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� Akadémiai Kiadó, Budapest, Hungary 2018

Abstract
The present work demonstrates the results of crystallization kinetic of [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100-xCux

(x = 0.1 at.%) amorphous metallic alloy during non-isothermal annealing done by differential thermal analysis at various

heating rates of 10, 20, and 40 K min-1 up to 1473 K. The results showed that by increasing the crystallization tem-

perature, some crystalline phases including a-Fe, c-Fe, FeNi2P, and Fe3C were formed. In addition, the volume fraction of

crystalline phases increased from 9.2 to 20.2%, confirming the presence of crystalline phases by FE-SEM results. To

calculate the activation energy (Ea), which is approximately independent of ‘‘a’’ in a wide range, some isoconversional

methods such as Starink and Friedman were used for various crystallization steps. Moreover, the invariant kinetic

parameters including IKP method and fitting models were used to calculate the empirical kinetic triplets [E, A, and g(a)].

IKP and Fitting methods are in a good agreement with each other to determine the kinetic mechanism at each crystal-

lization stage. Therefore, to ensure the IKP results, the mechanism of four crystallization peaks was determined using a

fitting method. Finally, it was found that the first, second, third, and fourth crystallization stages were controlled by A4, A4,

A4, and P4 models, respectively.
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Introduction

The Fe-based bulk metallic glasses (BMGs) have attracted

too much attention by exhibiting impressive mechanical

properties [1], excellent corrosion resistance [2–6], and

good magnetic properties [7–10] to use in widespread

applications such as sensors [11], transformers [12, 13],

and magnetic tapes [14]. However, these BMGs exhibit a

limited plasticity at room temperature and are a common

example of brittle BMGs [15–18]. Therefore, despite their

advantages, these amorphous alloys were unattractive for

commercial applications due to lack of their ductility

[19–23]. To improve ductility, two solutions have been

proposed: (a) the addition of alloy elements and (b) partial

crystallization leading to the formation of amorphous

matrix–nanocrystalline composite. Hence, in the last dec-

ade, numerous researchers tried to enhance the mechanical

properties of Fe-based BMGs by the addition of alloy

elements such as Cu [24], Ni [23], Zr [25], and Mo [26] or

by the formation of nanocrystalline phases/precipitates in

amorphous matrix [27–29]. In the case of partial annealing,

it has been accepted that volume fraction, morphology, and

type of crystalline precipitates have a strong effect on

mechanical properties [30, 31]. Activation energy (E), the

pre-exponential factor (A), and kinetic model (g(a)) as the

triple kinetic parameters are known as the essential infor-

mation to control a reaction (such as crystallization);

without knowing the kinetic parameters of this process,

products of reactions can be uncontrollable. Therefore,

kinetic analysis of partial annealing in BMGs (especially
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Fe-based BMGs) has attracted the attention of many

researchers [32–37].

In recent years, (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 BMG has

been introduced as a Fe-based amorphous alloy with high

ductility; furthermore, the effect of annealing treatment on

the mechanical properties of this BMG was investigated

[38, 39]. Nevertheless, despite the previous researches, no

comprehensive investigation has been done into the kinetic

analysis of crystallization process of this BMG and,

therefore, there exists a knowledge gap. Therefore, non-

isothermal kinetic analysis of crystallization process was

investigated in [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100-xCux

(x = 0.1 at.%) BMG as a newer generation of Fe-based

BMG in the present study. For this purpose, despite ther-

mal, phase analysis, and microstructural observations,

kinetic parameters of crystallization process in this BMG

were calculated by different kinetic methods including the

isoconversional Starink [40, 41] and Friedman (FR) [42]

methods in combination with the invariant kinetic param-

eters (IKP) [43] and fitting methods [44].

Materials and methods

Materials and experimental procedure

The ingots of master alloy with the chemical compositions

of [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100-xCux (x = 0.1 at.%)

were prepared in a vacuum arc furnace by melting the

mixture of high purity (99.99 mass%) elements under a Ti

gettered and argon atmosphere. To guarantee the homo-

geneity of the as-cast samples, all ingots were remelted for

at least four times. Then, the initial metallic glassy alloys

were prepared as rods with a diameter of 2 mm and a

length of 100 mm by suction casting in a water-cooled Cu

mold under high purity argon atmosphere. The chemical

composition of the as-cast alloy was checked by induc-

tively coupled plasma optical spectroscopy (ICP-OS)

(presented in Table 1). As seen, the chemical composition

of the BMG is in good agreement with the nominal

composition.

