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Abstract
The present article investigates the effect of second-order slip, chemical reaction and Soret and Dufour effects on MHD

convective flow of an Oldroyd-B liquid toward a stretchy surface. Analysis of thermal relaxation time is made by using

Cattaneo–Christov heat flux model. The effects of radiation and convective heating are also taken into account. The

ordinary differential equations are retrieved by the help of suitable transformations of governing equations. The analytical

solutions are observed by homotopy progress. The velocity, concentration and temperature field are analyzed for various

pertinent parameters involved in the study. The graphical results of physical quantities of interest such as skin friction, local

Nusselt number and local Sherwood number are presented. A comparative study with existing result indicates excellent

agreement.

Keywords Second-order slip � Oldroyd-B fluid � Cattaneo–Christov heat flux � Convective heating � Soret and Dufour

effects � Chemical reaction

List of symbols
A1 Relaxation time

A2 Retardation time

a Stretching rate ðs�1Þ
Bi Biot number (–)

B0 Constant magnetic field ðkg s�2 A�1Þ
c Concentration ðkgm�3)

cp Specific heat ðJ kg�1 K�1Þ
c1 Ambient concentration ðkgm�3)

cw Fluid wall concentration ðkgm�3)

Cf Skin friction coefficient ð1þa
1þb f

00ð0ÞÞ (–)
Cr Chemical reaction parameter (–)

Dm Diffusion coefficient ðm2 s�1Þ
Df Dufour number (–)

f ðgÞ Velocity similarity function (–)

hf Convective heat transfer coefficient ðWm�1 K�1Þ
k Thermal conductivity ðWm�1 K�1Þ
kT First-order chemical reaction parameter (–)

L Auxiliary linear operator (–)

M Hartmann number (–)

N Nonlinear operator (–)

Nux Nusselt number ð�ð1þ 4
3
RdÞh0ð0ÞÞ (–)

Pr Prandtl number (–)

q1 Heat flux ðWm�2Þ
Rd Radiation constant (–)

Sc Schmidt number (–)

Sr Soret number (–)

Shx Sherwood number ð�/0ð0ÞÞ (–)
T Temperature (K)

T1 Ambient temperature (K)

Tw Convective surface temperature (K)

u, v Velocity components in (x, y) directions ðms�1Þ
uw Velocity of the sheet ðms�1Þ
x, y Cartesian coordinates (m)

Greeks
a Dimensionless relaxation time parameter (–)

b Dimensionless retardation time parameter (–)
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vm Auxiliary parameter (–)

�1 Dimensionless first-order slip velocity parameter (–)

�2 Dimensionless second-order slip velocity parameter (–)

/ðgÞ Concentration similarity function (–)

c Dimensionless thermal relaxation time (–)

g Similarity parameter (–)

k1 First-order slip velocity factor

k2 Second-order slip velocity factor

m Kinematic viscosity ðm2 s�1Þ
hðgÞ Temperature similarity function ð�Þ
q Density ðkgm�3Þ
r Electrical conductivity ðSmÞ
w Stream function ðm2 s�1Þ

Introduction

The flow of non-Newtonian fluids past a stretchy surface

has attracted many scientists by interest of its engineering-

related applications. These fluids did not satisfy the

‘‘Newton’s law of viscosity’’, that is, these fluids change

their flow behavior with respect to stress. Also, it cannot be

interpreted the aspects of non-Newtonian fluids as a single

constitutive relationship. Many investigators developed the

different models of such fluids. Fourier heat statement

yields parabolic energy equation which presents that the

total system is immediately affected by the initial distur-

bance. To taken this issue, Cattaneo [1] altered Fourier’s

law of heat conduction in appearance of thermal relaxation.

The hyperbolic-type energy equation exists in the presence

of Cattaneo’s statement. Christov [2] upgraded the analysis

of Cattaneo [1] by involving thermal relaxation time with

Oldroyd’s upper-convected derivatives to attain the mate-

rial invariant formulation. The Oldroyd-B liquid model is

one of the non-Newtonian fluid models, which describes

the retardation and relaxation effects. Hayat et al. [3]

investigated about 2D MHD steady flow of an Oldroyd-B

liquid with Cattaneo–Christov model. Li et al. [4] depicted

the slip effects of MHD flow of viscoelastic fluid bounded

by a vertical stretching sheet with Cattaneo–Christov heat

flux model. Imtiaz et al. [5] provided the 2D third-grade

liquid flow over a linear stretchy sheet with chemical

reaction. Mixed convection flow of an Oldroyd-B liquid

with cross-diffusion effects was analyzed by Ashraf et al.

