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Abstract
Two trivalent rare earth compounds [Ln(3-MOBA)3(terpy)(H2O)]2 (Ln = Tb (1), Eu (2); 3-MOBA = 3-methoxybenzoate,

terpy = 2,20:60,200-terpyridine) were obtained in solid state, and the structure of 1 was determined by X-ray diffraction. The

analysis of characterization was performed by elemental analysis, IR spectra, X-ray powder diffraction, thermogravimetric

and differential scanning calorimetry coupled to infrared spectrometer (TG/DSC–FTIR). Besides that the luminescent

properties and antibacterial activities were discussed. The crystal structure of 1 revealed that the asymmetric units were

further stitched together to form 1D chain along the x-axis direction through the offset face-to-face p���p weak stacking

interactions. Luminescence investigation revealed that compounds exhibited strong green and red emissions and the

fluorescence quantum yield of two compounds were measured. What’s more, the Commission Internationale de

L’Eclairage chromaticity diagrams were presented. The antibacterial activity studies show that two compounds had good

antibacterial actions on E. coli, S. aureus and no antibacterial activities on C. albicans.
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Introduction

It is well known that the design and synthesis of aromatic

carboxylic acids toward rare earth compounds have

received considerable attention, due to their intriguing

network topologies and promising applications in fields

such as catalysis, ion exchange, gas storage, sensors,

luminescence, antimicrobial [1–8]. Particularly, Eu(III) and

Tb(III) ions could lead to interesting and excellent lumi-

nescence emissions in visible or near-infrared regions

because the narrow f ? f transitions derived from

4f electrons. Benzoic acid and its derivatives have a certain

rigidity and stability in the structure. Their compounds with

rare earth ions not only have a variety of interesting

structures but also have good luminescence properties. At

the same time, nitrogen heterocyclic ligands are introduced

into the compounds of rare earth carboxylic acids, which

can greatly improve the luminous intensity and thermal

stability of the compounds [9–11]. Up to now, numerous

one-dimensional (1D), two-dimensional (2D) and three-

dimensional (3D) rare earth compounds have been syn-

thesized with aromatic carboxylic acids and nitrogen

heterocyclic ligands [12–15]. In addition, the research on

the antibacterial activity of rare earth complexes is of great

significance. For example, the compounds can selectively

inhibit plant pathogenic bacteria and also have good bac-

teriostatic activity against Candida albicans [4].

In this report, two new rare earth compounds [Ln(3-

MOBA)3(terpy)(H2O)]2 (Ln = Tb (1), Eu (2); 3-MOBA =

3-methoxybenzoate, terpy = 2,20:60,200-terpyridine) were

synthesized. Two asymmetric dinuclear molecules and 1D
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chain along the x-axis direction of 1 are combined by the

offset face-to-face p���p weak stacking interactions. In

order to evaluate the thermal effect and thermal decom-

position mechanism on the target compounds, thermo-

gravimetric and differential scanning calorimetry coupled

to infrared spectrometer (TG/DSC–FTIR) technology were

performed. Additionally, the luminescent properties and

antibacterial activities of the title compounds were

investigated.

Experimental

Materials

LnCl3�6H2O was acquired by the reaction of Tb4O7 and

Eu2O3, respectively (Ln = Tb, Eu, Beijing Lanthanide

Innovation Technology Co., Ltd, 99.9%), and hydrochloric

acid in aqueous solution. The other analytically pure

chemicals were purchased and used without further

purification.

Synthesis of [Ln(3-MOBA)3(terpy)(H2O)]2 (Ln = Tb
(1), Eu (2))

Dissolve 3-MOHBA (0.6 mmol) and terpy (0.2 mmol) in

ethanol (95%) and adjust the pH of the solution about 6–7

with the prepared NaOH solution (1 mol L-1). Add the

mixed ligands solution to LnCl3�6H2O (0.2 mmol) aqueous

solution under stirring. The precipitate was filtered off and

washed with 95% ethanol and then dried. Elemental analysis:

calcd. (%) for C78H68Tb2N6O20: C 54.24, H 3.97, N 4.87, Tb

18.40; found (%): C 54.04, H 3.98, N 4.83, Tb 18.52. Calcd.

(%) for C78H68Eu2N6O20: C 54.68, H 4.00, N 4.91, Eu 17.74;

found (%): C 54.22, H 3.97, N 4.94, Eu 17.57.

