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Abstract
In this study, the thermal stability and thermokinetic parameters of 1,3-dimethylimidazolium nitrate ([Mmim]NO3) were

investigated by thermogravimetric analysis under non-isothermal conditions in a nitrogen atmosphere. The results showed

that [Mmim]NO3 exhibited three decomposition stages from 93.3 to 350.0 �C, and the onset temperature of [Mmim]NO3

was obtained at approximately 161.0–182.0 �C under five heating rates. The apparent activation energy was

119.0–124.0 kJ mol-1, as calculated by different well-known equations, and the pre-exponential factor was

3.6 9 1012 min-1. The reaction mechanism of [Mmim]NO3 was carried out with the reaction order n = 1.0, and the

decomposition mechanism function was further obtained. Moreover, vent sizing package 2 was employed to acquire the

maximum self-heating rate (39,828.0 �C min-1) and pressure rise rate (73,331.0 psig min-1) for simulating cooling

system failure in a practical process. The findings indicated that [Mmim]NO3 showed the possibility of a runaway reaction,

leading to a potential thermal hazard. The approach of these results is vital for obtaining inherently safer process infor-

mation for [Mmim]NO3 during production, storage, and transportation.

Keywords Thermal stability � 1,3-Dimethylimidazolium nitrate � Reaction mechanism � Decomposition mechanism

function � Runaway reaction

List of symbols
A Pre-exponential factor (min-1)

Ea Apparent activation energy (kJ mol-1)

h Planck constant (J s)

k Reaction rate constant (min-1)

kB Boltzmann constant (J K-1)

n Reaction order

Pmax Maximum pressure (psig)

R Molar gas constant (J mol-1 K-1)

r Linear correlation coefficient

T Reaction temperature (K)

Tend Termination temperature of decomposition (�C)

Tmax Maximum temperature (�C)

TMRad Time to maximum rate under adiabatic condition

(h)

TNR No return temperature (�C)

Tonset Onset temperature of decomposition (�C)

Tp Peak temperature of decomposition (�C)

Tstart Start temperature of decomposition (�C)

DG= Gibbs free energy (kJ mol-1)

DH= Enthalpy (kJ mol-1)

DS= Entropy (J mol K-1)

DPad Adiabatic pressure rise (psig)

DTad Adiabatic temperature rise (�C)

a Degree of conversion

b Heating rates (�C min-1)

U Thermal inertia

Introduction

Ionic liquids (ILs) are known as room-temperature molten

salts with melting points below 100.0 �C, and they com-

bine organic cations with organic or inorganic anions. ILs

have numerous attractive properties, such as extremely low

vapor pressure, low melting point, wide liquid range, good

thermal stability, and wide electrochemical windows [1].

Based on their excellent performance, ILs are widely used

as organic solvents [2–4], catalysts [5] and heat transfer
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fluids [6–8] for separations [9] as well as electrochemistry

[10–13].

However, according to US Occupational Safety and

Health Administration (OSHA) regulations, ILs are clas-

sified as IIIB combustible materials, which means that ILs

are not sufficiently safe when near fire or heat sources

[14, 15]. This classification implies that ILs will decom-

pose under high ambient temperatures. On the other hand,

in the presence of nitrate, ILs can be used as energetic

materials due to the high energy of the functional groups.

Unfortunately, ILs may also lead to explosions and other

serious safety problems if the cooling system fails or

operates at incorrect process temperatures [16–18]. In the

previous studies, there are few reports of thermal hazard for

imidazolium nitrate ionic liquids [19]. Hence, it is critical

to investigate the thermal stability and potential hazards for

imidazolium nitrate ionic liquids during the applications.

We developed a methodology to estimate the thermal

stability and thermal hazard of 1,3-dimethylimidazolium

nitrate ([Mmim]NO3) using thermogravimetry (TG) and

vent sizing package 2 (VSP2). The specific targets of this

research were as follows:

(a) To reveal the short-term thermal stability of

[Mmim]NO3 by TG experiment, which uses a non-

isothermal medium;

(b) To establish the reaction mechanism of [Mmim]NO3

using the data from the TG curves;

(c) To calculate thermokinetic parameters such as the

apparent activation energy (Ea) and the pre-expo-

nential factor (A) of [Mmim]NO3 by Flynn–Wall–

Ozawa (F–W–O), Kissinger–Akahira–Sunose (K–

A–S) and Starink methods;

(d) To estimate the related parameters of process safety

during a thermal runaway reaction using VSP2 under

adiabatic conditions.