[6]. Effect of various non-Newtonian nanofluids over a

cone was done by Reddy et al. [7]. Rashidi et al. [8]

examined the second-order slip flow and heat transfer of a

nanofluid toward a stretchy surface. Zhu et al. [9] studied

the magneto-hydrodynamic flow and heat transfer with

effects of the second-order velocity slip and temperature-

jump boundary conditions. Vishnu Ganesh et al. [10] per-

formed the magneto-hydrodynamic axisymmetric slip flow

along a vertical stretching cylinder with convective

heating.

In recent years, quite a large number of studies dealingwith

Dufour–Soret effects onmass and heat transfer of viscoelastic

fluids have been appeared. Dufour and Soret effects combined

with radiation and chemical reactiononOldroyd-B liquidflow

upon a stretchy surfacewith Cattaneo–Christov heat fluxwere

analyzed by Loganathan et al. [11]. By using Lie group

analysis, Bhuvaneswari et al. [12] explored the double-dif-

fusive convective flow of an incompressible fluid past an

inclined semi-infinite surface with first-order homogeneous

chemical reaction. Siddiqa et al. [13] studied about Casson

particulate suspension flow past a complex isothermal wavy

surface with thermal radiation. Freidoonimehr et al. [14]

obtained an analytical solution of heat and mass transfer for

MHD three-dimensional flow toward a bidirectional stretch-

ing sheet with velocity slip conditions. The approximate

analytical method of homotopy analysis is widely used in the

flow and heat transfer problems to solve the highly nonlinear

equations. This homotopy analysis method has been exten-

sively used/studied in Refs. [15–19].

We attempt this study to explore the effects of second-

order slip flow of an Oldroyd-B fluid toward a stretching

surface in the appearance of radiation, convective heating,

chemical reaction and cross-diffusion effects using Catta-

neo–Christov heat flux model.

Flow analysis

Consider the two-dimensional MHD convective flow of an

incompressible Oldroyd-B liquid over a linear stretchy

sheet (Fig. 1). The velocity distributions (u, v) are taken in

the (x, y)-directions, respectively. The velocity of sheet is

assumed as uw ¼ ax, where a[ 0 is the stretching rate.

The two temperatures on and apart from the surface are

expressed by Tw and T1 with Tw [ T1. Heat flux (q1) in

view of Cattaneo–Christov theory is expressed

q1 þ k
oq1

ot
þ V:rq1 � q1:rV þ ðr:VÞq1

� �
¼ � k0rT

ð1Þ

in which k is the thermal relaxation, V is the velocity and

k is the fluid thermal conductivity. Equation (1) reduces to

the classical Fourier’s law when k ¼ 0. Finally, Eq. (1) for

incompressible fluid case reduces to the following

expression:

q1 þ k
oq1

ot
þ V :rq1 � q1:rV

� �
¼ � krT ð2Þ

The magnetic field of strength B0 is applied upright to the

stretchy surface. The electric and induced magnetic fields
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are neglected. The governing equations of the flow are

taken as, see Hayat et al. [3]

ou

ox
þ ov

oy
¼ 0; ð3Þ
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oy
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o2u
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u
oT

ox
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oy
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o2T
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� 1

qcp

oqr
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u
oC

ox
þ v

oC

oy
¼ Dm

o2C

oy2
� kmðC � C1Þ þ DmkT

Tm

o2T

oy2
ð6Þ

The corresponding boundary conditions are

u ¼ uw þ uslip ¼ axþ k1
ou

oy
þ k2

o2u

oy2
; v ¼ 0;

� k
oT

oy
¼ hfðTw � T1Þ; T ¼ Tw C ¼ Cw at y ¼ 0;

u ! 0; v ! 0; T ! T1; C ! C1 as y ! 1;

ð7Þ

where m, q, A1 & A2, c, cp, r, Dm, kT, k1 & k2 are the

kinematic viscosity, density, relaxation time and retarda-

tion time, concentration, specific heat, electrical conduc-

tivity, diffusion coefficient, first-order chemical reaction

parameter and first- and second-order slip velocity factors,

respectively. Using Cattaneo–Christov heat flux theory, we

obtain the following energy equation

u
oT

ox
þ v

oT

oy
þ k

 
u2

o2T

ox2
þ v2

o2T

oy2
þ u

ou

ox
þ v

ou

oy

� �
oT

ox

þ 2uv
oT2

oxoy
þ u

ov

ox
þ v

ov

oy

� �
oT

oy

!