The thermal behavior of BMG during crystallization

processes was determined by a DTA (BAHR-STA 504) at an

ambient temperature up to 1473 K, using various heating

rates of 10, 20, and 40 K min-1 under high purity argon flow

supplied at a rate of 30 mL min-1. According to DTA

curves, the various stages of crystallization process in the

BMG under non-isothermal condition were determined.

Then, the samples of [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100-xCux

(x = 0.1 at.%) BMGs were annealed in non-isothermal

condition by DTA at a heating rate of 20 K min-1 up to the

temperature of each peak under argon flow. Phase analysis of

the as-cast and annealed specimens was done by XRD

(X’Pert MPD Philips Diffractometer) to determine the

amorphous or crystalline phases. These results were recor-

ded on an X’Pert MPD Philips diffractometer fitted with

diffracted-beam monochromator set for Cu ka radiation

(k = 0.1540 nm) by ‘‘Brag Brentano’’ geometry. The oper-

ation voltage, current, scan speed, and step size were 45 kV,

40 mA, 1 s, and 0.05�, respectively. Furthermore,

microstructural observations of the annealed samples were

investigated by an FESEM (MIRA3 TESCAN). For this

purpose, the surface of all the annealed specimens was pol-

ished by silicon carbide papers (up to 3000#) and then

electrochemically etched by a 1 mol L-1 HCl and

0.5 mol L-1 H2SO4 solution operated at a potential of 3 V.

Kinetic analysis

To determine the kinetic parameters, isoconversional

methods are usually used in association with IKP and

Fitting [43] methods. Therefore, a significant number of

researches [36, 44–46] investigated the kinetics analysis of

solid-state reactions by the model-free (isoconversional) as

well as model-fitting whose basis is discussed in the

following.

Isoconversional methods

Isoconversional methods are used to determine E and its

dependence on a [47–49]. The basis of these methods has

been discussed in our previous articles [36, 45, 46]. Among

these methods, Starink [41] and FR [42] methods are

known as more accurate integral and differential isocon-

versional methods, respectively [50]. Hence, these two

methods are discussed below.

1. The integral isoconversional Starink method [41] is a

new method for the derivation of Ea, as follows:

ln
b

T1:92
¼ const:� 1:0008

E

RT
ð1Þ

where a is the degree of conversion, b is the linear

heating rate (K min-1), T is the absolute temperature

(K), R is the general gas constant (J mol-1 K-1), and

E is the activation energy (kJ mol-1).

Table 1 Chemical composition of the studied BMG (measured by

ICP-OS)

Elements Fe Ni Mo P C B Cu

Composition/at.% 68.5 7.4 4.7 9.3 8.8 1.2 0.1
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2. The differential isoconversional FR method [42] is a

linear differential isoconversional method which is

directly based on Eq. (2):

ln b
da
dT

� �� �
¼ ln Af ðaÞ½ � � E

RT
ð2Þ

For a constant a, the plots ln(b/T1.92) versus 1/T; and

ln[b (da/dT)] versus 1/T recorded at several heating rates

(at least for three heating rates) should be straight lines and

the slope of each plot lets us calculate the E parameter by

Starink and FR methods, sequentially.

IKP method

IKP method needs various a–T curves recorded at different

heating rates. In this method, the invariant kinetic param-

eters including Einv and Ainv values are achieved through

the intersections of the curves of lnA versus E; this inter-

section is observed for the correct kinetic models. There-

fore, this method is based on the existence of a linear

correlation between E and lnA [Eq. (3)] achieved by the-

oretical kinetic models.

lnAi ¼ aþ bEi ð3Þ

In Eq. (3), subscript ‘‘i’’ indicates a value of heating rate

and, a and b are the compensation effect parameters.

According to Eq. (4), for each theoretical kinetic model,

the values of E and lnA are obtained from the slope and

interruption of ln [g(a)/T2] versus 1/T plots, respectively.