Experimental and methods

Samples

Ninety-eight mass% [Mmim]NO3 in the solid state was

received from Hua Wei Rui Ke Chemical Co., Beijing,

China. Experimental techniques using dynamic and adia-

batic approaches were proposed in this study. According to

the experimental techniques, we could determine the

thermal stability and runaway reaction of [Mmim]NO3.

Thermogravimetry (TG)

SDT Q600 from TA Instruments, Inc. (Delaware, USA)

was used to perform the TG experiment. [Mmim]NO3

sample in the range of 6.0–8.0 mg each was placed in an

open alumina crucible. The scanning TG experiments were

performed in a nitrogen atmosphere, with the gas purging

at a flow rate of 100.0 mL min-1. Dynamic experiments

were performed at a temperature range from 25.0 to

400.0 �C, with heating rates of 2.0, 4.0, 6.0, 8.0 and

10.0 �C min-1. TG curves have been further applied to

obtain the corresponding thermokinetic parameters and the

most likely thermokinetic model functions using mathe-

matical approaches.

Vent sizing package 2

VSP2 from Fauske & Associates, Inc. (Illinois, USA) was

applied to measure the adiabatic state that can simulate the

reactor in the process. It uses the heat–wait–search mode,

which can furnish temperature and pressure traces versus

time from the dynamic scanning test in the test cell

(112.0 mL), which is suitable for solid samples due to the

low thermal inertia (/) of approximately 1.05–1.20. In this

study, approximately 3.0 g of [Mmim]NO3 was loaded into

the test cell.

Thermal analysis theory

The thermal decomposition of [Mmim]NO3 complies with

the following rate Eq. 1:

da
dt

¼ k Tð Þ � f að Þ ð1Þ

where da/dt is the conversion rate of different times, k(T) is

the Arrhenius rate constant, and f(a) is the differential

mechanism function.

According to the Arrhenius equation, k(T) can be

defined as:

k Tð Þ ¼ A � exp � Ea

RT

� �
ð2Þ

where A is the pre-exponential factor, R is the molar gas

constant (8.314 J mol-1 K-1), and Ea is the apparent

activation energy.

a is the degree of conversion as follows:

a ¼ Wi �Wt

Wi

ð3Þ

where Wi is the initial mass and Wt represents the mass of

the sample at time t.

Considering the constant heating rate b in the non-

isothermal heating mode, Eq. 1 is rearranged to the fol-

lowing form [20]:

da
dT

¼ A

b
� exp � Ea

RT

� �
� f að Þ ð4Þ
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Equation 4 is the basis of the isoconversional mode. In

this study, we selected F–W–O, K–A–S, and Starink

methods to investigate the thermokinetic parameters.

(a) F–W–O method

The F–W–O method is a typical isoconversional

mode. It uses multiple heating rate curves to deter-

mine the thermokinetic parameters. The equation is

expressed as [13]:

lg bð Þ ¼ lg
AEa

RG að Þ

� �
� 2:315 � 0:4567

Ea

RT
ð5Þ

where G(a) is the integral mechanism function. G(a)

is a stationary constant when a is certain. Ea can be

obtained from the straight line by plotting lg(b)

versus 1/T.

(b) K–A–S method

The K–A–S method is also based on the isocon-

versional mode, which is applied as a model-free

approach. The equation is as follows [21]:

ln
b
T2

¼ ln
AR

G að ÞEa

� �
� Ea

RT
ð6Þ

A straight line can be obtained by plotting ln(b/
T2) versus 1/T, which can be applied to solve the

thermokinetic parameter Ea.

The pre-exponential factor A can be calculated

based on the K–A–S method by the following

equation:

A ¼ bEa

RT2
p

exp
Ea

RTp

� �
ð7Þ

where Tp is the peak temperature of DTG.