¼ k

qcp

o2T

oy2
� 1

qcp

oqr

oy
þ DmkT

cscp

o2C

oy2

ð8Þ

The radiative heat flux is taken as

qr ¼ � 4r0
3k�

oT4

oy
ð9Þ

Consider the following similarity transformations

w ¼
ffiffiffiffiffi
am

p
xf ðgÞ; u ¼ ow

oy
; v ¼ � ow

ox
; g ¼

ffiffiffi
a

m

r
y

v ¼ �
ffiffiffiffiffi
am

p
f ðgÞ; u ¼ axf 0ðgÞ; hðgÞ ¼ T � T1

Tw � T1
;

/ðgÞ ¼ C � C1
Cw � C1

ð10Þ

Substituting Eq. (10) in Eqs. (4), (6) and (8), we have

f 000 þ b f 002 � ff iv
� �

þ a 2ff 0f 00 � f 2f 000
� �

þ ff 00 � f 02 �M f 0 � aff 00ð Þ ¼ 0 ð11Þ

1

Pr
1þ 4

3
Rd

� �
h00 þ fh0 � c f 2h00 þ ff 0h0

� �
þ Df/

00 ¼ 0

ð12Þ
1

Sc
/00 þ f/0 � Cr/þ Srh00 ¼ 0 ð13Þ

with boundary conditions

Momentum Boundary layer

y, v

Thermal Boundary layer

Stretching/Shrenking sheet

x,u = uw + uslip (x)

uslip (x) = Second ordr slip–k
∂T
∂y– = h_f[Tw–T∞]

Fig. 1 Schematic diagram
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f ð0Þ ¼ 0; f 0ð0Þ ¼ 1þ �1f
00ð0Þ þ �2f

000ð0Þ;
h0ð0Þ ¼ �Bið1� hð0ÞÞ; /ð0Þ ¼ 1

f 0ð1Þ ¼ 0; hð1Þ ¼ 0; /ð1Þ ¼ 0;

ð14Þ

Here we declare the dimensionless variables as follows:

�1 ¼ k1
ffiffiffiffiffiffiffi
a=m

p
& �2 ¼ k2 a

m are the first- and second-order

slip velocity constants, hf
k

ffiffiffiffiffiffiffi
m=a

p
is the Biot number, a ¼

A1a and b ¼ A2a are the dimensionless relaxation and

retardation time constants, respectively, M ¼ rB2
0

qa the

Hartmann number, Pr ¼ qmCp

k
the Prandtl number, Rd ¼

4r�T3
1

kk� the thermal radiation parameter, c ¼ ka, the non-di-

mensional thermal relaxation time, Df ¼ DmkT
mcscp

cw�c1
Tw�T1

, the

Dufour number, Cr ¼ km
a

the chemical reaction constant,

Sc ¼ m
Dm

the Schmidt number, Sr ¼ DmkT
mTm

Tw�T1
cw�c1

the Soret

number.

The dimensionless forms of local skin friction (Re
1
2Cfx),

heat ðRe�1
2NuxÞ and mass ðRe�1

2ShxÞ transfer rates are

represented below

Re
1
2Cfx ¼

1þ a
1þ b

f 00ð0Þ

Re�
1
2Nux ¼ � 1þ 4

3
Rd

� �
h0ð0Þ

Re�
1
2Shx ¼ �/0ð0Þ

Solution methodology

We incorporated the homotopy analysis method in order to

get the convergent solution of the system of equations. The

initial approximations and complementary linear operators

can be put in the form

f0 ¼ ge�g þ 3�2 � 2�1
�2 � 1� �1

� e�g � 3�2 � 2�1
�2 � 1� �1

;

h0 ¼
Bi � e�g

1þ Bi
; /0 ¼ e�g: Lf ¼ f 000 � f 0;

Lh ¼ h00 � h; L/ ¼ /00 � /

which satisfies the property

Lf D1 þ D2e
g þ D3e

�g½ � ¼ 0; Lh D4e
g þ D5e

�g½ � ¼ 0;

