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Abstract
In the present study, a comprehensive model based on least square support vector machine algorithm (LSSVM) was

developed to estimate thermal conductivity of nanofluids. The model assessed the thermal conductivity of 29 different

nanofluids. The representative nanofluids were composed of nine base fluids, including water, ethylene glycol, transformer

oil, engine oil, R113, DI Water, monoethylene glycol, paraffin, and oil. Al2O3, TiO2, CuO, ZnO, Al, and Cu nanoparticles

were employed in the corresponding nanofluids. A collection of 1109 experimental samples from reliable sources was used.

In addition, the present model can estimate the thermal conductivity of nanofluids as a function of temperature, diameter,

nanoparticle volume fraction as well as the thermal conductivity of the nanoparticles and the base fluid. The proposed

LSSVM structure was optimized by particle swarm optimization technique where the outcomes proved great accuracy of

the model for estimating the thermal conductivity of nanofluids. Moreover, statistical observations showed superior

predictive ability of LSSVM model than other previous available correlations. Namely, the average relative deviation

percent of 2.46 and 3.10%, and R-squared values of 0.9954 and 0.9914 were resulted for training and testing stages of

LSSVM model, respectively.

Keywords Nanofluid � Thermal conductivity � Least square support vector machine algorithm � Particle swarm

optimization � Sensitivity analysis � Outlier analysis

Introduction

Extensive utilizations of heat transfer phenomena in

industrial instruments underlie their great significance in

the corresponding efficiency. Further, economic heat

transfer processes are characterized by the required volume

of such instruments, which is, in turn, related to their

efficiency [1, 2]. Therefore, the required power consump-

tion and thus processing cost decrease with an increase in

the heat transfer efficiency of the working fluid passing

through the heat transfer devices. Numerous investigations

have been carried out in order to enhance the efficiency of

heat transfer [3–5]. Increasing the effective surface area,

utilization of vibration technique and application of

microscale channels are such investigations that can

improve the efficiency of heat transfer. As demonstrated in

Fig. 1, one can observe remarkable attentions on nanofluid

systems based on annually published articles. This fig-

ure was prepared based on publications recorded in Google

Scholar, which are searched in January 2018 by three rel-

evant topics such as ‘‘nanofluids’’, ‘‘nanofluids thermal

conductivity’’, and ‘‘nanofluids viscosity’’ during various

years. As can be seen, the main investigated subject

regarding the nanofluid systems refers to the thermal con-

ductivity (42%), followed by viscosity (58%). On the other

hand, the thermal conductivity of the working fluid in the

heat transfer systems is identified as an important factor as

to improve the heat transfer efficiency. Owning to low

thermal conductivity of traditional working heat transfer

fluids, for example, water (H2O), ethylene glycol (EG), and
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different oils, their thermal conductivity can be increased

through the addition of a few solid nanoparticles to such

aforementioned fluids [6, 7]. These nanoparticles help to

have a simple fluidized process, avoiding critical issues,

such as the blockage of channels, precipitation of particles,

and erosion due to their nano-sized structures. A new

aspect of nanofluids was familiarized by Chol [8] consid-

ering the suspension of nanoparticles in a base fluid. In

addition, a practical application of nanofluids in

microchannels was also introduced [9]. Recently, numer-

ous studies have been carried out in order to predict the

nanofluids thermal conductivity using simple empirical

correlations and some analytical solutions. A simple cor-

relation was proposed by Maxwell [10] in 1904 for deter-

mining the nanofluid’s effective thermal conductivity. This

correlation can be employed in order to estimate the ther-

mal conductivity in dilute suspensions containing

microparticles; however, this correlation could not show an

accurate estimation of the thermal conductivity of

nanofluids high deviations between correlation and exper-

imental results [11–14].

Several studies have reported the measured thermal

conductivity of nanofluids together with the effective

parameters. Such parameters found to be the volume

fraction of nanoparticles and their size, the aggregation,

morphology and the physicochemical properties of the

solid particles, as well as temperature, and the nature of the

base fluid. In addition, many efforts have been made to

proposing theoretically a new mechanism for thermal

conductivity enhancement. An investigation was carried

out by Vatani et al. [15] to estimate effective thermal

conductivity of nanofluids based on broad data gathering

from recent articles. They compared the outcomes of their

model with seven previous other correlations and con-

cluded that all the models cannot be accurately applied for

different nanofluids; nonetheless, these available

correlations are quite popular in the estimation of nano-

fluid’s thermal conductivity. As a result, highly accurate

estimation of thermal conductivity of nanofluids is a

stimulating subject which must be addressed. Moreover,

measuring the thermal conductivity of nanofluids seems to

be time-consuming and costly while limited effective

parameters can be investigated during the experiments

[16]. On the other hand, the proposed available models can

also cover inadequate ranges of working conditions.

