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Abstract
In this work, an experimental investigation on the effects of temperature and concentration of nanoparticles on the viscosity

of ZnO–MWCNTs/engine oil (SAE 10W40) hybrid nanolubricant is presented. The experiments were repeated at volume

fractions of 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, and 0.8%, temperature range of 5–55 �C, and shear rates from 666.5 to

13,330 s-1. The viscosity of hybrid nanolubricant was measured using the Brookfield digital viscometer (CAP2000). We

found that the nanofluid has a Newtonian behavior at all volume fractions and temperatures. Also, by increasing the volume

fraction of nanoparticles and nanotubes at a constant temperature the nanofluid viscosity is increased. Nanofluid viscosity

decreases with increasing the temperature at a constant volume fraction.
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Introduction

Engine oils are used in many industrial systems as coolant

and lubricant. As we know, the thermal conductivity of

engine oils is less than 0.2 W m-1 K-1. Therefore, it can

be noted that this fluid has low thermal conductivity for

processes related to heat exchange. As we know, thermal

conductivity of solid particles is much higher compared to

conventional fluids. For example, thermal conductivity of

copper is about 400 W m-1 K-1, aluminum is about

200 W m-1 K-1, and zinc is about 120 W m-1 K-1.

Therefore, the researchers believed that suspending solids

in common fluids could lead to improved thermal proper-

ties of fluids. However, the major drawback of the use of

solid particles was that the large size of solid particles

caused the formation of sediment and the formation of

eclipse in narrow tubes. Therefore, with the advancement

of technology that led to the creation of nano-sized parti-

cles, the problems associated with the collapse of the

channel were overcome, and the surface-to-volume ratio

that increased the heat transfer increased. Since then, many

researchers have used nano-sized solid particles in com-

mon fluids to increase the thermal conductivity and called

them nanofluids [1–25].

However, the increase in nanoparticles into fluids to

increase thermal conductivity can lead to side effects like

increased viscosity. Therefore, the researchers also looked

at the rheological behavior of nanofluids and presented

different reports. A review of reported work related to the

rheological behavior of nanofluids is presented in Table 1.
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As seen in Table 1, mono nano-additives have been used

for preparing these nanofluids. It was also understood that

some nanofluids show Newtonian behavior, while others

are non-Newtonian. Recently, a new type of nano-additives

called ‘‘hybrid nano-additives’’ has been used. These nano-

additives are a combination of two or more nanoscale

materials that are used for the simultaneous use of the

unique properties of several materials. Researchers have

also been working on these nanofluids and have presented

various reports of their behavior. Table 2 provides a sum-

mary of the rheological behavior of the hybrid nanofluids.

Since oils are the most widely used fluids for lubricating

and cooling in various industries, some researchers have

suspended nano-additives into the oils. For example,

Afrand et al. [36] presented an experimental study on the

dynamic viscosity of SiO2–MWCNTs/SAE40 hybrid

nanolubricant. They prepared nanolubricant samples with

the solid volume fractions up to 1.0% and took viscosity

measurements under different temperatures up to 60 �C.

Their experiments showed that all nanolubricant samples

had Newtonian behavior. They also reported 37.4%

increase in viscosity compared to SAE40 using nano-ad-

ditives. They finally presented a set of correlations for

predicting the viscosity of the nanolubricant. Moreover,

Hemmat Esfe et al. [37–39] applied a hybrid nano-additive

containing MWCNTs and ZnO in various oils. They

dispersed MWCNTs–ZnO nano-additives into 10W40

engine oil and reported a non-Newtonian behavior [37]. It

should be noted that MWCNTs and ZnO nano-additives

were used with ratio of 45% and 55%, respectively. In

another work, they added MWCNTs–ZnO nano-additives

into 5W50 engine oil and reported non-Newtonian behav-

ior [38]. Hemmat Esfe et al. [39] also used MWCNTs–ZnO

hybrid nano-additives with combination of 10–90% to

improve the properties of SAE40 engine oil. Asadi et al.

