, the dimensionless

temperature of bulk mean flow can be attained as:

hbulk ¼
Twall � Tbulk

qdh=k
¼

r
h
0 uhdy

r
h
0 udy

: ð47Þ
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The chief attribute that has noteworthy relevance in the

current study is the dimensionless Nusselt number Nus,

which is the ratio between the heat transfers due to con-

vection and conduction. It illustrates that how frequently

the heat transfer is intensified due to motion of fluid.

Observe that heat transfer always increases due to the

motion of fluid therefore for convection Nus [ 1. If Nusselt

number is equal to one then the fluid is sedentary and heat

is transfer through conduction. Mathematically Nusselt

number is expressed as:

Nus ¼
2qdh

k Twall � Tbulkð Þ ¼
2

hbulk
: ð48Þ

Entropy generation investigation

Entropy production determines the intensity of irre-

versibilities that take place in any thermal procedure.

According to [50–56], the rate of local entropy production

can be mathematically expressed as:

S ~G ¼ k

~T2
w

o~T

o~x

� �2

þ o~T

o~y

� �2
" #

þ 1

~Tw
Uþ rE2

0

~Tw

þ rB2
0

~Tw
~u2 þ ~v2
	 


þ l

k� ~Tw
~u2 þ ~v2
	 


þ qck�ffiffiffiffiffi
k�

p
~Tw

~u2 þ ~v2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~u2 þ ~v2
ph i

: ð49Þ

Here Eq. (49) depicts the dimensional form of entropy

production due to thermal irreversibility, irreversibilities

due to friction, joule dissipation and porous matrix. The

characteristic entropy production is defined as:

SC ~G ¼
k qdh

k

� �2
~T2
wd

2
h

: ð50Þ

The non-dimensional form of entropy production can be

obtained by utilizing Eqs. (49) and (50) and can be stated

as:

Nts ¼
S ~G

SC ~G

¼
~T2
wd

2
h

k qdh
k

� �2 S ~G; ð51Þ

Nts¼
oh
oy

� �2

þ1

g
Br

ou

oy

� �2

þcþ H2
mþX2

� �
Bru2þcFBru

3

" #
:

ð52Þ

Total entropy generation in terms of stream function is

expressed as:

Nts ¼
oh
oy

� �2

þ 1

g
Br

o2w
oy2

� �2

þcþ H2
m þ X2

� �
Br

ow
oy

� �2

þcFBr
ow
oy

� �3
" #

;

ð53Þ

where variable g is described as g ¼
qdh
k

~Tw

� �
. The first term in

Eq. (52) denoted as:

Ntt ¼
oh
oy

� �2

; ð54Þ

depicts the entropy production because of heat transfer.

The dominance of the irreversibility system is actually

significant as the entropy production number is incapable

to overcome this difficulty. Bejan number (is defined as the

ratio of Ntt (thermal irreversibility) to the Nts (total entropy

generation)) is used to comprehend the entropy production

mechanisms. The Bejan number Be for the current study

can be demonstrated as:

Be¼
Ntt

Nts

¼
oh
oy

� �2

oh
oy

� �2
þ1

g Br ou
oy

� �2
þcþ H2

mþX2
� �

Bru2þcFBru3
� �

2
664

3
775:

ð55Þ

Bejan number varies between 0 and 1. From the above

relation, it is clear that Be ¼ 0 implies that entropy pro-

duction due to the impacts of fluid friction, electric field,

magnetic field and porous matrix are significant. Be ¼ 0:5

signifies that thermal irreversibility is equal to the irre-

versibilities due to fluid friction, electric field, magnetic

field and porous matrix. Be ¼ 1 is the instance when

thermal irreversibility is dominant.

In this paper, we have modeled all the equations by

considering the viscous dissipation. However, in the

absence of viscous dissipation, we cannot study the con-

tribution of viscous irreversibility in the entropy genera-

tion. Secondly, without taking the effects of viscous

dissipation, i.e., Br = 0, Bejan number is identically one.