Physical measurements

Analyses for C, H, N were carried out on a Vario-EL II

element analyzer. The IR spectra were measured in the

range of 4000–400 cm-1 on a Bruker Tensor 27 spec-

trometer using KBr medium pellets. X-ray powder

diffraction identification was carried out for the crystalline

analyses by a D8 ADVANCE X-ray diffractometer in a

scanning range of 5�–50� (2h) with Cu Ka radiation

(k = 0.15418 Å, Bruker, Germany). The data of single-

crystal X-ray diffraction were collected on a Smart-1000

diffractometer with graphite-monochromatic Mo Ka

(k = 0.71073 Å) for compounds 1 and 2 at 298(2) K. The

structures were solved using the SHELXS-97 program and

refined with full-matrix least squares on F2 using the

SHELXL-97 program. TG/DTG-FTIR analyses were car-

ried out with 3–6 mg compounds at a heating rate of

10 K min-1 (simulated air atmosphere) on a NETZSCH

STA 449 F3 instrument coupled with Bruker Tensor 27

Fourier transform infrared spectrometer. The luminescence

spectra were measured on an F-4500 Hitachi Spectropho-

tometer. The solid luminescence quantum yields were

measured using C9920-02G Hamamatsu test system, which

was constituted by integrating sphere of 10-inch diameter

and connected to a CCD detector. The antibacterial activ-

ities of LnCl3�6H2O, ligands and the title compounds at

303.15 K were studied with four respective concentrations:

8 9 10-3, 1.6 9 10-2 and 3.2 9 10-2 mol L-1 in sterile

DMSO. The filter diameter is 6 mm, and the sample vol-

ume of the compounds is 5 lL.

Results and discussion

Infrared spectra

The absorption bands of 3-MOHBA, terpy and compounds

1–2 are listed in Table 1. The similar IR spectra of 1 and 2

suggest that the compounds are isostructural, which is

further proved by the X-ray powder diffraction. The new

characteristic bands of mas(COO–) and ms(COO–) for the title

compounds are observed at 1536 cm-1 and 1402,

1401 cm-1. The characteristic absorption band of mC=O

(1691 cm-1) for 3-MOHBA ligand disappeared in the IR

spectra of the compounds. At the same time, the mLn–O

stretching vibration band of compounds is observed at 413

and 412 cm-1. All of them indicate that oxygen atoms of

the carboxylate groups are coordinated to the Ln(III) ions

[16]. The bands mC=N and dC–H have shifted to higher wave

numbers in the compounds compared to the free terpy

ligand, proving that the nitrogen atoms of terpy ligand are

also coordinated to the Ln(III) ion [17].

X-ray powder diffraction

The X-ray powder diffraction patterns have been measured

at room temperature. The simulated curve of 1 and experi-

mental curves of 1–2 are shown in Fig. 1. The experimental

curve of 1 is almost in agreement with the simulated curve,

showing that the structure of the powder of 1 is the same to

the pure crystal. In addition, compounds 1–2 are isostructural

due to the similar experimental curves [18].

Crystal Structure Description of [Tb(3-
MOBA)3(terpy)(H2O)]2

X-ray crystallographic data and structural refinement

parameters for 1 are listed in Table 2. Compound 1 crys-

tallizes in triclinic system, Pı̄ space group. There are two

asymmetric dinuclear molecules in unit cell. They are
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combined by the offset face-to-face p���p weak stacking

interactions between terpy rings containing N1 and N5 of

the neighboring dinuclear units, with the distance of

3.6175 Å. Each dinuclear unit in 1 consists of two Tb(III)

ions, six 3-MOBA- ligands, two terpy molecules and two

coordinated water molecules (Fig. 2a). Each Tb(III) ion is

coordinated to nine atoms, of which five oxygen atoms are

from the monodentate, bridging and bidentate chelating

carboxylates, one oxygen atom is from the coordinated

water molecule, and three nitrogen atoms are from terpy

ligand. These nine atoms act in a distorted monocapped

square antiprism (Fig. 2b) [19]. The bond lengths of Tb–O

and Tb–N are listed in Table 3. The average distance of

Tb1–O is 2.417(1) Å, which is shorter than that of Tb1–N

bond of 2.619(5) Å. The average distance of Tb2–O is

2.414(1) Å, which is also shorter than that of Tb2–N bond

of 2.601(5) Å. The 3-MOBA- ligands can be well coor-

dinated with Tb(III) ion due to the electrostatic effects.