These algebraic expressions for the most frequently

mechanisms have been presented in previous publications

[51, 52].

ln
gðaÞ
T2

ffi ln
AR

bE
� E

RT
ð4Þ

Fitting models

To validate the results obtained by isoconversional and IKP

methods, fitting models are usually used [36, 44, 53]. In

one of these methods, the reaction model can be estab-

lished by plotting the numerical g(a) based on theoretical

and experimental data and finding the best matching

between them. Therefore, the results obtained by this

method can determine how and when the reaction mecha-

nism changes during the course of transformation. The

theoretical curves of g(a) versus a are plotted according to

the algebraic expressions for g(a) used to describe the

solid-state reactions (which have been presented elsewhere

[44, 54]). While the experimental curve of g(a) versus a is

plotted by Eq. (5).

gðaÞ ¼ A

b

Z T

0

exp � E

RT

� �
dT ð5Þ

The temperature integral in Eq (5) (
R T

0
exp � E

RT

� �
dT) is

determined by Eq. (6) obtained by the Gorbachev

approximation [55].Z T

0

exp � E

RT

� �
dT ¼ RT2

E þ 2RT
exp � E

RT

� �
ð6Þ

Results and discussion

Experimental observations

Thermal analysis techniques including DTA, thermo-

gravimetry (TG), differential scanning calorimetry (DSC),

dilatometry (DIL), etc. are powerful and convenient

methods to study the reactions at different heating rates

[56–59]. Figure 1a shows the DTA curves of

473
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Fig. 1 DTA curves for the investigated BMG at different heating rates
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[(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100-xCux (x = 0.1 at.%)

BMG in four crystallization steps at various heating rates

of 10, 20, and 40 K min-1. As shown, with an increase in

the heating rate, critical temperatures such as peak tem-

perature (Tp), glass transition temperature (Tg), and one-set

crystallization temperature (Tx) shift to higher temperature

ranges which are in good agreement with the results

obtained by other researcher [49, 50]. According to tem-

perature ranges extracted from DTA curve at a heating rate

of 20 K min-1, related to the crystallization peaks, the as-

cast specimens were annealed from ambient temperature

up to 731, 778, 809, and 841 K at a heating rate of

20 K min-1. Figure 2 depicts the X-ray diffraction patterns

of the as-cast and annealed samples. As seen, in both the

as-cast and the sample annealed at 731 K, just a broad

single peak (in a range of 2h = 40–60) is observed, indi-

cating the amorphous nature and absence of crystalline

phases in these samples. While, with an increase in the

crystallization temperature to 841 K, some crystalline

phases such as a-Fe, c-Fe, FeNi2P, and Fe3C are formed, so

that by annealing at a higher temperature, only the intensity

of these crystalline phases is increased. Furthermore, the

40 50
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60 70 80

2  /deg.

In
te

ns
ity

/a
.u

.

θ
90 100 110

as- cast

731 K

778 K

809 K

841 K

Fig. 2 XRD patterns of the as-cast and annealed specimens from

ambient temperature up to various temperatures at a heating rate of

20 K min-1

Table 2 Volume fraction and average size of crystalline phases formed during annealing process at various temperatures

Annealing temperature/

K

Crystalline phase/

%

Average grain size calculated by Debye–Scherer

method/nm

Average grain size obtained by MIP/

nm

731 – 42 ± 5 38 ± 3

778 9.2 59 ± 5 57 ± 5

809 15.4 67 ± 5 64 ± 6

841 20.2 84 ± 5 81 ± 6

Fig. 3 FE-SEM micrographs of specimens annealed from ambient

temperature up to a 731, b 778, c 809, and d 841 K at a heating rate of

20 K min-1
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volume fraction of crystalline phases was calculated by the

rate of the peak’s areas to the total area of the XRD pattern

[51] as presented in Table 2. As shown, Table 2 clearly

demonstrates that with an increase in the crystallization

temperature from 778 to 841 K, the volume fraction of the

crystalline phases increases from 9.2 to 20.2%. Further-

more, the average sizes of crystallites related to the sam-

ples annealed at various temperatures were calculated by

the Debye–Scherer method [52] as shown in Eq. (7):

D ¼ Kk
b cos h

ð7Þ

where for a constant K (= 0.89), D is the average grain size,

k is the X-ray wavelength (k & 1.5456 Å), h is the

diffraction angel of the peak, and b is the full width at the

half maximum of the peaks. The average of crystallite sizes

of the annealed samples is presented in Table 2.

Also, Fig. 3a–c presents the micrographs of nano-crys-

talline phases related to the specimens annealed at various

temperatures. To validate the Debye–Scherer results, the

average size of crystalline phases was measured using the

microstructural image processor (MIP) commercial soft-

ware (presented in Table 2). As seen, with an increase in

the crystallization temperature, the average grain size of

crystalline phases is increased which is in good agreement

with the Debye–Scherer results.