Discussion of graphs

The results of different parameters such as Hm;m; cF and X

on the flow quantities u; dp
dx
;Dp; h and entropy production

are presented in Figs. 2, 3, 4, 5, 6, 7, 8 and 9.
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Flow characteristics

Velocity distribution is described in this subsection. Fig-

ure 2a–d shows the plots to explain the variations in

velocity profile for various values of Hartmann number

Hm, electroosmotic parameter m, Darcy number X2 and

Forchheimer number cF . Figure 2a shows that as we

increase the Hartmann number Hm, the axial velocity

decreases in the central area of the conduit because the

magnetic field provides resistance to the fluid flow in this

region. As the magnetic field and axial velocity are per-

pendicular to each other, there arises a Lorentz force which

has tendency to slow down fluid motion. And an opposite

trend is observed near the walls of the conduit. In Fig. 2b,

we observe the variations in velocity distribution for vari-

ous values of electroosmotic parameter m. Velocity has

decelerating behavior in the central area of conduit while

accelerating effects near the conduit walls. Since m is

defined as ratio of height of the conduit to Debye length kD,
it implies that as the height of the conduit increases the

velocity also increases. Figure 2c, d indicates the effect of

Darcy number X2 and Forchheimer number cF on velocity

field. By increasing Darcy number and Forchheimer num-

ber, velocity of fluid decreases in the center of the channel,

while opposite trend is observed in the vicinity of the

conduit walls. The Darcy number and Forchheimer number

are inversely proportional to permeability of porous med-

ium, so the greater the Darcy number and Forchheimer

number, the lesser will be the permeability which provides

more hindrance to the flow. In Fig. 2d, one can observe that

velocity was 1.27 (approximately) when the Forchheimer

number was zero, but as we increase the Forchheimer

number, it starts decreasing and reduces to 1.24 (approxi-

mately), when the Forchheimer number is 0.9. Hence it

makes it clear that the introduction of non-Darcy porous

medium reduces the velocity of the fluid.

Pumping characteristics

It is eminent fact that the peristaltic transport is connected

with the perception of mechanical pumping. Therefore, it is

justifiable to investigate the performance of pumping in the

view of current study. Figure 3a highlights that by

increasing the values of Hartmann number Hm, magnitude

of pressure gradient also increases. It is noticed that the rise

in pressure gradient is less at the wider portion of conduit,

while it is highest at narrowing portion. That is, much

pressure is required to go by the similar volume of fluid

through the wider region of conduit, for greater values of

Hartmann number Hm. As Hartmann number Hm is the

ratio of Lorentz force (electromagnetic force) to viscous
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X = 1, Hm = 1 and the other parameters are x = 0.5, a1 = 0.5, b1 = 0.5, dh = 1.0, b = 1 and Q0 = 1
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force, higher values of the Hartmann number indicate the

stronger Lorentz force; hence, more pressure is required to

overcome the resistance provided by the Lorentz force.

Furthermore, same trend is observed in Fig. 3b, c, due to

variation in Forchheimer cF and Darcy number X2 at the

wider and narrowing region of the conduit, respectively. As

the Darcy number and Forchheimer number are inversely

proportional to permeability of porous medium, for the

higher values of Darcy number and Forchheimer number

(i.e., for lesser permeability) more pressure is needed to

pass through the porous medium. Figure 3b shows that

magnitude of pressure is low in the absence of non-Darcy

porous medium, i.e., the case when cF ¼ 0, as we increase

the values of Forchheimer number the magnitude of pres-

sure gradient also increases. Figure 3d shows that magni-

tude of pressure gradient decreases by increasing the

electroosmotic parameter m. Electroosmotic parameter m

is defined as ratio of height of the conduit to Debye length

kD; it implies that the lesser the thickness of EDL, the

lesser will be the pressure gradient. Hence the overall flow

can be managed by regarding the appropriate electric and

magnetic field.

Variations in pressure rise Dp w.r.t flow rate F are

plotted in Fig. 4a–d for various physical parameters. These
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Fig. 5 Temperature distribution h versus y for a
m ¼ 5; X ¼ 1; Br ¼ 0:05; Hm ¼ 1:0; cF ¼ 0:5, for b Hm ¼ 1; c ¼
0:9; X ¼ 1; cF ¼ 1:0; Br ¼ 0:05 for c Hm ¼ 1; m ¼ 5; cF ¼
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figures illustrate that pressure rise and flow rate are linearly