The asymmetric units are further connected to form 1D

chain along the x-axis direction through the offset face-to-

face p���p weak stacking interactions between terpy rings

containing N2 and N4 on neighboring as shown in Fig. 3.

The distance of the terpy rings is 3.5165 Å.

The structure of 1 is similar to that of compound Tb(m-

MOBA)3(phen)]2�2C2H5OH (m-MOBA = m-methoxyben-

zoate, phen = 1,10-phenanthroline) [20] and [Tb(4-EBA)3

(terpy)H2O]2 (4-EBA = 4-ethylbenzoate, terpy = 2,2

:60,200-terpyridine) [21]. The difference is that they both

Table 1 IR absorption bands for the ligands and compounds

Ligand/compounds mC=N/cm-1 dC–H/cm-1 mC=O/cm-1 mas(COO–)/cm-1 ms(COO–)/cm-1 m(Ln–O)/cm-1

3-MOHBA – – 1691 – – –

Terpy 1580 831,764 – – – –

1 1624 880,770 – 1536 1402 413

2 1623 879,766 – 1536 1401 412
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Fig. 1 Simulated and experimental XRD patterns of compounds

(a: simulated pattern of 1; b: experimental pattern of 1;

c: experimental pattern of 2)

Table 2 Crystallographic data for compound 1

Compound 1

Molecular formula C78H68Tb2N6O20

Formula weight/g mol-1 1727.22

T/K 298(2)

Wavelength/Å 0.71073

Crystal system Triclinic

Space group Pı̄

a/Å 10.1640(9)

b/Å 16.5979(14)

c/Å 22.1471(19)

a/(�) 79.3400(10)

b/(�) 89.337(2)

c/(�) 86.3050(10)

Volume/Å3 3664.1(5)

Z, calculated density/Mg m-3 2, 1.566

Absorption coefficient/mm-1 1.993

F(000) 1736

Crystal size/mm3 0.27 9 0.23 9 0.14

h range for data collection/� 2.21–25.02

Limiting indices - 10 B h B 12

- 19 B k B 14

- 26 B l B 26

Reflections collected/unique 18,714/12,724 [R(int) = 0.0485]

Completeness to h = 25.02� 98.4%

Max. and min. transmission 0.7678 and 0.6152

Data/restraints/parameters 12,724/0/961

Goodness of fit on F2 1.081

R1 0.0503

wR2 0.1161

R1 (all data) 0.0706

wR2 (all data) 0.1238

Largest diff. peak and hole/(e�Å-3) 1.909 and - 1.736
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have one dinuclear molecule, which is different from 1.

Therefore, the choice of carboxylate ligands and nitroge-

nous heterocyclic ligands plays an important role in the

structure regulation of the compound.

Thermal decomposition processes
of the compounds

The TG/DTG-DSC methods were used to describe thermal

decomposition of 1 and 2 in air, as shown in Fig. 4a, b. The

thermal analytical data are listed in Table 4. The 3D

stacked plots of FTIR spectra of gaseous products for 1 and

2 are shown in Figs. 5a and 6a. The IR spectra of the

evolved gases of them at different temperature are per-

formed in Figs. 5b and 6b. Their thermal behaviors are

similar, so 1 would be described in detail as the

representative.

In Fig. 4a, compound 1 has three decomposition steps,

which is consistent with the FTIR spectra of the evolved

gases (Fig. 5). The first step mass loss of 1.98% (calcd:

2.09%) between 339.15 and 453.15 K is attributed to the

release of two coordinated water molecules. However, the

gas signal is too weak to detect in this temperature range

(Fig. 5a). In the temperature of 453.15–629.15 K, there is

obvious mass loss of 26.94% (calcd.: 27.01%) corre-

sponding to the decomposition of terpy ligands. Mean-

while, the weak absorption peaks of CO2 are found in the

range of 2404–2227 cm-1, and some weak absorption

peaks: m(C=C), 1594 cm-1, m(C=N),1451 cm-1, m(C–H),

2960 cm-1, m(C=O), 1747 cm-1 are also observed in the IR

spectra at 524.37 K. In the third stage, there is a mass loss

of 49.48% (calcd.: 52.50%) in the temperature of

O2

O5

O1

O7

O10

(a)

(b)