(c) Starink method

Starink summarized the Kissinger, Ozawa, and

Boswell methods and then further refined the

temperature integral. The revised mathematical

equation is expressed as Eq. 8 [22]:

ln
b

T1:8
¼ Cs �

Ea

RT
ð8Þ

The plot of ln(b/T1.8) versus 1/T forms a straight

line, and Ea would be obtained from the slope. On

the whole, Ea can be received from Eqs. 4–8, which

do not consider the differential mechanism function

g(a) and the integral mechanism function G(a).

Results and discussion

Short-term thermal stability

The thermal stability of [Mmim]NO3 was investigated by

TG experiments. The TG–DTG data of [Mmim]NO3 were

obtained by the non-isothermal method under a nitrogen

atmosphere, as shown in Fig. 1.

Figure 1a shows three mass loss steps in the TG curve,

which were defined as steps I, II and III. The temperature

of the mass loss in step I was at approximately 100.0 �C,

which may be caused by evaporation of water existing in

[Mmim]NO3. For this step, the mass losses were 2.0, 1.0,

1.7, 1.1, and 1.5% at the heating rates of 2.0, 4.0, 6.0, 8.0,

and 10.0 �C min-1, respectively. Step II was the main

stage of mass loss, which was caused by the thermal

decomposition of [Mmim]NO3. The peak temperature (Tp)

of [Mmim]NO3 was around 179.0–202.0 �C at five heating

rate. Figure 1b illustrates that Tp increases with increasing
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Fig. 1 a TG curve and b DTG curves for the decomposition of

[Mmim]NO3 at five heating rates
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heating rate; however, the temperature variation range was

narrow. The start temperature (Tstart) and onset temperature

(Tonset) of thermal decomposition under five heating rates

are listed in Table 1.

Tonset is applied to represent the short-term thermal

stability of ILs. It can be seen that the Tonset of

[Mmim]NO3 was less than 200.0 �C. The effect of heating

rate on Tonset is not obvious for [Mmim]NO3. Tstart is lower

than Tonset, at approximately 45.0–47.0 �C. This result

indicates that Tonset is higher than the actual decomposition

temperature. The temperature for a 10% conversion rate

(T0.10) was 151.0–174.0 �C which was measured under

non-isothermal conditions at different heating rates. In

previous studies, Tonset, Tstart, and T0.10 were used to eval-

uate the thermal stability of ILs via TG. For example, the

Tonset of 1-butyl-3-methylimidazolium chloride

([Bmim]Cl) is approximately 234.0–270.0 �C [23–27], and

that of 1-butyl-3-methylimidazolium tetrafluoroborate

([Bmim]BF4) is approximately 315.0–424.0 �C
[23–25, 28]. The results of [Mmim]NO3 can be considered

as a manifestation of lower thermal stability than other

imidazolium ILs.

Decomposition mechanism

Step II is the main decomposition stage that will produce a

variety of decomposition products, including methyl nitrate

(CH3ONO2), which is formed by the reaction of the nitrate

anion with a methyl group that was produced during the

breakdown of [Mmim]NO3. Step III (Fig. 1a) is obviously

different from step II in that the rate of mass loss is sig-

nificantly reduced. Obviously, the decomposition mode of

step III is altered. The decomposition temperature range of

step III is 190.0–332.0 �C, and CH3ONO2 produced by

step II will decompose in this temperature range. The

reaction equation can be expressed as follows [29, 30]:

CH3ONO2 ¼ 1:00NO þ 0:50CH2O þ 0:03CH3OH

þ 0:37CO þ 0:10CO2 þ 0:90H2O þ 0:04H2

ð9Þ

Therefore, the mass loss of step III can be interpreted as

the decomposition of CH3ONO2.

Decomposition thermokinetics

To obtain the thermokinetic parameters of [Mmim]NO3

such as Ea and A, the TG curves at heating rates of 2.0, 4.0,

6.0, 8.0 and 10.0 �C min-1 were addressed by mathemat-

ical means, and three isoconversional methods (Eqs. 5–8)

were employed. The results are shown in Figs. 2–4.

Excellent linear relationships were observed under differ-

ent heating rates with the three methods.