Accordingly, developing an accurate model to indicate the

relationships between relevant parameters determining the

thermal conductivity of nanofluids was found to be a

serious issue. An investigation was carried out by

Baghban et al. to estimate heat transfer coefficient of the

nanofluids containing the silica nanoparticles as a function

of Reynolds number, Prandtl number, and mass fraction

nanofluid by the adaptive neuro-fuzzy inference system

(ANFIS), artificial neural network (ANN), support vector

machine (SVM), least square support vector machine

(LSSVM), genetic programming (GP), principal compo-

nent analysis (PCA), and committee machine intelligent

system (CMIS) [17].

To address such issue employing artificial intelligence,

such as the artificial neural networks (ANNs), fuzzy

inference systems, and support vector machines, which

typically result in precise outcomes, has been recom-

mended by numerous studies in several fields [18–23].

ANN is known as a promising technique to find optimal

solutions for complicated problems leading to a consider-

ably time- and/or cost-saving procedure. Thanks to the

rapid process of the ANN, it has broadly applications in

numerous studies in order to estimate the thermophysical

properties of nanofluids, i.e., thermal conductivity, density,

and viscosity [24–27]. An artificial neural network model

has been proposed by Hojjat et al. [28] to estimate the

thermal conductivity of non-Newtonian nanofluids. The

inputs of their model were based on the operating tem-

perature, the concentration and thermal conductivity of

nanoparticles. In addition, another model developed by

Papari et al. [29] was based on a diffusion neural network

approach. Such model was employed to predict the thermal

conductivity of certain nanofluids containing multi-walled

carbon nanotubes. The nanofluids were synthesized in four

base fluid including oil, decene, distilled water, and ethy-

lene glycol. A couple of structures of ANN model were

also applied by Longo et al. [30] in order to predict the

thermal conductivity of Al2O3 and TiO2 nanopowders in

water as the base fluid. The model was developed as a

function of temperature, volume fraction, thermal con-

ductivity, and the average size of nanoparticle. Hemmati

Esfe et al. [31] modeled the thermal conductivity of Al2O3–

Water nanofluid at different temperatures and solid volume

fractions using ANN method. Recently, another
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Fig. 1 Year-wise published research records on different areas of

nanofluids from Google scholar (2003–2017)
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embranchment of artificial intelligence called least square

support vector machine has been employed by numerous

scholars in such fields [19–21]. However, this technique

has been rarely utilized in order to estimate the physical

properties of nanofluids [32]. It would be worth mentioning

that all previously proposed models can only be applied for

limited nanofluids with poor accuracy to estimate thermal

conductivity. Hence, the present work aims to present a

more wide-ranging model for estimating the thermal con-

ductivity of nanofluids.

Available correlations

Several operative medium models have been employed to

predict the effective thermal conductivity of nanofluids.

The correlation-based models, such as Maxwell correlation

[33], Hamilton and Crosser correlation [34], and Brugge-

man correlation [35] could predict the effective thermal

conductivity of nanofluid as a function of volume fraction,

the thermal conductivity of particle, and thermal conduc-

tivity of base fluid. Apart from these conventional corre-

lation-based approaches, newly proposed strategies are also

explained here. The effect of a nanolayer around a particle

was considered by new approaches, such as Yu–Choi’s

[36], Leong’s et al. [37], Xie et al.’s [38], and Sohrabi’s

models [39]. It is worth to mention that Sohrabi’s [39], Koo

and Kleinstreuer’s [40], and Xu et al.’s models [41] con-

sidered the effect of convective heat transfer caused by

Brownian motion in their models. Moreover, an investi-

gation was carried out by Evans et al. [42] in order to show

the dependence of thermal conductivity of nanofluids on

clustering and interfacial thermal resistance. The following

literature surveys encompass extensive conducted studies

by researchers to predict thermal conductivity of

nanofluids.