Tb1

N3 O4

N2

N1

Fig. 2 a Crystal structure of 1 and b coordination geometry of Tb(III) ion

Table 3 Selected bond lengths (Å) of 1

Bond Length/Å Bond Length/Å

Tb(1)–O(1) 2.323(4) Tb(2)–O(12)#2 2.307(4)

Tb(1)–O(7) 2.334(4) Tb(2)–O(11) 2.321(4)

Tb(1)–O(2)#1 2.346(4) Tb(2)–O(17) 2.370(4)

Tb(1)–O(4) 2.460(4) Tb(2)–O(15) 2.488(4)

Tb(1)–O(10) 2.481(4) Tb(2)–O(14) 2.496(4)

Tb(1)–O(5) 2.556(4) Tb(2)–O(20) 2.500(4)

Tb(1)–N(3) 2.593(5) Tb(2)–N(4) 2.584(5)

Tb(1)–N(1) 2.615(5) Tb(2)–N(6) 2.595(5)

Tb(1)–N(2) 2.649(5) Tb(2)–N(5) 2.624(5)

Symmetry transformations used to generate equivalent atoms: #1:

- x ? 1, - y ? 1, - z; #2: - x, - y, - z ? 1

y
x

z

Fig. 3 1D chain structure along the x-axis
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629.15–1064.15 K, which belongs to the decomposition of

the 3-MOBA- ligands with the products of CO2

(2403–2268 cm-1, 668 cm-1) and H2O (3709–3535 cm-1,

1783–1342 cm-1), as shown in IR spectra at 741.53 K.

Compound 1 is completely degraded into Tb4O7 with the

mass loss of 78.40% (calcd.: 81.60%).

Luminescence

Solid-state luminescent spectra (at room temperature) of 1–

2 are shown in Fig. 7a, b. Figure 8 shows Commission

Internationale de L’Eclairage (CIE) chromaticity diagrams

for two compounds.

Table 4 Thermal analytical data for 1–2

Compounds Temperature range/K Tp (DTG)/K Mass loss rate/% Probable expelled groups Residue

Found Calculated

1 339.15–453.15 361.85 1.98 2.09 2H2O [Tb(3-MOBA)3(terpy)]2

453.15–629.15 527.45 26.94 27.01 2 terpy [Tb(3-MOBA)3]2

629.15–1064.15 740.55 49.48 52.50 6 (3-MOBA) 1/2Tb4O7

78.40a 81.60b

2 334.15–405.15 364.75 2.05 2.10 2H2O [Eu(3-MOBA)3(terpy)]2

405.15–640.15 554.65 26.52 27.23 2 terpy [Eu(3-MOBA)3]2

640.15–970.15 719.25 50.60 52.93 6 (3-MOBA) Eu2O3

79.17a 82.26b

aExperimental total weight loss rate
bTheoretical total weight loss rate
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Fig. 5 3D stacked plots of the

FTIR spectra of the evolved
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As expected, compound 1 exhibits green emission with

the typical bands of Tb(III) ion attributed to the electronic

transitions 5D4 ? 7FJ (J = 6, 5, 4 and 3). The detailed CIE

chromaticity coordinate values are (0.282, 0.590). The four

characteristic emission bands of 1 are at 489, 543, 584 and

623 nm, respectively. The ligand-based emissions are not

observed, indicating that the effective sensitization is from

the ligands to the central Tb(III) ion under photolumines-

cence [22, 23]. The hypersensitive transition (5D4 ? 7F5)

at 543 nm is the most intense transition, which dominates

the characteristic green fluorescence of terbium complex.

Furthermore, the 5D4 ? 7F5 transition is the strongest

among the four bands, and the fluorescent quantum yield is

0.851 (kex = 342 nm). These indicate that the ligands are

suitable for the sensitization of green fluorescence for

Tb(III) ion at room temperature.

As shown in Fig. 8, the CIE chromaticity coordinate

values of compound 2 are (0.643, 0.357) and ‘‘red’’ emis-

sion is emitted. Transitions from the excited 5D0 state to the

different J (0–4) levels of the lower 7FJ state are observed

in the range of 500–700 nm. The emission bands at 579

and 652 nm are very weak since their corresponding

transitions 5D0 ? 7F0 and 5D0 ? 7F3 are forbidden in both

0.0
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Fig. 6 3D stacked plots of the

