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Abstract
Darcy–Forchheimer three-dimensional rotating flow of nanoliquid with prescribed heat and mass flux conditions is

addressed. Flow is generated by an exponentially stretchable surface. Thermophoretic diffusion and random motion are

employed. Suitable transformations lead to strong nonlinear ordinary differential system. An efficient numerical solver

namely NDSolve is used to tackle the governing nonlinear system. Plots have been displayed in order to explore the role of

flow parameters on the solutions. Moreover the skin-friction coefficients and heat and mass transfer rates are also plotted

and discussed. It is noticed that the effects of porosity parameter and Forchheimer number on temperature field are quite

similar. Both temperature and its associated thermal layer thickness are enhanced for larger porosity parameter and

Forchheimer number.

Keywords 3D flow � Nanoparticles � Rotating frame � Darcy–Forchheimer porous space � Prescribed heat and mass flux

conditions � Numerical solution

Introduction

Nanofluid is comparatively a newly recognized class of

fluids containing carrier liquid with particles of nano-size.

Basically some materials like oil, ethylene glycol, propy-

lene glycol etc. in view of their weaker thermal conduc-

tivity have poor heat transfer properties. Thus, inclusion of

nanoparticles in such type of carrier liquids is a quite

charismatic way to enhance the thermal efficiency of such

liquids. These nanoparticles are especially made of metals,

oxide ceramics, carbide ceramics, non-metals and various

other composite materials. Such nanoparticles have

distinctive physical and chemical features and have thermal

efficiencies magnificently higher than carrier liquids. These

nanoparticles are utilized in development and structural

process of fiber production in textile, MHD power gener-

ators, petroleum reservoirs, cooling of nuclear reactors,

cancer therapy, vehicle transformer, geothermal energy,

safer surgery processes and many others. Recent inspec-

tions on nanofluid reveal that the carrier liquid has abso-

lutely different features with the nanoparticle mixture

because the thermal efficiency of carrier liquid is smaller

than the nanoparticle’s thermal efficiency. Appropriate

storage of thermal energy and higher convective heat

transfer coefficients are the main features of nanofluid.

Nanofluids have various common applications in industrial

and vehicle cooling, heat control systems, sensing, food

industry, chemical industry, cooling towers, power pro-

duction and efficiency of hybrid-powered engines etc.

Initially, the idea of nanofluid was devised by Choi [1]. He

concluded that the nanoparticles dramatically increase the

thermal efficiency of carrier liquids. Buongiorno [2]

developed the two-phase model of nanoparticles by con-

sidering the thermophoretic and Brownian motion aspects.

Here we employed the Buongiorno model to study the
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convective heat transfer characteristics in nanofluids. This

model determined that the homogeneous-flow models are

in conflict with the experimental results and tend to

underpredict the heat transfer coefficient of nanofluid.

While the dispersion effect is totally negligible as a result

of nanoparticle size. Thus, Buongiorno proposed an alter-

native model that ignores the shortcomings of homoge-

neous and dispersion models. He affirmed that the

abnormal heat transfer appears due to particle migration in

the fluid. Exploring the nanoparticle migration, he con-

sidered the seven slip mechanisms that can produce a

parallel velocity between the nanoparticles and base fluid.

These are inertia, thermophoresis, Brownian diffusion,

diffusiophoresis, Magnus effect, fluid drainage and gravity.

He concluded that, of these seven, only Brownian diffusion

and thermophoresis are important slip mechanisms in

nanofluids. Based on such findings, he established a two-

component four-equation nonhomogeneous equilibrium

model for mass, momentum and heat transport in

nanofluids. Tiwari and Das [3] also discussed the heat

transfer experimentally of nanoliquids in a two-sided lid-

driven heated square cavity. Pantzali et al. [4] discussed

importance of CuO-water nanomaterials on the surface of

heat exchangers experimentally. Review of thermal con-

vective enhancement in nanofluids is reported by Kakac

and Pramuanjaroenkij [5]. Abu-Nada and Oztop [6]

explored effects of inclination angle in natural convective

Cu-water nanofluid flow in enclosures. Few interesting

studies about nanofluids can be seen via refs. [7–36].

The study of fluid flow and heat transport process in a

porous media has achieved much attention of researchers

due to its ample applications in technological, industrial,

chemical and manufacturing processes. Such applications

include crude oil production, nuclear-based repositories,

casting and welding in manufacturing processes, nuclear

waste disposal, units of the energy storage, fermentation

processes and drying of a porous solid etc. The modifica-

tion of classical Darcy’s theory results in the non-Darcian

porous space which involves inertial and boundary effects.