[40] also used the same combination of hybrid nano-ad-

ditives (MWCNTs–ZnO) for changing the properties of

10W40 engine oil. The ratio of MWCNTs and ZnO was

15% and 85% in their study, respectively. They reported a

Newtonian behavior for this nanolubricant. However, the

use of hybrid nano-material to change the properties of oils

was not limited to the above-mentioned researches. In the

same way, Asadi et al. [41–44], Hemmat Esfe et al.

[45–49], Ahmadi Nadooshan et al. [50, 51], Dardan et al.

[52] and [53–60] used some nanoparticles for changing the

properties of different engine oils.

As understood from a review of previous studies, oils

have attracted the attention of nanoscience researchers

because they have important applications in various

industries. Due to the fact that Hemmet et al. [37] and

Asadi et al. [40] used different volumetric combinations of

MWCNTs and ZnO nano-additives to improve the

Table 1 A review of reported work related to the rheological behavior of nanofluids

References Nano-additives Base fluid Behavior

Sepyani et al. [13] ZnO SAE50 Newtonian

Baratpour et al. [15] SWCNTs Ethylene glycol Newtonian

Afshari et al. [19] MWCNTs Water Newtonian

Yu et al. [21] ZnO Ethylene glycol Newtonian and Non-Newtonian

Shahsavani et al. [23] MWCNTs Ethylene glycol–Water Non-Newtonian

Meng et al. [25] MWCNTs Ethylene glycol Newtonian

Table 2 A summary of the

rheological behavior of the

hybrid nanofluids

References Nano-additives Base fluid Behavior

Eshgarf et al. [26] SiO2–MWCNTs Ethylene glycol–water Non-Newtonian

Afrand et al. [27] Fe3O4–Ag Ethylene glycol Newtonian and Non-Newtonian

Bahrami et al. [28] Fe–CuO Ethylene glycol–water Newtonian and Non-Newtonian

Megatif et al. [29] CNTs–TiO2 Water Newtonian

Suresh et al. [30] Al2O3–Cu Water Newtonian

Sundar et al. [31] MWCNTs–Fe3O4 Water Newtonian

Yarmand et al. [32] GNP–Ag Water Newtonian

Balla et al. [33] CuO–Cu Water Newtonian

Esfe et al. [34] Ag–MgO Water Newtonian

Soltani and Akbari [35] MWCNTs–MgO Ethylene glycol Newtonian
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properties of 10W40 engine oil, in this study, a different

volume composition of MWCNTs and ZnO nano-additives

was selected to improve the properties of 10W40 engine

oil. Here, the hybrid nano-additive is composed of 25%

MWCNTs and 75% ZnO and thus the results can be

compared with their works [37, 40]. To the author’s

knowledge, there is no comprehensive and thorough

investigation to predict the viscosity of the supposed

nanofluid.

Specifications of materials

The following materials were used to prepare the nanofluid

for this experiment:

A. Base fluid: four season engine oil SAE10W40 pro-

duced by Behran Super Pishtaz, Behran oil company,

Iran (specifications are presented in Table 3).

B. Nano-additives: multi-walled carbon nanotubes

(MWCNTs) and zinc oxide (ZnO) nanoparticles pro-

duced by US Research nanomaterials, Inc (specifica-

tions are listed in Table 4).

Dried samples of the multi-walled carbon nanotube and

zinc oxide nanoparticles were tested to ensure the desired

structure and size of nanoparticles. The size and structure

of the nanoparticles and nanotubes were obtained through

X-ray diffraction (XRD) diagram and Debye–Scherrer

equation [28]. The XRD patterns and TEM of nanoparticles

and nanotubes are presented in Fig. 1. As can be seen, both

XRD diagrams have several peaks. The highest peaks are

related to the carbon nanotubes and ZnO nano-additives,

and other peaks are related to impurities.

The required amounts of carbon nanotube and zinc

oxide nanoparticles at different volume fractions can be

calculated using Eq. 1, in which u is volume fraction, q is

density, and w is mass.

u ¼
w
q

� �
ZnO

þ w
q

� �
MWCNTs

w
q

� �
ZnO

þ w
q

� �
MWCNTs

þ w
q

� �
SAE10W40

2
64

3
75� 100 ð1Þ

Table 5 shows the required amount of MWCNTs and

ZnO nanoparticles (25:75 vol.%) at different volume

fractions.