proportional to each other. We categorize the pumping

phenomena into three categories according to variation in

pressure rise Dp. The area where Dp is greater than zero

(pressure gradient is adverse in that case) is called pumping

region, which is further categorized as negative and posi-

tive pumping corresponding to F\0 and F[ 0. The area

where Dp\0 is called co-pumping region. The area where

Dp is equal to zero is called free pumping region. Figure 4a

illustrates that by increasing Hartmann number Hm, pres-

sure rise also increases in negative pumping region. Same

behavior is followed in co-pumping region. The variations

in Dp for various values of electroosmotic parameter m are

shown in Fig. 4b. It shows that by increasing values of

electroosmotic parameter m, pressure rise also increases in

negative pumping region, while it decreases in co-pumping

region. Figure 4c illustrates the effect of different values of

Darcy number X2. Figure 4c shows that same trend is

observed for Darcy number X2 as in the case of Hartmann

number Hm. Figure 4d shows that by increasing
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Forchheimer number cF, Dp decreases in the negative

pumping region, while reverse trend is observed in co-

pumping area.

Heat characteristics

The generation of joule heating effect during electroos-

motic flow is the built-in property. It is caused due to

resistance produced by electrolyte. Figure 5a–f shows the

temperature characteristics for of various values of Joule

heating parameter c, electroosmotic parameter m, Brink-

man number Br and Hartmann number Hm. In Fig. 5a, we

can observed that temperature increases very quickly in the

central area of conduit by increasing values of Joule

heating parameter c, while near the conduit walls this effect
becomes insignificant. Joule heating parameter c is directly
proportional to square of electric field; hence, stronger

electric field results in rise in temperature. The temperature

profile for various values of electroosmotic parameter m is

presented in Fig. 5b, while keeping the values of other

parameters constant. Temperature decreases by increasing

m at the central area of conduit, while the opposite trend is

observed near the walls of the conduit. The reason behind

this lies in the thickness of EDL; a decrease in EDL causes
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a rise in temperature. Figure 5c explains that the Brinkman

number has an increasing effect on temperature distribution

near the central area of the conduit. The cause behind this

behavior is that of Brinkman number being ratio of viscous

dissipation to molecular conductivity. As Brinkman num-

ber increases, the friction between the adjacent layers of

fluid increases and consequently the kinetic energy of fluid

converted into thermal energy which in turn rises the fluid

temperature in the middle of the channel (see Fig. 5c). This

increase in energy is according to the first law of thermo-

dynamics, i.e., one form of energy (kinetic) is converted to

another form (thermal energy). According to the second

law of thermodynamics, all real processes are irreversible,

i.e., entropy increases during a real process. It is a well-

known fact that heat is the most disorganized form of

energy, and therefore, the conversion of kinetic energy into

heat energy is according to the second law of thermody-

namics. Variation in temperature distribution against dif-

ferent values of Hartmann number Hm is shown in Fig. 5d.

It signifies that the temperature increases by increasing the

Hartmann number. This rise in temperature is more sig-

nificant in the central area of the micro-channel, because

the Lorentz force effects are stronger in the central region

of the conduit, for higher values of Hartmann number Hm

which provides hindrance to fluid flow. The fall in kinetic

energy is accompanied with the rise in thermal energy.

Figure 5e, f represents the impact of Darcy number X2 and

Forchheimer number cF on temperature profile. It is noticed

that the existence of porous medium boost the temperature

throughout the channel. The higher values of Darcy X2 and

Forchheimer number cF are responsible for lesser perme-

ability of the medium. Hence the lesser the permeability,

the greater will be the temperature rise.

Figure 6a, b shows the changes in Nusselt number for

various values of Joule heating parameter c and Brinkman

number Br. It can be observed from these two figures that

the Nusselt number decreases very quickly for the impact

of these two parameters up to specific values, after which it

decreases very slowly. Higher values of Nusselt number

refer to valuable convection, whereas low Nusselt number

signifies the low motion more efficient than the conduction

of fluid. The outcomes reveal that Brinkman number and

Joule heating parameter are considerably accountable for

managing the rate of heat transfer near the walls. One of

the paramount issues in experimental estimation of Nusselt

number is to find out the temperature of mean fluid in the

micro-fluidic apparatus. Hence it is significant while

computing Nusselt number theoretically, in micro-fluidic

apparatus that gradient of temperature should be very high

in the micro-channel. The impact of EDL thickness and

viscous dissipation should be considered while designing

micro-fluidic apparatus.

Entropy production

Figures 7–9 show the plots to illustrate the impact of var-

ious physical characteristics on the entropy production.