The classical Darcy’s law is applicable for a finite range of

low velocity and smaller porosity. Forchheimer [37] con-

sidered inertia effects through the inclusion of a square

velocity term in momentum equation. Muskat [38] entitled

this contribution as Forchheimer factor. Mixed convective

flow in a porous medium has been developed by Seddeek

[39]. Jha and Kaurangini [40] presented approximate

solutions for nonlinear Brinkman-Forchheimer-extended

Darcy flow. Darcy–Forchheimer porous space in hydro-

magnetic convective flow with non-uniform heat source/

sink is studied by Pal and Mondal [41]. Darcy–Forch-

heimer flow of Maxwell material due to convectively

heated sheet has been investigated by Sadiq and Hayat

[42]. Shehzad et al. [43] employed Cattaneo–Christov heat

flux model for Darcy–Forchheimer flow of an Oldroyd-B

fluid with variable conductivity and nonlinear convection.

Forced convection stagnation-point flow with Darcy–

Forchheimer expression is examined by Bakar et al. [44].

Hayat et al. [45] analyzed Darcy–Forchheimer flow with

variable thermal conductivity and Cattaneo–Christov heat

flux. A comparative study for Darcy–Forchheimer flow of

viscoelastic nanofluids is studied by Hayat et al. [46].

Umavathi et al. [47] used Darcy–Forchheimer-Brinkman

model in order to present a numerical study for natural

convective flow of nanofluids. Darcy–Forchheimer flow of

Maxwell nanofluid with convective boundary condition has

been studied by Muhammad et al. [48]. Sheikholeslami

[49] discussed the impact of Lorentz forces on nanofluid

flow in a porous cavity by means of non-Darcy model. A

revised model for Darcy–Forchheimer three-dimensional

flow of nanofluid subject to convective boundary condition

is investigated by Muhammad et al. [50]. Darcy–Forch-

heimer three-dimensional flow of Williamson nanofluid

induced by a convectively heated nonlinear stretching sheet

is reported by Hayat et al. [51]. Recently Hayat et al. [52]

present an optimal analysis for Darcy–Forchheimer 3D

flow of Carreau nanofluid with convectively heated

surface.

The investigators at present are engaged in analyzing the

fluid flow and heat transport problem in rotating frame. It is

because of their numerous applications in gas turbine

rotors, rotating machinery, thermal power generation,

electronic devices, aeronautics, air-cleaning machine and

several others. Analytical solutions for viscous fluid flow

over a stretched sheet in rotating frame are computed by

Wang [53]. Takhar et al. [54] analyzed magnetohydrody-

namics in rotating flow past a stretched sheet. Time-de-

pendent rotating flow induced by an impulsively deforming

surface is addressed by Nazar et al. [55]. Javed et al. [56]

constructed local similar solutions for rotating flow

induced by an exponentially deforming sheet. Zaimi et al.

[57] investigated rotating flow of viscoelastic fluid by an

impermeable stretchable sheet. Rosali et al. [58] numeri-

cally investigated rotating flow caused by an exponentially

permeable sheet. Shafique et al. [59] studied simultaneous

effects of activation energy and binary chemical reactions

in rotating flow of Maxwell fluid. Mustafa et al. [60] dis-

cussed rotating flow of Maxwell fluid with variable thermal

conductivity. Three-dimensional rotating flow of Maxwell

nanoliquid is reported by Hayat et al. [61]. Darcy–Forch-

heimer three-dimensional rotating flow of water-based

carbon nanotubes is explored by Hayat et al. [62].

Maqsood et al. [63] numerically investigated viscoelastic

fluid flow subject to homogeneous–heterogeneous reac-

tions in rotating frame. Mustafa et al. [64] computed ana-

lytical solutions of three-dimensional rotating flow of an

Oldroyd-B liquid by considering Cattaneo–Christov theory.
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Turkyilmazoglu [65] discussed the fluid flow and heat

transfer over a rotating and vertically moving disk. Very

recently Mustafa et al. [66] computed numerical solutions

of rotating flow of nanofluid over an exponentially

deforming sheet.

The prime interest in present study is to illustrate

Darcy–Forchheimer three-dimensional flow of nanoliquid

induced by an exponentially stretchable surface in rotating

frame. Thermophoretic diffusion and random motion

aspects are retained. Prescribed surface heat and mass

fluxes are implemented at stretchable surface. The gov-

erning systems are solved numerically by NDSolve tech-

nique. Moreover temperature, concentration, surface drag

coefficients and local Nusselt and Sherwood numbers are

graphically illustrated.