Experimental

Nanolubricant preparation

The first step in testing nanofluids is to prepare them. To

perform more precise experiments, nanofluid should be

stabilized and homogenized. In other words, settling and

deposition should not occur if the nanofluid remains stag-

nant for a short while. Therefore, producing a stable and

homogenous sample is a very important stage in the

experiment. In this study, a two-step method was used for

nanofluid preparation. To produce a stable ZnO–MWCNT/

engine oil (SAE 10W40) nanofluid, the solution was first

mixed in a magnetic stirrer (Model: HPMA 700) for 2.5 h.

Then, to break up the agglomerated particles and dissolve

nanoparticles completely in the base fluid, the ultrasonic

process was applied for 7 h at a power of 400 W and fre-

quency of 24 kHz (Model: UP400St manufactured by

Hielscher). During the sonication period, for 30 min of

sonication, a 30-min stop was considered to maintain the

temperature of the samples. The optimum duration of

ultrasonic process is 5 h and 15 min, which was obtained

by examining the stability of the samples.

Based on previous trials, after producing samples at

various volume fractions, each nanolubricant was moni-

tored for 5 days visually. Through this time, deposition,

settling and agglomeration were not detected.

Viscosity measurement and error calculation

The viscosity of ZnO–MWCNT/engine oil (SAE 10W40)

nanofluid was measured using the Brookfield digital vis-

cometer (CAP2000). During the experiment, the sample

temperature was adjusted by a highly accurate water bath

circulator, installed on the device. Therefore, the sample

temperature remained constant during the viscosity mea-

surement. The experiment was repeated at volume fractions

of 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, and 0.8%, temperature

range of 5–55 �C, and shear rate of 666.5–13,330 s-1. It is

worth noting that the accuracy and repeatability of the

Table 3 Specification of SAE10W40 engine oil (Behran Co.)

Specification Values

Kinematic viscosity at 100 �C/cst 15.5

Density at 15 �C/kg m-3 869

Viscosity index 160

Pour point/�C - 33

Flare point/�C 224

Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant… 515

123



Brookfield viscometer were ± 2% and ± 0.5% in full-

scale range (FSR), respectively. In the experiments, CAP-

01 spindle on High Torque was employed to implement the

present measurements. In order to ensure the accuracy of

the results, the viscometer was calibrated with viscosity

standard fluid (Fluid Part Number: CAP1L) at 25 �C before

the experiments. Moreover, having viscosity at 100 �C
(from Table 1), the viscosity of the base oil was measured

with the viscometer at this temperature, difference of

which was less than 2%.

According to the device manual [16], the measurement

error was equal to 2% of the measurement range plus 1% of

measured viscosity. The measurement range can be cal-

culated as follows:

Full scale viscosity range cP½ � ¼ 1875

hrpmi � 100 ð2Þ

The full-scale range depends only on the number of

rounds and is equal to (at 300 rpm):

Table 4 Specification of

MWCNTs and ZnO (US

Research nanomaterials, Inc)

Specification Values

MWCNTs ZnO

Purity/% [ 97 [ 99

Color Black Milky white

Size Outer diameter = 5–15/nm 35–45/nm

Inner diameter = 3–5/nm

Length = 50/lm

Density/kg m-3 * 2100 5600

Specific surface area/m2 g-1 233 65
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Fig. 1 XRD pattern and TEM for MWCNTs (left) and ZnO nanoparticles (right)

Table 5 Amounts of MWCNTs and ZnO nanoparticles (25:75 vol.%)

at different volume fractions

Mass/g Density/gm-3 Solid volume fraction/%

MWCNT ZnO MWCNTs ZnO

0.158 0.420 2.1 5.6 0.05

0.315 0.840 0.1

0.630 1.680 0.2

1.260 3.360 0.4

1.890 5.040 0.6

2.520 6.72 0.8

Table 6 Error and FSR values at volume fraction of 0.8% and tem-

perature of 35 �C

Rotational speed/rpm FSR/cP Error/Pa

200 937.5 19.73

300 625 13.34

400 438.8 10.24

500 375 8.33

600 312.5 7.06
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FSR cP½ � ¼ 1875

hrpmi � 100 ¼ 1875

h300i � 100 ¼ 625 cP ð3aÞ

Error ¼ 0:02 � FSR cP½ � þ 0:01 � l cP½ �
¼ 12:5 þ 0:01 � 83:8 ¼ 13:34 cP ð3bÞ

Table 6 shows the values of the full-scale range and

error in different rotational speeds.

