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Abstract
Piroxicam (PRX) is a nonsteroidal anti-inflammatory drug. The thermal decomposition process of PRX was investigated

with thermogravimetry and differential scanning calorimetry. The gaseous products generated by thermal decomposition

were characterized with thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. The residues of

the thermal decomposition at various temperatures were identified with infrared spectroscopy. The molecular bond orders

were calculated using an ab initio method from the GAMESS program of quantum chemistry. The mechanism of thermal

decomposition for PRX was discussed. The results indicated that the thermal decomposition of PRX is a two-stage process

with the initial temperature of 198 �C either in nitrogen or air atmospheres. The thermal decompositions of the first stage in

two atmospheres are the same process. The main part of the molecule, including sulfamide, amide, benzene ring and

pyridine ring, decompose simultaneously and to form gasifiable small molecules and carbonaceous residue in the first

stage. The second stage in nitrogen is a slow thermal pyrolysis process of carbonaceous residue. The forepart of the second

stage in air is a slow thermal pyrolysis process as like as in nitrogen, and the later period of the second stage is an oxidation

(combustion) reaction process of carbonaceous residue. PRX is stable under ambient temperature and air atmosphere, and

it can be preserved for long-term storage under ambient temperature and in air atmosphere.
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Introduction

Osteoarthritis (OA) is the most common type of arthritis of

the knees and hips; about 3.8% of people around the world

suffered from OA in 2010 [1]. If only elderly people (over

60 years of age) are considered, about 10 and 18% of males

and females, respectively, are affected by OA [2]. OA is a

degenerative joint disease that can induce cartilage loss,

subchondral sclerosis, inflammation of the synovium, and

damage to the supporting structures of the joint [3]. As a

result, pain and stiffness of the joint is the main symptom

of OA. For the management of OA, lifestyle changes,

including exercise and mass loss, and oral administration of

nonsteroidal anti-inflammatory drugs (NSAIDs) which

reduce pain and inflammation are mainly used [4]. Pirox-

icam (PRX), whose chemical name is 4-hydroxy-2-methyl-

N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-

dioxide, belongs to oxicam NSAIDs with a long plasma

half-life, may be a good choice for the treatment of

inflammation and pain that results from rheumatoid

arthritis and OA, especially for elderly OA patients [5].

PRX also shows chemopreventive and chemosuppressive

effects in different cancer cell lines and animal models,

even though it is not clear exactly how they exert their

anticancer effects [6–9].

Thermoanalytical techniques have been widely applied

in the pharmaceutical research, such as the thermal stability

and degradation of drug substances [10], the physico-

chemical characteristics of natural raw material [11],

crystal forms and polymorphic stability [12, 13], compat-

ibility of drug and excipients [14], correlation of drug

components [15] and so on.

The degradation process and degradation products of

PRX in aqueous solutions [16–18] and the thermal stability

and thermal decomposition kinetics of PRX [19] have been

studied, but the thermal degradation mechanism of PRX

has not been reported. Now, the thermal decomposition

processes of PRX in nitrogen and air atmospheres have
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been examined using thermogravimetry (TG) and differ-

ential scanning calorimetry (DSC). The volatile species

that evolved during thermal decomposition was identified

using coupled with infrared spectroscopy (TG–FTIR).

Residues of thermal decomposition at different stages were

analyzed using IR spectrometry. Molecular bond orders of

GTB were calculated using an ab initio quantum chemistry

program. The thermal decomposition mechanism of PRX

was discussed.

Experimental

Reagents

PRX (HPLC purity ] 98%) was purchased from Aladdin

Chemistry Co. Ltd. (Shanghai, China), was used as

received without any additional purification and was kept

as suggested by the supplier (2–8 �C).

Experimental methods

The TG, DTG and DSC curves for PRX thermal decom-

position were obtained using an SDT-Q600 simultaneous

thermal analyzer (TA Instruments Inc., USA) under a

continuous flow of nitrogen or air (100 mL min-1) and

heating rate of 10 �C min-1 from ambient to 800 �C.
5 ± 0.3 mg samples were weighted in open alpha-alumina

crucible.

The residues from thermal decomposition were prepared

in an SDT-Q600 simultaneous thermal analyzer using an

alpha-alumina ceramic crucible containing PRX sample

under nitrogen at a flow rate of 100 mL min-1 and heating

rate of 10 �C min-1 from room temperature to the selected

temperature. Endpoints included the beginning of mass

loss, peak of DTG curve, and end of the first mass loss.