L/ D6e
g þ D7e

�g½ � ¼ 0;

where Dkðk ¼ 1� 7Þ are constants. The zeroth-order

deformation equation is constructed as

1� pð ÞLf bf g; pð Þ � f0 gð Þ
h i

¼ pHfhfNf
bf g; pð Þ
h i

ð15Þ

1� pð ÞLh bh g; pð Þ � h0 gð Þ
h i

¼ pHhhhNh
bh g; pð Þ; bf g; pð Þ; b/ g; pð Þ
h i

ð16Þ

1� pð ÞL/ b/ g; pð Þ � /0 gð Þ
h i

¼ pH/h/N/
b/ g; pð Þ; bf g; pð Þ; bh g; pð Þ
h i

: ð17Þ

where the system of nonlinear operators in HAM for the

present problem is

Nf
bf g; pð Þ
h i

¼ o3bf g; pð Þ
og3

� obf g; pð Þ
og

 !2

þbf g; pð Þ o
2bf g; pð Þ
og2

þ a 2bf g; pð Þ o
bf g; pð Þ
og

o2bf g; pð Þ
og2

� bf g; pð Þ
	 
2o3bf g; pð Þ

og3

 !

þ b
o2bf g; pð Þ

og2

 !2

�bf g; pð Þ o
4bf g; pð Þ
og4

0
@

1
A

�M
obf g; pð Þ

og
� abf g; pð Þ o

2bf g; pð Þ
og2

 !
ð18Þ

Nh
bf g; pð Þ; bh g; pð Þ; b/ g; pð Þ
h i

¼ 1þ 4

3
Rd

� �
o2bh g; pð Þ

og2
þ Prbf g; pð Þ o

bh g; pð Þ
og

� Prc bf g; pð Þ o
bf g; pð Þ
og

obh g; pð Þ
og

þ bf g; pð Þ
	 
2o2bh g; pð Þ

og2

 !

þ PrDf

o2b/ g; pð Þ
og2

 !
ð19Þ

N/
bf g; pð Þ; bh g; pð Þ; b/ g; pð Þ
h i

¼ o2b/ g; pð Þ
og2

þ Scbf g; pð Þ o
b/ g; pð Þ
og

� Sc Cr b/ g; pð Þ þ ScSr
o2bh g; pð Þ

og2

 ! ð20Þ

The boundary conditions are

bf 0; pð Þ ¼ 0;bf 0 0; pð Þ ¼ 1þ �1bf 00 0; pð Þ
þ �2bf 000 0; pð Þ;bf 0 1; pð Þ ¼ 0;

bh0 0; pð Þ ¼ �Bi 1� bh 0; pð Þ
	 


; bh 1; pð Þ ¼ 0;

b/ 0; pð Þ ¼ 1; pð Þ; b/ 1; pð Þ ¼ 0:

ð21Þ

The mth-order deformation equations are

Lf fm gð Þ � vmfm�1 gð Þð Þ ¼ hfR
f
m gð Þ ð22Þ

Lh hm gð Þ � vmhm�1 gð Þð Þ ¼ hhR
h
m gð Þ ð23Þ
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L/ /m gð Þ � vm/m�1 gð Þð Þ ¼ h/R
/
m gð Þ ð24Þ

subject to the boundary conditions

fm 0ð Þ ¼ 0; f 0m 0ð Þ � �1f
00
m 0ð Þ � �2f

000
m 0ð Þ ¼ 0 and

f 0m gð Þ ! 0 when g ! 1
h0m 0ð Þ � Bihm 0ð Þ ¼ 0 and

hm gð Þ ! 0 when g ! 1
/0
m 0ð Þ ¼ 0 and /m gð Þ ! 0 when g ! 1

ð25Þ

Rf
m gð Þ ¼ f 000m�1 þ Rm�1

k¼0 fm�1�kf
00
k � f 0m�1�kf

0
k

� �
þ aRm�1

l¼0 fm�1�l 2Rl
j¼0f

0
l�jf

00
j þ Rl

j¼0fl�jf
000
j

	 


þ bRm�1
k¼0 f 00m�1�kf

00
k � fm�1�kf

iv
k

� �
�M fm�1 � aRm�1

k¼0 fm�1�kf
00
k

� �
ð26Þ

Rh
m gð Þ ¼ 1þ 4

3
Rd

� �
h00m�1 þ PrRm�1

l¼0 h0m�1�lfl
� �

� Prc fm�1�lR
l
j¼0f

0
l�jh

0
j þ fm�1�lh

00
l

	 