Statement

Here we intend to illustrate steady 3D rotating flow of

nanoliquid induced by an exponentially stretchable surface.

Darcy–Forchheimer porous space is considered. Buon-

giorno model is implemented for nanoliquid transport

process. Cartesian coordinate system is employed. The

sheet stretches with velocity uwðxÞ ¼ U0ex=L where U0

being positive constant. In addition fluid rotates about z-

direction with constant angular velocity x. The boundary

layer expressions governing the three-dimensional (3D)

rotating flow of viscous nanofluid in the absence of viscous

dissipation and thermal radiation are [52, 66]:
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Here one has the following conditions [23, 66]:

u ¼ uwðxÞ ¼ U0ex=L; v ¼ 0; w ¼ 0; � k oT
oz

� �
w
¼ T0e

ðAþ1Þx
2L ;

�DB
oC
oz

� �
w
¼ C0e

ðBþ1Þx
2L at z ¼ 0;

)

ð6Þ
u ! 0; v ! 0; T ! T1; C ! C1 when z ! 1:

ð7Þ

Note that u; v and w represent the velocity components

in x-, y-, and z-directions while m ¼ l=qfð Þ, l and qf stands

for kinematic viscosity, dynamic viscosity and density of

base liquid, k
�

for permeability of porous medium, F ¼
Cb=xk

�1=2

for non-uniform inertia coefficient of porous

space, Cb for drag coefficient, a
� ¼ k=ðqcÞf , k, ðqcÞf and

ðqcÞp for thermal diffusivity, thermal efficiency, heat

capacity of liquid and effective heat capacity of nanoma-

terials, respectively, T for temperature, DB for Brownian

diffusivity, C for concentration, DT for thermophoretic

diffusion coefficient, U0, T0 and C0 for positive constants,

L for reference length, A, B, T1 and C1 for temperature

exponent, concentration exponent, ambient fluid tempera-

ture and ambient fluid concentration, respectively.

Considering
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Equation (1) is identically verified while Eqs. (2)–(7)

yield

f 000 þ ff 00 � 2f 02 þ 4Xg� 2kf 0 � 2Frf 02 ¼ 0; ð9Þ

g00 þ fg0 � 2f 0g� 4Xf 0 � 2kg� 2Frg2 ¼ 0; ð10Þ

h00 þ Pr fh0 � Af 0hþ Nbh
0u0 þ Nth

02
� �

¼ 0; ð11Þ

u00 þ Sc fu0 � Bf 0uð Þ þ Nt

Nb

h00 ¼ 0; ð12Þ

f ð0Þ ¼ gð0Þ ¼ 0; f 0ð0Þ ¼ 1; h0ð0Þ ¼ �1; u0ð0Þ ¼ � 1;

ð13Þ

f 0ð1Þ ! 0; gð1Þ ! 0; hð1Þ ! 0; uð1Þ ! 0: ð14Þ

Here rotation parameter, porosity parameter, Forch-

heimer number, Prandtl number, thermophoresis parame-

ter, Schmidt number and Brownian motion parameter are

symbolized by X, k, Fr, Pr, Nt, Sc and Nb, respectively.

Nondimensional forms of these parameters are given

below:
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The nondimensional forms of coefficients of skin fric-

tion and local Nusselt and Sherwood numbers are
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In above expressions Rex ¼ uwx=m represents the local

Reynolds number.

Discussion

This section addresses the contributions of local porosity

parameter k, Brownian motion parameter Nb, Forchheimer

number Fr, Schmidt number Sc, temperature exponent A,

local rotational parameter X, Prandtl number Pr, ther-

mophoresis parameter Nt and concentration exponent B on

nondimensional temperature h fð Þ and concentration uðfÞ
fields. Figure 1 displays variation of temperature field hðfÞ
for various local porosity parameter k. An increment in

porosity parameter k causes stronger temperature field hðfÞ
and related layer thickness. Physically existence of porous

space generates resistance in fluid motion and ultimate it

decays in velocity of fluid. Hence an increment is noticed

for temperature h fð Þ and associated thermal layer thick-

ness. Figure 2 is plotted to explore impact of Forchheimer

number Fr on temperature field hðfÞ. Larger Fr correspond

to increasing trend in temperature field hðfÞ. Figure 3

presents influence of X on temperature field hðfÞ. Higher

local rotational parameter X enhance temperature field hðfÞ
and associated layer thickness. Figure 4 elucidates that

temperature field hðfÞ shows decreasing trend for higher

values of temperature exponent A. Figure 5 shows

temperature field h fð Þ for varying Prandtl number Pr.