Table 2 shows the thermokinetic parameters obtained by

the different methods. The Ea values were 121.2, 119.8,

and 121.9 kJ mol-1 obtained by the F–W–O, Starink, and

K–A–S methods, respectively. Overall, the Ea values cal-

culated by the three methods were similar. The average Ea

value of the three methods was 121.0 kJ mol-1, and the

linear correlation coefficient (r) was 0.9938, with a good
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Fig. 3 Linear curves of ln(b/T2) versus 1/T by the K–A–S method

Table 1 Non-isothermal data for the thermal decomposition of

[Mmim]NO3 at five heating rates

b/�C min-1 Tstart/�C Tonset/�C Tp/�C Tend/�C T0.10/�C

2 116 161 179 336 151

4 122 168 189 345 163

6 127 174 194 349 166

8 133 179 200 352 172

10 135 182 202 354 174

Tp and T0.10 are the temperatures for the DTG peak and 10% degree of

conversion, respectively
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Fig. 2 Linear curves of lg(b) versus 1/T by the F–W–O method
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correlation. According to Eq. 7 and the Ea calculated by the

K–A–S method, the determined lgA was 12.5 min-1.

As for the thermal decomposition mechanism selection

for the main reaction stage, the following four conditions

must be observed: (a) Ea selected must fit within the range

of the thermal decomposition kinetic parameters (Ea-

= 80.0–250.0 kJ mol-1); (b) r is greater than 0.98; (c) Ea

and lgA obtained from the integral and differential methods

are roughly the same; and (d) the mechanism function

selected must be in agreement with the tested sample state

[31, 32]. The results using Šatava–Šesták (Eq. 10) at dif-

ferent kinetic models are listed in Table 3.

lgG að Þ ¼ lg
AEa

bR
� 2:315 � 0:4567

Ea

RT
ð10Þ

Obviously, the values of Ea (123.1 kJ mol-1) and A

(2.7 9 1012 min-1) calculated by the integral method

(Šatava–Šesták method) under the nucleation and growth

decomposition mechanism A1 were almost the same that

calculated by the differential method (F–W–O method).

Meanwhile, the Ea (122.1 kJ mol-1) and A

(6.5 9 1012 min-1) calculated under the power law

decomposition mechanism P7/10 as well as closed to the

values using F–W–O method. However, P7/10 belongs to

accelerating models, which represent processes whose rate

increases continuously with increasing the extent of con-

version and reaches its maximum at the end of the process.

Apparently, the accelerating model was not fit for the

sample of [Mmim]NO3 according to the TG curves.

Therefore, the decomposition mechanism A1 was more

suitable for the decomposition of [Mmim]NO3 considering

the actual situation. The mechanism function is Avramo–

Erofeev equation with n = 1, G(a) = - ln(1 - a) and

f(a) = 1 - a. Substituting Ea with 123.1 kJ mol-1 and A

with 2.7 9 1012 min-1 into Eq. 1, the kinetic equation of

the main reaction stage may be described as:

da
dt

¼ 1010:65 � 1 � að Þ � exp
�1:48 � 104

T

� �
ð11Þ

Considering the effect of constant heating rate b, Eq. 11 is

rearranged to the following form:

da
dt

¼ 1010:65

b
� 1 � að Þ � exp

�1:48 � 104

T

� �
ð12Þ

The entropy of activation (DS=), enthalpy of activation

(DH=), and free energy of activation (DG=) for

[Mmim]NO3 as resolved by Eqs. 13–15 were

68.1 J mol K-1, 118.1 and 86.6 kJ mol-1, respectively,

which can be used to supplementary characterize the

thermal decomposition reaction.

A ¼ kBTp

h
exp

DS 6¼

R

� �
ð13Þ

DH 6¼ ¼ Ea � RTp ð14Þ

DG 6¼ ¼ DH 6¼ � TpDS
6¼ ð15Þ

where the values of A and Ea are calculated by the K–A–S

method, Tp is peak temperature, kB is the Boltzmann con-

stant (1.3807 9 10-27 J K-1), and h is the Planck constant

(6.626 9 10-34 J s).
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Fig. 4 Linear curves of ln(b/T1.8) versus 1/T by the Starink method