Maxwell correlation

This correlation (Eq. 1) is considered as the preliminary

developed correlation which can predict the effective

thermal conductivity of nanofluids [33]. Accurate out-

comes of this model are resulted for low volume fractions

of spherical particles.

Keff ¼
Kp þ 2Kf þ 2/ Kp � Kf

� �

Kp þ 2Kf � / Kp � Kf

� � Kf ð1Þ

Here keff, kf, and kp refer to the effective thermal con-

ductivity of nanofluid, the thermal conductivity of the base

fluid, and thermal conductivity of particle, respectively. /
stands for the volume fraction of the particle.

Hamilton and Crosser correlation (H–C model)

The main advantage of H–C model compared with Max-

well model is that the H–C model considered the effect of

the particle shapes in their formulation. This model is

formulated as below [34]:

Keff ¼
Kp þ n� 1ð ÞKf � n� 1ð Þ/ Kp � Kf

� �

Kp þ n� 1ð ÞKf � / Kp � Kf

� � Kf ; n ¼ 3

w

ð2Þ

In the above correlation, the term n refers to the

empirical shape factor and w stands for the sphericity,

which is the ratio of the surface area of a sphere with unit

volume to the surface area of the particle. In the case of

n = 3, both H–C and Maxwell correlations are identical.

Bruggeman correlation

For spherical particles, the Bruggeman model [35] has

more satisfactory prediction compared to the Maxwell

model. This model uses another averaging technique with

no restrictions on the concentration of inclusions. This

model is formulated as follows:

Keff ¼
1

4
3/� 1ð ÞKp

Kf

þ 2� 3/ð Þ
� ��

þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3/� 1ð Þ2 Kp

Kf

� 	2

þ 2� 3/ð Þ2þ2 2þ 9/� 9/2
� � Kp

Kf

� 	" #vuut

9
=

;
Kf

ð3Þ

All above available correlations had satisfactory accu-

racy for the large size of particles (micro- and millimeter),

but their approximation for nano-size particles shows sig-

nificant deviations.

The Yu and Choi model

A proper investigation was carried out by Yu and Choi [36]

to show the effect of a nanolayer around a particle in

nanofluids for calculating the corresponding thermal con-

ductivity. Moreover, they assumed a quite low particle

volume concentration in the base fluid. Accordingly, the

equivalent thermal conductivity of the equivalent parti-

cles kpe can be expressed as [43]:

Kpe ¼
2 1� rð Þ þ 1þ bð Þ3 1þ 2rð Þ
h i

r

� 1� rð Þ þ 1þ bð Þ3 1þ 2rð Þ
Kp ð4Þ

where b ¼ h
a
in which h refers to the thickness of the

nanolayer and a stands for the radius of particle. In addi-

tion, the definition of r is r ¼ klr
Kp

in which klr denotes the

nanolayer thermal conductivity and kp is the thermal con-

ductivity of particle. Yu and Choi modified the above
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correlation with the following formula by combining with

the Maxwell model, which is shown as follows:

Kpe ¼
Kpe þ 2Kf þ 2 Ke � Kfð Þ 1þ bð Þ3/
Kpe þ 2Kf � Ke � Kfð Þ 1þ bð Þ3/

Kf ð5Þ

It should be mentioned that there is a limiting case as

r = 1 in the Yu–Choi model. Accordingly, this model can

help us to have forward computations for thermal con-

ductivity of nanofluids in the presence of a nanolayer.

Leong et al.’s correlation

The proposed formula by Leong et al. [37] to determine the

effective thermal conductivity of nanofluids was developed

via solving the energy equation in spherical coordinates at

steady-state condition which is presented as below:

keff ¼
kp � klr
� �

/klr 2c31 � c32 þ 1

 �

þ kp � 2klr
� �

c31 /c32 klr � kfð Þ þ kf

 �

c31 kp þ 2klr
� �

� kp � klr
� �

/ c31 þ c32 � 1

 �

ð6Þ

In above expression, c1 ¼ 1þ h
2a
and c2 ¼ 1þ h

a
and also

klr refers to the thermal conductivity of the interfacial

nanolayer. As can be concluded from the Leong et al.

model, the effective thermal conductivity is related to the

particle’ radius (a), interfacial nanolayer thickness (h),

volume fraction (/), and the thermal conductivity of the

particle (kp) and the base fluid (kf). The Maxwell model can

be obtained from this formula when klr = kf and h = 0.