Figure 7a represents the changes in Nts (total entropy

production) for different values of c (Joule heating

parameter). Figure shows that for increasing values of c;Nts

also increases with the conduit height, while it becomes

steady in the middle region of the conduit. From the defi-

nition of c, it is clear that the greater the height of conduit,
the greater will be the c and hence the greater will be the

Nts near the walls of the conduit. Similarly electric field

strength also has enhancing effects on Nts (total entropy

production), so we can control entropy production by

managing the intensity of electric field. Figure 7b illus-

trates the impact of Hm Hartmann number on total entropy

production Nts. It has accelerating impact on entropy pro-

duction in the locality of conduit walls as compared to the

middle region of the conduit. The Hartmann number is

ratio of Lorentz force to viscous force. As in the central

region of the conduit, the viscous effects are less and the

flow is fully developed. Hence the magnetic field impacts

are not very strong. Figure 8 demonstrates the changes in

Ntt (thermal irreversibility) for various values of c (Joule

heating parameter). It is noticed that for higher values of c,
thermal irreversibility also increases very quickly near the

conduit walls. However, it shows constant behavior in the

middle region of conduit. Hence from the figure, one can

conclude that the impact of c is strong near the conduit

walls. The reason behind this is the strength of electric

field, i.e., the stronger the electric field, the greater will be

the thermal irreversibility. Figure 9a–f represents the

impact of joule heating parameter c, Hartmann number Hm,

Darcy number X2, Forchheimer number cF and electroos-

motic parameter m on Bejan number Be. From the figures,

it is observed that at the middle region ðy ¼ 0Þ of the

conduit Bejan number is zero in all the cases. Here it

depicts that at this region irreversibilities due to friction,

joule dissipation and porous matrix are dominant. Fig-

ure 9a represents that increasing the value of Hartmann

number Hm has enhancing impact on Bejan number Be

which shows that thermal irreversibility is prominent near

the channel walls. Figure 9b represents the strong distur-

bance in the thermal irreversibility in the EDL for greater

values of electroosmotic parameter m. The reason is that

the lesser the thickness of EDL (electric double layer), the

lesser will be the Bejan number Be. Figure 9c shows that

for increasing values of c, there is a very clear increase in

the Bejan number. It reflects that an increase in conduit

height and stronger electric field strength are the reasons

behind the rise in the Bejan number. Figure 9d depicts the

variation in Bejan number w.r.t increasing values of
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Brinkman Br. We noticed that the changes in the Bejan

number are high near the conduit walls. As Brinkman

number is relation between viscous dissipation to molec-

ular conduction, the greater the values of Br, the lesser will

be the heat conduction generated by viscous dissipation

and thus the greater will be the Bejan number. Figure 9e, f

shows that for increasing values of Darcy number X2 and

Forchheimer number cF the Bejan number increases near

the walls of the conduit. The higher values of Darcy

number X2 and Forchheimer number cF indicate the less

permeability of porous medium which provide more hin-

drance to fluid flow and results in rise in Bejan number. In

all cases, Bejan number Be increases near wall which

shows that irreversibility due to heat transfer is prominent

as compared to irreversibilities due to fluid friction, Joule

heating and porous medium.

Concluding remarks

The current study is concerned with analysis of entropy

generation in electroosmotic flow aggravated by peristaltic

pumping through non-Darcy porous medium. Assumption

of long wavelength approximation and Debye–Hückel

linearization are used to solve the resultant governing

equations. Series solutions have been calculated with the

help of regular perturbation technique. Moreover, the

impact of some parameters like Hartmann number, elec-

troosmotic parameter, Darcy number and Forchheimer

number on the different profiles such as velocity, pressure

gradient and pressure rise will be analyzed graphically.

Following are the main results of the current study:

• The axial velocity decreases due to the presence of non-

Darcy porous medium.

• The axial pressure gradient is increased due to the

existence of non-Darcy porous medium. Hence perme-

ability of the medium has greater effect on fluid motion.

• Th existence of porous medium boosts the temperature

throughout the channel.

• Entropy production increases for increasing values of

Darcy number X2 and Forchheimer number cF, i.e., the

lesser the permeability of the medium, the greater will

be the entropy generation. Hence entropy generation is

enhanced due to the presence of non-Darcy porous

medium (see Fig. 9e, f).
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