Temperature field h fð Þ decayed for higher Pr. Figure 6 is

sketched to examine that how temperature field h fð Þ gets

affected with the variation of Brownian motion parameter

Nb. By increasing Nb, the temperature field h fð Þ shows

increasing trend. Physically the random motion of

nanoparticles enhances by increasing Brownian motion

parameter Nb due to which collision of particles occurs. As
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a result kinetic energy is converted into heat energy which

causes an enhancement in temperature and related layer

thickness. Figure 7 elaborates the influence of ther-

mophoresis parameter Nt on temperatureh fð Þ. Clearly,

temperature field is enhanced via larger Nt. Figure 8

illustrates that concentration field uðfÞ shows increasing

trend via local porosity parameter k. From Fig. 9 it is noted

that Forchheimer number Fr yields higher concentration

field uðfÞ. Figure 10 elaborates that how the concentration

field uðfÞ is affected by higher values of local rotational

parameter X. Here both temperature field and related layer

thickness are elevated by increasing X. Figure 11 illus-

trates the variation in concentration field uðfÞ for con-

centration exponent C. Larger concentration exponent

yields lower concentration field uðfÞ and related layer

thickness. Effect of Schmidt number Sc on uðfÞ is sketched
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in Fig. 12. Here concentration field uðfÞ exhibits

decreasing trend via larger Schmidt number Sc. Figure 13

is portrayed to deliberate the variation in concentration

field under the influence of Brownian motion parameter Nb.

An increment in Nb causes a decay in concentration. Here

an enhancement in thermophoresis means that the

nanoparticles are migrated from warm zone to cold zone.

Therefore higher number of nanoparticles is dragged away

from the warm zone due to which nanoliquid concentration

decays. Figure 14 presents the outcome of thermophoresis

parameter Nt for concentration field uðfÞ. Larger ther-

mophoresis parameter Nt give an enhancement in uðfÞ and

related layer thickness. Table 1 is calculated in order to

investigate the numerical computations of skin-friction

coefficients � f 00ð0Þ and � g0ð0Þ for several estimations of

porosity parameter k, Forchheimer number Fr and rotation

parameter X. Surface drag coefficients are increasing

functions of X while reverse behavior is noticed for larger

k and Fr. Table 2 shows the numerical computations of

local Nusselt number 1
h 0ð Þ and local Sherwood number 1

u 0ð Þ

for different values of k, Fr, X, Sc, Pr, Nt and Nb when

A ¼ B ¼ 0:5. Heat transfer rate (local Nusselt number)

decays via k, Fr, X, Nt and Nb. Effects of Sc and Pr on heat

transfer rate are quite similar. It is also observed that mass

transfer rate (local Sherwood number) has lower and higher

values for larger (k, Fr, X, Pr, Nt, Nb) and (Sc),

respectively.
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Table 1 Numerical data of surface drag coefficients � f 00ð0Þ and

� g0ð0Þ for distinct estimations of k, Fr and X

k Fr X � f 00 0ð Þ � g0 0ð Þ

0.0 0.1 0.1 1.351292 0.197898

0.1 1.420528 0.179629

0.2 1.487723 0.165819

0.2 0.1 0.1 1.487723 0.165819

0.2 1.531017 0.164732

0.3 1.573174 0.163694

0.2 0.1 0.05 1.479441 0.083713

0.1 1.487723 0.165819

0.2 1.517052 0.320662
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Conclusions

Darcy–Forchheimer three-dimensional (3D) rotating flow

of nanoliquid due to stretchable surface with constant heat

and mass flux conditions is discussed. The prime findings

of present study have been structured as follows:

• Higher porosity parameter k and Forchheimer number

Fr exhibit similar trend for both temperature hðfÞ and

concentration uðfÞ fields.

• Both temperature hðfÞ and concentration uðfÞ fields

represent increasing behavior for higher local rotational

parameter X.

• An increment in temperature exponent A and concen-

tration exponent B leads to reduce temperature hðfÞ and

concentration uðfÞ fields.

• Larger Prandtl Pr and Schmidt Sc numbers correspond

to lower temperature and concentration fields.

• Brownian motion parameter Nb for temperature and

concentration has reverse effects.

• Both temperature and concentration profiles are

increased via thermophoresis parameter Nt.
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