Leong et al.’s model used the general solution for the base

liquid temperature field (Tf). By this modification, the

model can be reduced to the Maxwell model by either

setting h = 0 or klr = kf.

Xie et al.’s model

Another investigation was carried out by Xie et al. [38] to

propose a model for thermal conductivity of nanofluids in

the presence of a nanolayer with spherical shell and

thickness (h) around the particle. The following formula

indicates their model as:

keff ¼ kf þ 3h/Tkf þ
3h2/2

T

1� h/T

kf ð7Þ

Here, term h can be obtained by:

h ¼

klr�kf
klrþ2kf

� 
1þ h

a

� �3�
kp�kf
kpþ2kf

� 

kf�klr
kfþ2klr

� 

2

4

3

5

1þ h
a

� �3þ2 klr�kf
klrþ2kf

� 
kp�klr
kpþ2klr

�  ð8Þ

/T which refers to the total volume fraction of

nanoparticles and nanolayers are defined as follows:

/T ¼ / 1þ h

a

� 	3

ð9Þ

The thermal conductivity of the nanolayer (klr) can be

introduced as:

klr ¼
kf

kp
kf

1þ h
a

� �
� 1

h i2

kp
kf

1þ h
a

� �
� 1

h i
� h

a

n o
ln 1þ kp

kf
1þ h

a

� �
� 1

h in o
þ h

a

kp
kf

1þ h
a

� �
� 1

h i

ð10Þ

A similar model developed by Sohrabi et al. [39]

showed the effect of the convective heat transfer caused by

the Brownian motion. They considered linear and nonlinear

profiles for the thermal conductivity of the nanolayer. As

Xie et al., they did not directly use such profiles in their

main equations and an average value of the nanolayer

thermal conductivity was employed to determine the

effective thermal conductivity of nanofluids.

Koo and Kleinstreuer’s model

The model developed by Koo and Kleinstreuer [13] pre-

dicts the thermal conductivity of nanofluids as a function of

kstatic and kBrownian. The former term (kstatic) in the thermal

conductivity is owing to the higher thermal conductivity of

the nanoparticles, while the latter (kBrownian) implies the

effect of Brownian motion. The above-mentioned con-

ventional Maxwell model is employed for determining

static term, and Brownian motion effects are defined as

expressed by the following formula.

kBrownian ¼ 5� 104b/qfCp;f

ffiffiffiffiffiffiffiffiffiffi
kBTf

qpdp

s

ð11Þ

The density of particles and base fluid is shown by qp
and qf, respectively; also T and cp,f refer to the operating

temperature and specific heat capacity of the base fluid,

respectively. kB is the Boltzmann’s constant, and dp stands

for the particle diameter. The empirical terms in formula-

tion 11 (b and f) are obtained by accurate experimental

measurements. In addition, Koo and Kleinstreuer [40]

suggested a method for determining b, while f can be

obtained based on the following expression.

f ¼ �134:63þ 1722:3/ð Þ þ 0:4705� 6:04/ð ÞT ð12Þ

Indeed, developing expressions for f and b are a prob-

lematic issue because of their complications. Hence,

Xu et al. [41] suggested another model to address this

problem.

Xu et al.’s model

Another strategy similar to Koo and Kleinstreuer model

was proposed by Xu et al. [41]. The thermal conductivity
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of nanofluids is composed of two terms of static and

dynamic conductivity. The dynamic term in this model

differs from the one in Koo and Kleinstreuer model [13].

They assumed that the distribution of the nanoparticle sizes

is fractal, resulting in the following expression for the

dynamic part of the thermal conductivity of nanofluids.

kDynamic ¼ kfC

Nu� df 2� Dfð ÞDf
dp;max

dp;min

� 1�Df

�1

� �2

Pr 1� Dfð Þ2 dp;max

dp;min

� 2�Df

�1

� 1
�dp

ð13Þ

Here Df is defined as:

Df ¼ 2� ln/

ln
dp;mx

dp;min

�  ð14Þ

C, �dp, df, dp,min, and dp,max refer to empirical coefficient,

average diameter, diameter of the liquid molecule, mini-

mum and maximum particle diameters, respectively. In

addition, Xu et al. employed Tomotika et al. [44] approach

presented in the following equation to determine Nusselt

number while assuming
dp;max

dp;min
= 0.001 is:

Nu ¼ 2þ 0:5RePr þ O Re2Pr2
� �

ð15Þ

The formulations of Reynolds and Prandtl number are

expressed as:

Re ¼ dpup

#f

ð16Þ

Pr ¼ lfCp;f

kf
ð17Þ

In above formulations, the velocity of particles is rep-

resented by up. lf and tf refer to the dynamic and kinematic

viscosity of the base fluid, respectively. Moreover, the

values of c for deionized water and ethylene glycerol (EG)

were assumed by 85.0 and 280.0, respectively.