Kinetic calculations

Figure 4 shows the plots of a versus T at various heating

rates (10, 20, and 40 K min-1) for the four steps of crys-

tallization process. To calculate local E, Starink and FR

isoconversional kinetic methods were used; the plots of

E versus a for all the four crystallization steps are shown in

Fig. 5. As seen, within a wide range of a (0.1\ a\ 0.9),

713
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Fig. 4 Plots of a versus T at different heating rates for four crystallization stages
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Fig. 5 The dependence of E on a evaluated for the non-isothermal

crystallization process calculated by a Starink, and b FR methods

Table 3 Values of kinetic

parameters obtained by

isoconversional, IKP, and fitting

methods

Peak no. Isoconversional method E/kJ mol-1 IKP method Fitting method

Starink Friedman E/kJ mol-1 lnA/min-1 r2 lnA/min-1 Model

I 264 ± 8 257 ± 9 250 ± 13 41 ± 3 0.9999 44 ± 2 A4

II 265 ± 11 263 ± 3 281 ± 11 46 ± 3 0.9998 40 ± 2 A4

III 166 ± 1 171 ± 10 192 ± 6 28 ± 2 0.9989 25 ± 3 A4

IV 190 ± 4 185 ± 1 201 ± 14 28 ± 3 0.9999 28 ± 2 P4
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the local activation energy related to each crystallization

peak is practically independent on a. It means that all

crystallization steps are one-step and controlled by a

unique kinetic mechanism. The average of activation

energies calculated by these isoconversional methods is

presented in Table 3. As shown, the activation energies

calculated by both Starink and FR methods are in good

agreement with each other. Furthermore, it is found that the

activation energies decrease with an increase in annealing

temperature. Therefore, the formation of crystalline phases

in the first and second crystallization stages faces higher

energy barriers compared with the crystallites formed in

the third and fourth stages.

The activation energies and the pre-exponential factors

obtained by Coats–Redfern (CR) equation [60] were used

for each crystallization stage and at each heating rate to

determine other two kinetic parameters and to plot the

linear relationship between lnA and E. For each stage, the

linear relationship between lnA and E is shown in Fig. 6.

As seen, the intersections of lnA versus E curves determine

the correct activation energy, pre-exponential factor, and

kinetic model. The results are presented in Table 3. These

results confirm what has been achieved by isoconversional

methods. In addition, it is revealed that the first, second,

third, and fourth crystallization stages are controlled by A4,

A4, A4, and P4 models.

Furthermore, a popular fitting method was used to

ensure the results obtained using the isoconversional and

IKP methods. Figure 7 shows the theoretical and experi-

mental g(a) versus a curves for each crystallization stage

and heating rate. Also, the results extracted from these

curves are presented in Table 3 which confirm the results

obtained by other kinetic methods. According to kinetic

models obtained, it is clear that nucleation and growth of

nanocrystals control the crystallization process in Fe–Ni-

based BMG.

Conclusions

In the present study, non-isothermal kinetic

analysis of the crystallization process in the

[(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100-xCux (x = 0.1 at.%) BMG

was investigated at different heating rates up to 1473 K. The

research findings revealed that:

• DTA results showed that crystallization and melting

processes took place in four exothermic peaks and one

endothermic peak, respectively. The critical tempera-

tures such as Tp, Tg, and Tx increased with an increase

in the heating rate.

• The XRD results confirmed the occurrence of crystal-

lization. These patterns illustrated that the crystalline

phases including a-Fe, c-Fe, FeNi2P, and Fe3C were

formed up to * 841 K. The average sizes of crystal-

lites formed during the crystallization process at

various temperatures (calculated by the Debye–Scherer

method) were in the range of 40–80 nm.

• The average size of the nanocrystalline phases

increased from 38 to 81 nm by increasing the crystal-

lization temperature from 731 to 841 K. In addition, by

increasing the crystallization temperature, the volume

fraction of crystallized phases increased from 9.2 to

20.2%.

• Investigation of E diagram versus a for the crystalline

phases in four crystallization steps indicated that E was

approximately independent of a, within the conversion

range of 0.10 B a B 0.90.

• Activation energy was calculated for every stage of

crystallization by isoconversional Starink and Friedman

methods. For instance, the activation energies calcu-

lated by Starink method were equal to 264, 265, 166,

and 190 kJ mol-1 for the first, second, third and fourth

crystallization stages, respectively.

• The results obtained by isoconversional methods were

checked by IKP and fitting methods. The pre-exponen-

tial factors (A) calculated by IKP and Fitting methods

were in a perfect agreement with each other.

• Kinetic models obtained from the two methods (IKP

and Fitting) in different crystallization stages indicated

that the four crystallization steps were controlled by the

mechanisms of A4, A4, A4, and P4, respectively.
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