FTIR spectra of the evolved

gases (a) and the FTIR spectra

of the evolved gases (b) for 2
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magnetic dipole and electric dipole fields. Two lines

splitting for the 5D0 ? 7F1 transition at 594 nm suggest the

axial symmetry exists [24, 25]. The hypersensitive transi-

tion 5D0 ? 7F2 at 619 nm is the most intense transition,

which dominates the whole emission spectra, leading to the

characteristic red fluorescence of Eu(III) complex. The

emission of Eu(III) ion often used as a sensitive probe to

investigate the local environment around the ions [26]. The

energy transfer from the ligands to the Eu(III) ion by

intersystem crossing is efficient, which is probably attrib-

uted to the matching of energy levels between excited

states of ligands and excited states of Eu(III) ion. Further,

the fluorescent quantum yield is 0.441. All above prove

that 3-MOBA- and terpy ligands are good chromophore to

absorb energy and transfer to Eu(III) ion, and emit the

characteristic fluorescence of Eu(III) ion.

Two compounds both exhibit excellent fluorescence.

The quantum yield of the two complexes shows that the

fluorescence property of the terbium compound is stronger

than that of the europium compound. Hence, the title

compounds have potential application value as luminescent

material.

Antibacterial activities

The antibacterial activities of ligands and compounds for

C. albicans (fungus), Escherichia coli and Staphylococ-

cus aureus (bacteria) were determined using the filter

paper disk diffusion method at 303.15 K. The ligands and

compounds were, respectively, dissolved in DMSO solu-

tions at different concentrations of 8 9 10-3, 1.6 9 10-2

and 3.2 9 10-2 mol L-1. The experimental results show

that 3-MOHBA ligand has no antibacterial action on C.

albicans, E. coli and S. aureus, while the two compounds

and terpy ligand exerted good antibacterial activity on

E. coli and S. aureus but no antibacterial action on C.

albicans, which may be attributed to the selective inhibi-

tions of the compounds and ligands on antibacterial spe-

cies. As shown in Table 5, the antibacterial actions of

compounds and terpy ligand are more and more remarkable

with the increase in the concentration in the range of tested

concentrations.

In short, Ln(III) ions are coordinated with the donor

atoms of the ligands, which make them have certain

antibacterial activities on microorganism. The p-electron

delocalization over the chelate ring further reduces the

polarity of the central metal cation and increases the

lipophilicity [27]. The bacteriostatic mechanism of the

compounds is presumably that they have a good lipophilic

nature arising from chelation.

Conclusions

The synthesis and characterization of two new compounds

have been successfully reported. IR spectra and X-ray

powder diffraction indicate that compounds 1–2 are

isostructural. The crystal structure of 1 has two asymmetric

dinuclear molecules in unit cell, and each Tb(III) ion is

nine coordinated. The asymmetric units are further con-

nected to form 1D chain along the x-axis direction through

the offset face-to-face p���p weak stacking interactions. The

thermal decomposition mechanisms of the compounds are

obtained by TG/DSC-FTIR techniques. The FTIR spectra

of the evolved gases show that the carboxylic ligands are

completely decomposed, which is consistent with the TG

analysis. What’s more, the terbium and europium com-

pounds exhibit excellent fluorescence. The antibacterial

Table 5 Antibacterial activities of ligands and compounds with three different concentrations at 303.15 K

Ligand/compounds Diameter of bacteriostatic ring for three times in parallel/mm

8 9 10-3/mol L-1 1.6 9 10-2/mol L-1 3.2 9 10-2/mol L-1

I II III I II III I II III

Escherichia coli DMSO 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

3-MOHBA 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Terpy 6.00 6.00 6.00 6.00 6.00 6.00 12.20 11.70 11.50

1 7.80 7.80 7.20 12.10 13.70 12.70 16.00 15.60 15.80

2 6.00 6.00 6.00 11.90 13.00 12.10 17.70 17.30 17.90

Staphylococcus aureus DMSO 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

3-MOHBA 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Terpy 6.00 6.00 6.00 6.00 6.00 6.00 12.40 12.40 12.10

1 6.00 6.00 6.00 9.00 9.30 9.63 15.00 15.40 15.53

2 6.00 6.00 6.00 8.60 9.60 9.63 17.30 16.50 16.73
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performance study shows that two compounds have good

antibacterial actions on E. coli and S. aureus.

Supporting information

The number of compound 1 CCDC 1557510 contains the

supplementary crystallographic data for this paper, which

can be obtained free of charge from the Cambridge Crys-

tallographic Data Centre via www.ccdc.cam.ac.uk/data_

request/cif.
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