þ PrDfR
m�1
k¼0 /

00
m�1 ð27Þ

R/
m gð Þ ¼ 1

Sc
/00
m�1 þ Rm�1

k¼0 fm�1�k/
0
k � Cr/m�1

þ SrRm�1
k¼0 h

00
m�1

ð28Þ

where vm ¼ 1; m� 1:
0; m� 1;

(

After solving mth -order HAM equations, we get the

followings

fmðgÞ ¼ f �mðgÞ þ D1 þ D2e
g þ D3e

�g

hmðgÞ ¼ h�mðgÞ þ D4e
g þ D5e

�g

/mðgÞ ¼ /�
mðgÞ þ D6e

g þ D7e
�g

The f �mðgÞ, h
�
mðgÞ and /�

mðgÞ are the special solutions of

the equations. The complementary constants hf , hh and h/
perform a key role and the fields are drawn at fifteenth

order of approximation to accomplish the valid range of

constants (see Fig. 2). The acceptable values of hf , hh and

h/ are � 1:7� hf � � 0:6;� 1:2� hh � � 0:6;� 1:2� h/
� � 0:3 , respectively. Table 1 shows the order of

approximation for HAM. Table 2 depicts f 00ð0Þ in the

absence of MHD and retardation time parameter. It is

observed that all obtained values of f 00ð0Þ are in an

excellent agreement with the values found in Sadghey et al.

[20], Mukhopadhyay [21] and Abbasi et al. [22]. A com-

parison of � f 00ð0Þ and � h0ð0Þ has been made between the

results of the HAM solution and the results in Ref. [3] in

Table 3.

Results and discussion

The numerical values of velocity, concentration and tem-

perature distributions are computed through various com-

bination of parameters involved in this study with the fixed

values of �1 ¼ 0:2, �2 ¼ 0:3, M ¼ 0:5, a ¼ 0:1, b ¼ 0:1,

c ¼ 0:5, Rd ¼ 0:3, Pr ¼ 1:0, Df ¼ 0:5, Sc ¼ 0:9, Bi ¼ 0:5,

Cr ¼ 1:0, Sr ¼ 0:3.

Effect on velocity

It is surveyed from Fig. 3 that the velocity diminishes

while increasing the values of relaxation time constant.

This is due to increasing the stretching rate of the sheet

which reduces the flow speed. Figure 4 demonstrates that

the velocity decreases near boundary and rises after some

distance when raising the values of retardation time con-

stant. Increasing stretching rate affects retardation time

parameter which provides this peculiar result. The velocity

profile slowly diminishes on increasing the values of first-

order slip constant, which is plotted in Fig. 5. Figure 6

indicates that the velocity enhances when the second-order

slip constant rises. Here viscosity of the fluid reduces on

increasing �2. When comparing Figs. 5 and 6, the effect of

first-order slip constant on velocity is more pronounced

than the second-order slip constant.
 2.0  1.5  1.0  0.5 0.0

  2.0

 1.5

 1.0

 0.5

0.0

'

'
'

'
“

“

f

f θ φ

Fig. 2 h-curves for hf ; hh; h/

Table 1 Order of approximations

Order �f 00ð0Þ �h0ð0Þ �/0ð0Þ

1 2.0422 0.2363 1.0687

5 1.6491 0.1046 1.1607

10 1.6277 0.0818 1.1707

15 1.6274 0.0817 1.1717

20 1.6274 0.0821 1.1715

25 1.6274 0.0820 1.1715

30 1.6274 0.0820 1.1715

40 1.6274 0.0820 1.1715

50 1.6274 0.0820 1.1715

Second-order slip, cross-diffusion and chemical reaction effects on magneto-convection of… 405