Evans et al.’ model

Since clusters can be simply created by nanoparticles

[45, 46], the fractal theory is typically applied to investi-

gate such effect [47]. Evans et al. [42] believed that clus-

tering can be as a consequence of rapid heat transfer along

long distances. This is because of the conduction heat

transfer rate through the solid particles is greater than that

of liquid media. Hence, they studied the effect of clusters

on thermal properties of nanofluids including the thermal

conductivity and interfacial thermal resistance. Three

models were utilized regularly to evaluate the effect of

clusters including Bruggeman model, Nan et al. model

[48], and Maxwell model. Accordingly, the following

formula was obtained for the effective thermal conductivity

of nanofluids.

keff ¼
kcl þ 2kfð Þ þ 2/cl kcl � kfð Þ
kcl þ 2kfð Þ � /cl kcl � kfð Þ kf ð18Þ

The volume fraction and thermal conductivity of the

clusters are represented by /cl and kcl, respectively. They

proved that size of a cluster increases with a rise of the

effective thermal conductivity.

It should be noted that in all above-mentioned existing

models, various physical mechanisms were used to deter-

mine the thermal conductivity enhancement of the

nanofluids.

Theory of least square support vector
machine (LSSVM)

Although ANN-based models result in promising out-

comes, they are not reproducible. This is because of

changing the optimization bases and unsystematic initial-

ization of this type of models. The support vector machine

(SVM) supersedes ANN-based models by applying a range

of inputs from nonlinear functions to multi-dimensional

mappings. Input and output spaces are connected by linear

decision surface. The SVM-based models need fewer

adjustable parameters compared to ANN-based models. In

addition, SV-based models must not set the number of

hidden layers and corresponding neurons for these models,

leading to more accurate generalization [49, 50].

Least square support vector machine (LSSVM), devel-

oped by Suykens and Vandewalle [49] in 1999, showed to

be simpler than SVM. Some linear equations with support

vectors were used to eliminate the quadratic programming

problems, to reduce sophistications of optimization. In

LSSVM models, the regression error is estimated by the

difference between calculated values by LSSVM and the

experimental values, whereas in SVM method, regression

error is computationally optimized. In LSSVM, the opti-

mization process is done as [51, 52]:

LLSSVM ¼ 1

2
wTwþ l

Xn

i¼1

e2i ð19Þ

It is used in the equation below:

yi ¼ wTg xið Þ þ bþ ei; i ¼ 1; 2; 3; . . .; n ð20Þ

where w is the weight vector, T is transposed matrix, l
shows a relation of single and total regression weight

errors, ei is the regression error dependent on entire data,

g(x) is a function of the mapping, and b is the bias term. W

(regression weight coefficient) will be defined by applying

Lagrangian multiplier (ai) and an input vector (xi) as:
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w ¼
Xn

i¼1

aixi in which ai ¼ 2lei ð21Þ

The equation above will be modified by considering a

linear relationship between dependent and independent

parameters as:

y ¼
Xn

i¼1

aix
T
i xþ b ð22Þ

Then, Lagrange multiplier (ai) will be obtained as:

ai ¼
yi � b

xTi xþ 2lð Þ�1
ð23Þ

The kernel function is combined with Eq. (23) as to

modify it and make it usable for nonlinear constraints, so

we would have:

y ¼
Xn

i¼1

aik xi; xð Þ þ b ð24Þ

where Kernel function [k(xi, x)] is defined as:

k xi; xð Þ ¼ g xið Þ � g xð ÞT ð25Þ

The most common type of Kernels used in performing

the LSSVM method is Gaussian radial basis function.

Kernels (RBF kernels) and their samples are as follows:

k xi; xð Þ ¼ exp
xi � x2

r2

� 	
ð26Þ

In which r2 is squared bandwidth and needs to be

optimized by an optimization algorithm during the training

process.