The TG–FTIR analysis was conducted using an SDT-

Q600 Thermal Analyzer coupled with a Nicolet iS10 FTIR

spectrophotometer (Thermo Fisher Scientific Inc., USA)

equipped with a stainless steel transfer line and gas cell.

Approximately 10 mg of sample was heated from room

temperature to 800 �C at 20 �C min-1. These experiments

were carried out in dry nitrogen, and the flow rate of gases

into the TG–FTIR cell was 100 mL min-1. Both the gas

cell for IR detection and the connection line transferring

evolved gases from TG to FTIR were both kept at 220 �C
to prevent gas condensation. The IR spectra of the evolved

gases were collected at 4 cm-1 resolution with co-adding

of 32 scans per spectrum from 4000 to 500 cm-1. The

three-dimensional diagrams of infrared absorption and the

Gram–Schmidt (GS) curves were obtained using the soft-

ware attached to the spectrometer.

The IR spectra of PRX and solid residues of thermal

decomposition were obtained using a Nicolet iS10 FTIR

spectrophotometer. The spectra were collected by accu-

mulating 32 scans at a resolution of 4 cm-1 from 4000 to

400 cm-1 using a KBr pellet technique.

Quantum chemistry methods

ChemDraw and Chem3D softwares attached to ChemOf-

fice 2016 (Version: Ultra 16.0.0, PerkElmer informatics

Inc., 2016) were used to optimize the molecular structure

of PRX. The GAMESS package is a Hartree–Fock ab initio

quantum chemistry package attached to Chem3D and was

used to calculate molecular energy, charge distribution and

bond order [20, 21]. The HF/6-31G level was used. The

calculation accuracy and convergence threshold were the

default values in all programs. All the calculations were

completed using ordinary notebook computer.

Results and discussions

The thermal decomposition process of PRX

The thermal decomposition curves at nitrogen and air

atmospheres obtained from the heating rate of 10 �C min-1

are shown in Fig. 1. It can be seen that the thermal

decomposition of PRX in nitrogen and air atmospheres

both undergo a two-stage process with the initial decom-

position temperature of 198 �C (0.5% mass loss). In

nitrogen, the first mass loss stage occurs from 198 to

293 �C, the DTG peak temperature is 249.9 �C, and the

mass loss is 82.7%. Over 293 �C is the second stage, this is

a very slow process of mass loss, and there is about 5.0%

remnant at 800 �C. In air, the first mass loss stage is similar

to in nitrogen atmosphere, occurs from 198 to 293 �C, the
DTG peak temperature is 248.1 �C, and the mass loss is

85.2%. Over 293 �C is the second stage, and PRX

decomposes completely at about 650 �C. Obviously, most

of PRX decompose in the first stage, and the second stage

is mainly pyrolysis of carbonaceous residue.

Before the decomposition of PRX, the DSC curves both

show an obvious endothermic peak, and it implies that

PRX melts before pyrolysis. In nitrogen, the DSC peak

temperature is 194.9 �C, and the melting heat (peak area) is

87.8 J g-1. In air, the DSC peak temperature is 194.5 �C,
and the melting heat is 87.6 J g-1. The DSC curves cor-

responding to the first mass loss step both show a small

endothermic peak, and it suggests that the thermal pyrol-

ysis process contains the intramolecular and intermolecular

oxidation in nitrogen and air atmospheres. In nitrogen,

there is no obvious heat effect on the DSC curve corre-

sponding to the second stage, and it suggests that the
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second stage is a slow thermal pyrolysis process of car-

bonaceous residue. In air, the DSC curve corresponding to

the later period of the second stage appears a smaller

exothermic peak, and it indicates that the later period of the

second stage is an oxidation (combustion) reaction process

of carbonaceous residue. The thermal analytical curves in

two atmospheres before 480 �C are almost exactly the

same, and it means that the thermal decompositions of this

period in two atmospheres are the same process. After

480 �C, the thermal decomposition in air is the fast

oxidative decomposition (combustion) of carbonaceous

residue.
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Fig. 1 The thermal analysis curves for PRX (heating rate: 10 �C min-1). a In N2 atmosphere, b in air atmosphere
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The FTIR analysis of the gaseous species
and the solid residues produced in the thermal
degradation of PRX [22, 23]