Table 2 Kinetic parameters obtained by F–W–O, Starink and K–A–S

methods of [Mmim]NO3

Method Ea/kJ mol-1 A/min-1 r

F–W–O method 121.2 – 0.9850

Starink method 119.8 – 0.9823

K–A–S method 121.9 3.6 9 1012 0.9837

Table 3 Kinetic parameters obtained of [Mmim]NO3 by Šatava–

Šesták method at different kinetic models

Model Ea/kJ mol-1 A/min-1 r

A1 123.1 2.7 9 1012 0.9901

A1.5 75.4 4.2 9 106 0.9821

R1 95.9 8.5 9 108 0.9885

R1/4 101.7 7.4 9 1010 0.9921

R1/2 92.1 2.5 9 1010 0.9899

P7/10 122.1 6.5 9 1012 0.9893

A1: G(a) = - ln(1 - a)

A1.5: G(a) = [- ln(1 - a)]2/3

R1: G(a) = a

R1/4: G(a) = 1 - (1 - a)1/4

R1/2: G(a) = 1 - (1 - a)1/2

P7/10: G(a) = a10/7
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Thermal hazard analysis by VSP2

In this research stage, under an adiabatic environment, the

thermokinetic parameters of process safety for

[Mmim]NO3 were estimated by VSP2. The determined

onset temperature Tonset was 162.0 �C. As obtained by

VSP2, the maximum temperature (Tmax), the maximum

pressure (Pmax), the maximum temperature rise rate

((dT dt-1)max), and the maximum pressure rise rate

((dP dt-1)max) were 394.0 �C, 437.4 psig,

39,828.0 �C min-1, and 73,331.0 psig min-1, respectively.

Figure 5 illustrates the curves of pressure and tempera-

ture versus time during the exothermic behavior of

[Mmim]NO3. Point A was the reaction start time, and when

the reaction reached point B, the reaction rate increased

dramatically, and the system reached the no-return tem-

perature (TNR), which means the maximum heat release

rate and the maximum temperature are reached within a

very short time. The observed adiabatic temperature rise

(DTad) and adiabatic pressure rise (DPad) were 234.0 �C
and 416.3 psig, respectively.

Figure 6 indicates the curves of self-heating rate and

pressure rise rate versus the runaway reaction temperature

of [Mmim]NO3 under adiabatic conditions. When the

temperature reached TNR, the pressure rise rate increased

rapidly, and (dP dt-1)max reached 73,331.0 psig min-1.

Obviously, the exothermic behavior of [Mmim]NO3 was

from the standpoint that (dT dt-1)max and (dP dt-1)max

increased in a short time of 10.4 min, from onset to apex.

According to Semenov theory [33], runaway reactions

will occur if the temperature rises sharply to a no-return

temperature when the heat generation rate is greater than

the heat removal rate. The critical runaway temperature

and unstable reaction criteria might lead to a fire, explo-

sion, or chemical release. In the process of this adiabatic

experiment, the system cannot effectively remove the heat

generated, eventually causing the destruction of the test

cell by a runaway reaction, which is shown in Fig. 7. The

results showed that a rapid runaway reaction existed in

[Mmim]NO3. This means [Mmim]NO3 has the potential

for thermal runaway phenomena if the cooling system fails

in the process.
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Conclusions

The short-term thermal stability and decomposition kinet-

ics of [Mmim]NO3 were investigated using non-isothermal

TG under a nitrogen atmosphere. The results showed three

mass loss stages. Step I was the water evaporation, step II

was caused by the decomposition of [Mmim]NO3, and step

III was the decomposition of methyl nitrate, which was a

decomposition product of [Mmim]NO3 in step II. The

maximum onset temperature was 182.0 �C when the

heating rate was 10.0 �C min-1. The Ea value was 119.0–

124.0 kJ mol-1 as obtained from different methods. The

main exothermic decomposition reaction mechanism of

[Mmim]NO3 was the nucleation and growth with n = 1.0.

The kinetic equation can be expressed as:

da
dt

¼ 1010:65

b
� 1 � að Þ � exp

�1:48 � 104

T

� �
:

As for the thermal hazard analysis of [Mmim]NO3 under

adiabatic conditions by VSP2, the maximum self-heating

rate and pressure rise rate were 39,828.0 �C min-1 and

73,331.0 psig min-1, respectively. These results indicated

that [Mmim]NO3 has potential thermal runaway hazards.

Therefore, all of the thermal hazard information that was

gained in this research can be provided to the relevant

factory for decreasing casualties.
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