Results and discussion

Data preparation

Consistency and accuracy of the proposed models above

highly depend on applied experimental data, which should

be accessible and precise in order to implement the model

[19, 21]. A comprehensive model was developed in the

current study through using 1109 experimental data points

for estimating dimensionless thermal conductivity of 29

different nanofluids at different particle diameter size,

temperature, and volume fraction [11, 53–78]. It is worth

mentioning that this model is applied for spherical

nanoparticles. The name of studied nanofluids, ranges of

temperature, particle diameters, and volume fractions

together with their references are presented in Table 1.

Moreover, the thermal conductivity of particles and base

fluids is also summarized in Table 2. The next stage after

data preparation and recognition is to select the input and

output variables of the LSSVM model. The input variables

of suggested LSSVM model were the temperature (K),

particle diameter (nm), volume fraction (v), the thermal

conductivity of nanoparticle (W m-1 K-1), and thermal

conductivity of the base fluid (W m-1 K-1). On the other

hand, the thermal conductivity of nanofluid was considered

as the outcome of the model. Scheme of input and output

variables of the proposed model is represented in Fig. 2. In

order to train and evaluate the model, all gathered data

points were divided into two subcategories, namely the test

and train group. A quarter of data points was chosen as

testing data, and the remained 75% was employed to train

the LSSVM approach.

Model development and evaluation

Radial basis function (RBF) kernel renders high-speed

computations owing to the fewer tuning terms as compared

to others; such function was chosen as an operative and

applicable kernel function in line with other studies. As

already discussed, employing the proposed model which

uses LSSVM approach with RBF kernel function deals

with a significant problem, i.e., finding model tuning

parameters of c and r2 (where c refers to the regularization

term and r2 identifies the kernel sample variance). Such

parameters play a remarkable role in order to achieve a

satisfactory LSSVM model with high capability of

approximations and globalizations.

The present research uses the particle swarm optimiza-

tion (PSO) technique for determining optimal values of

aforementioned tuning parameters. The objective of this

optimization algorithm is to reach a less value of mean

absolute relative error (MARE) of testing samples as a cost

function. The optimization process was continued several

epochs as efforts to obtain a possible global optimum based

on the defined fitness function. Figure 3 illustrates a dia-

gram of PSO–LSSVM model applied in the present work.

Moreover, specifications of the proposed model are pre-

sented in Table 3.

A comparison between estimated and experimental

thermal conductivity of nanofluid at three stages of train-

ing, testing, and total dataset for the LSSVM model is

illustrated in Fig. 4. As is clearly seen in this figure, the
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estimated and actual thermal conductivities of nanofluid

cover each other properly. Furthermore, the approxima-

tions by the proposed LSSVM model were assessed by

applying various approaches such as the statistical and

graphical confirmations. The cross-scheme of the sug-

gested model which is created through scheming estimated

against experimental data points of nanofluid’ thermal

conductivity is illustrated in Fig. 5. An excellent agreement

between estimated and experimental nanofluid thermal

conductivity values at different stages (i.e., train, test, and

total’s) is observed in this figure.

Figure 6 represents the percentage of absolute errors

between the estimated thermal conductivity of nanofluid

and experimental values. As can be seen, the vertical axis

refers to the absolute error percent and the horizontal axes

are assigned to the experimental thermal conductivity of

nanofluid. Results from this figure indicate that the

resulting errors by the LSSVM model range mostly

between 5 and – 5%, confirming the promising perfor-

mance ability of the proposed model. Apart from these

graphical evaluations, a few popular statistical techniques

which are expressed base on the following equations were

applied. This can help to validate the superior application

of our proposed model.

R2 ¼ 1�
PN

i¼1 yPred ið Þ � yExp ið Þ
� �2

PN
i¼1 yPred ið Þ � �yExp
� �2 ð27Þ

%AARD ¼ 100

N

XN

i¼1

yPred ið Þ � yExp ið Þ
� �

yExp ið Þ ð28Þ

RMSE ¼
PN

i¼1 yPred ið Þ � yExp ið Þ
� �2

N

 !0:5

ð29Þ

STD ¼
XN

i¼1

yPred ið Þ � �yExp ið Þ
� �2

N

 !0:5

ð30Þ

Table 1 Diameter, temperature,

and volume fraction ranges of

experimental data points

Systems dp/nm T/K U/% No. of data points References

Al–water 25–80 293–333 0.02–5 65 [53–57]