The analysis of gaseous products generated by thermal

decomposition provides valuable information on the

mechanism of thermal decomposition. TG–FTIR is widely

used to analyze the gaseous products generated by thermal

decomposition [24, 25]. The three-dimensional diagrams of

infrared absorption of evolved gas products obtained from

PRX decomposition versus time and wavenumber during

thermal decomposition are shown in Fig. 2. It can provide

an overall perspective about evolved gas products during

the thermal decomposition. From Fig. 2, it can be seen that

in two atmospheres the gaseous products of the first half

part (before 480 �C) of thermal decomposition are almost

the same, although there is slight difference in the ratio of

peak size, which means that the decomposition processes at

this section in two atmospheres are the same. At the latter

half part of decomposition processes, the gaseous products

are very different in two atmospheres. The amount of the

gaseous products is very small in nitrogenous atmosphere,

and the amount of the gaseous products is very large in air

atmosphere. The Gram–Schmidt (GS) curves of TG–FTIR

are shown in Fig. 3. In contrast to Fig. 1, it can be seen that

the GS curves both are similar to the DTG curves, and each

GS peak corresponding to DTG peaks. The TG–FTIR

spectra of the gaseous products obtained from different

temperature during the thermal decomposition of PRX are

shown in Fig. 4. From Fig. 4, it can be seen that the IR

spectra of a, b, and c points (corresponding to the first DTG

peak) in two atmospheres are similar with each other, just

the peak sizes are different correspondingly. It means that

the decomposition processes during the whole first stage

are the same and successive, and the component of gaseous

products are the same. It can be seen that the IR spectra of

these points all contain H2O bands (multiple bands near

3630 m-1), unsaturation CH bands (3081 and 3030 cm-1)

of alkene, CO2 bands (2356, 2284, and 669 cm-1), C=N

band (1613 cm-1) of imine, C=C band (1442 cm-1) of
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alkene, SO2 bands (broad peak 1310 and 1158 cm-1) [26],

and meanwhile the small NH3 bonds (965 and 930 cm-1)

and C–O band (1045 cm-1) can be seen. The big CO2

bands and H2O bands indicate that the pyrolysis process of

PRX contains remarkable inter-molecule and intra-mole-

cule oxidative reaction, and it is consistent with a small

endothermic peak of DSC curves corresponding to the first

mass loss step. The CO2 bands, unsaturation CH bands,

C=N band, C=C band, C–O band, and SO2 band indicate

that the all parts of PRX molecule, including sulfamide,

amide, benzene ring and pyridine ring, all decompose

simultaneously, namely the thermal decomposition of PRX

is multiple site fracture process and most of PRX

decompose directly to form gasifiable small molecules. The

small NH3 bonds indicate that part of tertiary amine is

decomposed to form NH3. The peaks of gaseous products

at c point are very small, and it means that the larger

proportion of the residue at this point is carbonaceous

residue (char). The IR spectrum of d point in nitrogen

indicates that the amount of gaseous products is very small

at this time, and it means that the second stage of the

thermal decomposition in nitrogen mainly is thermal

cracking of carbonaceous residue. The IR spectrum of d

point in air mainly contains H2O, CO2, CO (2112, and

2075 cm-1) and SO2 bands, and it means that the thermal

decomposition of this moment in air is mainly oxidative

decomposition reaction, and the main constituents of resi-

dues are mainly char and sulfide.

The infrared analysis of decomposition residues

obtained from different temperatures can also provide

direct information on the thermal degradation process. The

IR spectra of PRX and residues obtained from different

temperatures during thermal decomposition process in

nitrogen atmosphere are shown in Fig. 5. It can be seen

from Fig. 5 that the IR spectrum of residue obtained at the

initial stage of thermal decomposition (205 �C) is roughly
the same with that of PRX, but the bands of 1644, 1533,

1039, and 691 cm-1 are slightly reduced, and some bands

shift slightly, for example, O–H band from 3393 moves to

3338 cm-1, C=O band from 1644 moves to 1629 cm-1,

C=N and C=C bands from 1533 moves to 1530 cm-1, and

S=O band from 1355 moves to 1351 cm-1. It means that

the chemical environment of sulfamide, amide, and pyr-

idine ring has changed. It can be seen from the IR spectrum

of residue obtained at 245 �C (DTG peak of the first stage)
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that the O–H band disappear obviously, the C=O band,