123



Effect on temperature

The influence of thermal relaxation time for heat flux c on
the temperature profile is analyzed in Fig. 7. It can be

archived that the temperature in Cattaneo–Christov heat

flux model is less than the Fourier’s model. Figure 8 dis-

plays the impact of radiation parameter on temperature. By

raising the values of radiation parameter, the thermal

boundary layer thickness develops. Raising the radiation

Table 2 Comparison with f 00ð0Þ
obtained by Sadghey et al. [20],

Mukhopadhyay [21] and

Abbasi et al. [22] in the limiting

case for different a by fixing

b ¼ M ¼ 0

a Sadghey et al. [20] Mukhopadhyay. [21] Abbasi et al. [22] Present

0.0 1.000 0.9999963 1.00000 1.00000

0.2 1.0549 1.051949 1.05189 1.05189

0.4 1.10084 1.101851 1.10190 1.10190

0.6 1.0015016 1.150162 1.15014 1.15014

0.8 1.19872 1.196693 1.19671 1.19671

Table 3 Comparison with � f 00ð0Þ and � h0ð0Þ obtained by

Hayat et al. [3], when �1 ¼ �2 ¼ Rd ¼ Df ¼ Bi ¼ 0

Mode � f 00ð0Þ � h0ð0Þ

Order Hayat et al. [3] Present Hayat et al. [3] Present

1 1.1833 1.1833 0.61111 0.61111

5 1.1439 1.1439 0.54844 0.54844

12 1.1435 1.1435 0.54642 0.54642

20 1.1435 1.1435 0.54642 0.54642

30 1.1435 1.1435 0.54642 0.54642

0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0
1.2

' f

Fig. 3 Velocity variations for different ranges of relaxation time

parameter (a)

0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

'
f

Fig. 4 Velocity variations for different ranges of retardation time

parameter (b)

0.0 0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

' f

1

2

Fig. 5 Velocity variations for different ranges of first-order velocity

slip parameter (�1)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

'

1

2

Fig. 6 Velocity variations for different ranges of second-order

velocity slip parameter (�2)

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

Fig. 7 Temperature variations for different ranges of thermal

relaxation time parameter (c)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

d

Fig. 8 Temperature variations for different ranges of radiation

parameter (Rd)
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parameter enhances the thermal conductivity of the med-

ium and it results in the growth of thermal boundary layer.

It is seen from Figs. 9 and 10 that first- and second-order

slip constants showed the opposing tendency on tempera-

ture profile. Figure 11 shows the effect of Biot number on

temperature profile. It shows that temperature is growing

function of Bi near the surface because the Biot number

affects much the temperature near the surface. Rising

values of Bi are due to higher heat transfer resistance inside

a body as compared to surface. The impact of Dufour

number on temperature is sketched in Fig. 12. It is con-

cluded that the thermal boundary layer thickness boosted

up on raising the values of Dufour number.

Effect on concentration

Figure 13 demonstrates the effect of chemical reaction on

concentration profile. It shows that concentration reduces

on higher values of chemical reaction parameter. It is

inspected from Fig. 14 that a rise in Soret number initially

gives less effect on concentration, while the tremendous

trend occurs when g[ 1. That is, concentration rises with

Soret number after g[ 1.

Local skin friction, Nusselt number
and Sherwood number

The effects of �1, �2 with a on skin friction are investigated

through Figs. 15 and 16. Apparently, first- and second-

order slip constants with relaxation time have opposite

effects on skin friction. Figure 17 presents the effects of

both the first-order slip constant �1 and the magnetic field

constant M on the local Nusselt number. The graph rep-

resented that the heat transfer rate decreases when �1
increases. Figure 18 depicts the influence of both the sec-

ond-order slip constant �2 and the magnetic field constant

M on the local Nusselt number. From the figure, we can

observe that the heat transfer rate on the surface enhances

when the second-order slip constant �2 increases. Fig-

ures 19 and 20 explore the variation of the local Sherwood

number. It is clear that the local mass transfer rate dimin-

ishes with the growth of a and Cr, and it decreases on

raising the value of M and Cr. Comparing these figures, it

is concluded that the first- and second-order slip constants

provide opposite tendency on physical quantities.
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Fig. 9 Temperature variations for different ranges of first-order

velocity slip parameter (�1)
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Fig. 10 Temperature variations for different ranges of second-order

velocity slip parameter (�2)
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Fig. 13 Concentration variations for different range of Chemical

reaction parameter (Cr)
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Conclusions

The present study reports the second-order slip and

chemical reaction on steady two-dimensional flow of an

incompressible Oldroyd-B liquid over a stretching sheet

with convective heating. The following observations are

found.

1. The skin friction enhances with first-order velocity slip,

and it diminishes with second-order velocity slip.

2. The chemical reaction boosted up the mass transfer

rate. Similar behavior on mass transfer rate with

magnetic field is observed.

3. The first-order velocity slip provides much effect on

heat transfer rate comparing second-order velocity slip

while increasing Hartmann number.
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