Table 7 presents a measurement sample at volume

fraction of 0.2% and temperature of 35 �C. The spindle

used in this experiment had the shear rate constant (SRC)

of 13.33.

Results and discussion

As mentioned in previous sections, nanofluid samples were

prepared and measured at volume fractions of 0.05%,

0.1%, 0.2%, 0.4%, 0.6%, and 0.8%, temperature range of

5–55 �C, and shear rates from 666.5 to 13,330 s-1. In the

current section, results obtained from investigations into

the effect of volume fraction and temperature on viscosity

of ZnO–MWCNT/engine oil (SAE 10W40) hybrid nano-

fluid, along with results from data analysis, are presented

by diagrams and tables.

Rheological behavior of nanofluid

In a Newtonian fluid, viscosity is constant at different shear

rates. In other words, a linear relationship between shear

stress and shear rate indicates that the fluid is Newtonian.

This conclusion can be made according to Figs. 2 and 3.

Based on these figures, the base fluid has a Newtonian

behavior. Figures 4 and 5 indicate, respectively, relation-

ships of shear stress and viscosity with shear rate at volume

fractions of 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, and 0.8%. As

observed in these figures, there are linear relationship

between shear stress and shear rate, and viscosity is

approximately constant at different shear rates. However,

slight changes that are observed with increasing shear rate

in viscosity can be due to friction heat. Therefore, it can be

Table 7 A measurement sample

at volume fraction of 0.2% and

temperature of 35 �C

Rotational speed/rpm Viscosity/cP Shear rate/s-1 Shear stress/Pa

200 74.3 2666 198.1

300 73.4 3999 293.5

400 73.3 5332 690.8

500 72.6 6655 483.9

600 72.2 7998 577.5
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Fig. 2 Shear stress–shear rate dependency for the base fluid at

different temperatures
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Fig. 3 Viscosity–shear rate dependency for the base fluid at different
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Fig. 4 Shear stress–shear rate dependency for all nanofluid samples fluid at different temperatures
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Fig. 5 Viscosity–shear rate dependency for all nanofluid samples fluid at different temperatures
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claimed that similar to the base fluid, the nanolubricant has

a Newtonian behavior. In conclusion, the experimented

nanofluid has a Newtonian behavior at all studied volume

fractions and different temperatures.

Effect of volume fraction of nanoparticles
and temperature on nanofluid viscosity

Figure 6 shows the effect of volume fraction on nanofluid

viscosity at different temperatures. As it was expected,

increased volume fraction of nanoparticles and nanotubes

at a constant temperature increased the nanofluid viscosity.

The same results were obtained in many experiments

conducted by other researchers. According to Fig. 6, vis-

cosity of the base fluid was 383 cP at 5 �C, which

increased to 404, 453, and 481 cP by adding nanoparticles

and reaching volume fractions of 0.05%, 0.6%, and 0.8%,

respectively. At these volume fractions, nanofluid viscosity

increased by 5, 16, and 20% of the base fluid, respectively.

Comparison of nanofluid viscosity between 25 and 55 �C at

the same volume fractions showed that at the latter tem-

perature, the nanofluid viscosity reached 24, 46, and 51 cP

at volume fraction of 0.05, 0.6, and 0.8%, respectively. As

a result, nanofluid viscosity increases with increasing vol-

ume fraction at the same temperature. The highest increase

in nanofluid viscosity, as compared to the base fluid, was

observed at 55 �C and volume fraction of 0.8%. Nanofluid

viscosity increased with increasing the volume fraction of

nanoparticles at a constant temperature.

Figure 7 shows the effect of temperature on nanofluid

viscosity at different volume fractions. According to this

figure, nanofluid viscosity is 216, 121, and 73 cP at volume

fraction of 0.2% and temperatures of 15 �C, 25 �C, and

35 �C, respectively. Nanofluid viscosity decreases with

increasing the temperature at a constant volume fraction.