C=C band (1533 cm-1) of benzene ring, C=N band

(1533 cm-1) of pyridine ring, and C–N band (1438 cm-1)

of the secondary amide group, S=O bands (1355 and

1154 cm-1) of sulfamide, and C–OH band (1035 cm-1)

are decreased obviously. It proves again that sulfamide,

amide, benzene ring, and pyridine ring decompose simul-

taneously at the first stage, and the PRX directly decom-

pose to gasifiable small molecule. The visible bands at

1664, 1588, 1522, 1435, 1344, 1308, 1174, 1069, and

745 cm-1 indicate that there are heterocycle olefin, car-

bonyl, and sulfide in the residue. The IR spectrum of

residue obtained at the second stage (285 �C) indicates that
the organic compound structure all has been destroyed at

this stage and, the residue mainly is char.

Thermal decomposition mode of PRX

Theoretically, the thermal decomposition of organic

molecules is due to the molecular kinetic energy increasing

during heating. These include atomic oscillations that

rupture the weaker chemical bonds. Fracture occurs easier

with lower orders of chemical bonds. Thermodynamically,

the decomposition process also depends on the stability of

the decomposition products or intermediates generated. In

order to understand the thermal decomposition mode of

PRX, a theoretical discussion is made from the perspective

of the molecular structure. A quantum chemical ab initio

method is used to calculate molecular charge distribution

and the bond orders for PRX (Scheme 1). According to the

molecular bond order distributions of PRX, the position

and sequence of the chemical bonds ruptured could be

judged, and the thermal decomposition mode of PRX in the

thermal decomposition process could be speculated. As

Refs. [27, 28] have been mentioned, PRX should have enol

form (labeled as PRX-1) and keto form (labeled as PRX-2)

structures. From Scheme 1, it can be seen that the weaker

bonds of PRX-1 are the C–N bonds (0.699 and 0.712) and

S–N bond (0.708) of sulfamide and C–N bond (0.752) of

amide. The weaker bonds of PRX-2 are the S–N bond

(0.726) and C–N bond (0.738 and 749) of sulfamide and C–

N bond (0.758) of amide. The orders of these weaker bonds

are so close, and they will rupture simultaneously in the

initial stage of thermal decomposition. Then, the weaker
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bonds of PRX-1, the C–S bonds (0.807) of sulfamide, the

weaker bonds of PRX-2, the C–S bonds (0.797) of sul-

famide, will also rupture and to make the sulfamide, amide

and pyridine to decompose and to form small molecules

and active radical intermediates. These small molecules

will gasify at decomposition temperature and can be

detected by TG–FTIR. Most of these active radical inter-

mediates will further decompose into small molecules and

be gasified, part of intermediates condensate into larger

molecules or decompose into carbonaceous residue and

remain in residue. Because of the oxidative activity of

dioxide structure and sulfamide and the reaction active of

radical intermediates, the inter-molecule and intra-mole-

cule oxidative reaction occur simultaneously with thermal

decomposition, and so, CO2, SO2, and H2O can be detected

by TG–FTIR during the thermal decomposition. There are

part of benzene and pyridine remaining in residue in the

early stages of thermal decomposition due to their more

stable structure.

Based on the above comprehensive analyses and quan-

tum chemical calculation, speculated thermal decomposi-

tion mechanism of PRX is shown in Scheme 2.

Conclusions

The thermal decomposition mechanism of PRX was stud-

ied by thermal analytical technology, FTIR spectroscopy

and quantum chemistry method. The results indicated that

the thermal decomposition of PRX is a two-stage process

with the initial temperature of 198 �C in either nitrogen or

air atmospheres. The first stages of thermal decompositions

in two atmospheres are the same process. The main part of

the molecule, including sulfamide, amide, benzene ring

and pyridine ring, decompose simultaneously and to form

gasifiable small molecules and carbonaceous residue in the

first stage. The second stage in nitrogen is a slow thermal

pyrolysis process of carbonaceous residue. The forepart of

the second stage in air is a slow thermal pyrolysis process

as like as in nitrogen, and the later period of the second

stage is an oxidation (combustion) reaction process of

carbonaceous residue. PRX is stable under ambient tem-

perature and air atmosphere, and it can be preserved for

long-term storage under ambient temperature and air

atmosphere.
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