As we know, viscosity is caused by the adhesive forces

between liquid molecules. In fact, molecules are affected

by a greater amount of energy at higher temperature and

can overcome the adhesive forces. As a result, the ener-

gized molecules can move more freely. This greater fre-

quency of molecular collision per unit volume and per unit

time results in higher resistance against the flow. Reduced

intermolecular forces driven by increased temperature

lowers resistance to the flow. As a result, viscosity of

Newtonian nanofluid decreases with increasing tempera-

ture. Another reason of changing the viscosity with the

temperature and volume fraction is associated with
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Brownian motion. The effect of Brownian motion of

nanoparticles on the viscosity of nanofluid after increasing

temperature is justifiable. Nanoparticles and the base fluid

have free molecular movements, and the chance of inter-

molecular collision is lower in nanoparticles with the rise

of temperature. Moreover, the intermolecular distance

between nanoparticles and the base fluid increases with the

rise of temperature, thereby reducing the resistance to the

flow and viscosity.

Proposed correlation for nanofluid lubricant

To facilitate the calculation of viscosity of the nanofluid

lubricant [ZnO–MWCNT/engine oil (SAE 10W40) hybrid

nanofluid] at different temperatures and volume fractions,

the below equation with constants specific to each tem-

perature (six temperatures within the experiment’s range)

were developed.

lr ¼
lnf

lbf

¼ 1 þ a1uþ a2u
2 þ a3u

3 þ a4u
4 ð4Þ

This equation was obtained through fitting the curve on

experimental data. According to Table 8, nanofluid vis-

cosity within the temperature range of 25–55 �C is calcu-

lated based on their corresponding coefficients. In this

equation, volume fraction is in percentage.

Figure 8 shows a complete agreement between values

derived from the mathematical equation with the experi-

mental results. Accordingly, this equation can be used as a

suitable predictive model for estimation of viscosity of the

given hybrid nanofluid. This equation has a good compli-

ance with experimental results within specified ranges of

volume fraction and temperature.

The margin of deviation between the experimental and

experimental results was defined as follows:

Margin of deviation ¼
lExp � lPred

lPred

� �
� 100% ð5Þ

Figure 9 shows the calculated margin of deviation

between experimental results and empirical equations at

different volume fractions and temperatures. According to

this figure, the majority of points are located on the bisector

or close to it, indicating good accuracy of this equation.

Moreover, the maximum margin of deviation (0.86%) is

shown in this diagram. This value is acceptable for an

empirical equation. The Rsqr value for each equation is

close to 0.997, which is desirable for equations obtained

from curve fitting. The Rsqr value of each equation is at

higher order than 0.997, which is desirable for equations

obtained from curve fitting (Fig. 10).

According to Fig. 10, the maximum and minimum

values of Rsqr were obtained at 55 �C and 25 �C, respec-

tively. This finding indicates good compliance between

experimental and empirical results.

Table 8 Constant coefficients corresponding to each temperature

Temperature/�C a1 a2 a3 a4

5 1.289 - 5.116 8.556 - 4.589

15 1.403 - 5.169 8.220 4.287

25 1.606 - 5.837 9.710 - 5.251

35 2.230 - 8.863 1.539 - 8.735

45 2.549 - 1.113 2.025 - 1.109

55 2.665 - 1.120 2.072 - 1.141
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Conclusions

In this paper, the effect of volume fraction and temperature

on viscosity of a hybrid nanofluid, i.e., ZnO–MWCNT/

engine oil (SAE 10W40), is presented. The following

results can be deduced from our simulation:

• The nanofluid has a Newtonian behavior at all volume

fractions and temperatures.

• At highest concentrations and low temperatures, the

nanolubricant exhibited a slight shear-thinning behav-

ior can be due to friction heat.

• Increased volume fraction of nanoparticles and nan-

otubes at a constant temperature increased the nanofluid

viscosity up to about 100%.

• Nanofluid viscosity decreases with increasing the

temperature at a constant volume fraction. For example,

by increasing the temperature from 5 to 55 �C, the

viscosity decreases from about 500 cP to about 50 cP.

• A new correlation presented for predicting the relative

viscosity of the nanolubricant.
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