Al–TO

Al–EG

Al–EO

Cu–water 80 293–323 0.1–3 75 [11, 55, 58]

Cu–EG 80 293–323 0.1–3

Cu–oil 20 303–483 0.01–2.2

Al2O3–water 11–150 273–353 0.015–9 351 [11, 56–58, 60, 63, 64]

Al2O3–EG 11–150 69 [57, 58, 65]

CuO–TO 31 293–324 0.01–14 16 [56]

CuO–water 18–33 138 [56, 60, 63, 64, 66–69]

CuO–EG 12–35 17 [56]

CuO–EMG 25 6 [64, 68]

CuO–MEG 30–40 8 [69]

CuO–paraffin 30–40 9 [69]

Al2O3–DI water 11–150 294–344 1–4 20 [11, 59]

TiO2–EG 10–70 298 1–5 17 [57, 65]

TiO2–DI water 10–70 298 1–3 9 [65]

TiO2–water 18–76 283–352 0.005–11.22 51 [56, 67, 70]

ZnO–EG 30–70 283–343 1–6.2 309 [65, 71]

ZnO–DI water 10–60

SiO2–oil 15 296–380 1.2–7 25 [79]

SiO2–water 10–12 298–353 0.015–5 24 [56, 72]

SiO2–EG 12 298 0.05–0.4 4 [56]

MWCNT–water 9.2–15 293–313 0.005–0.8 17 [62, 73, 74]

MWCNT–EG 20 0.25–1 4 [62, 75]

MWCNT–Oil 25 0.25–1 5 [62, 76, 77]

MWCNT–R113 15–80 0.195–1 10 [62, 76]

Ag–Water 60–63 323–363 0.3–1.2 134 [61, 78]
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The corresponding statistical analyses of the LSSVM

model at three stages of train, test and total data points are

summarized in Table 4. It is found that the LSSVM model

results in high values of R-squared and low values of

AARD, RMSE, and STD. These analyses strongly justify

the applicability and consistency of the proposed model in

order to estimate the thermal conductivity of nanofluids.

Several comparisons were carried out between the out-

comes of the proposed LSSVM model and other previous

correlations. Figure 7 shows the predicted dimensionless

thermal conductivities of Al2O3–water nanofluid with

particle diameter and temperature of 38.4 nm and 324 K,

respectively, resulted from the models by Chon et al. [11],

Murshed et al. [36], Nan et al. [38], Yu and Choi [48],

Xie et al. [59], and Mintsa et al. [60] together with the ones

from the proposed LSSVM model. The dimensionless

thermal conductivity increases with an increase in the

nanoparticle volume fraction. As can be seen, there is a

great agreement between the LSSVM outcomes compared

with other correlations. These correlations are simple and

cannot be applied in different range of conditions. In

addition, the dimensionless thermal conductivity of Ag–

water nanofluid with a particle diameter of 63 nm at 343 K

is obtained from the proposed model in this work, and

correlations such as the Hamilton and Crosser [34],

Timofeeva et al. [61], Wasp et al. [79], and Godson et al.

[80] are compared in Fig. 8. Among these four correla-

tions, after our LSSVM model, Godson et al. have satis-

factory performance in order to apply in Ag–water system.

This comparison clearly indicates an accurate prediction of

the results from the present model proposed in this study

with the corresponding experimental dimensionless ther-

mal conductivities. Figure 9 shows the dimensionless

thermal conductivity of carbon nanotube–water nanofluid

predicted by Thang et al.’s correlation [62] as well as our

proposed model at three different temperatures for

dp = 9 nm. In addition, another comparison of this corre-

lation with LSSVM model for carbon nanotube–water

nanofluid for different particle sizes at 296.15 K is indi-

cated in Fig. 10. As can be seen for carbon nanotube–water

nanofluid system, Thang et al.’s correlation cannot predict

accurately the dimensionless thermal conductivity. More-

over, Fig. 11 shows the outcomes of the proposed LSSVM

model and four other correlations developed by Patel et al.

[81], Azmi et al. [82], and Vajjha and Das [83] for pre-

dicting the dimensionless thermal conductivity of CuO–

water nanofluid with dp = 24 nm and T = 298.15 K.

Patel et al. have better accuracy than other two correlations

for estimating dimensionless thermal conductivity in CuO–

water system. In addition, the dimensionless thermal con-

ductivity of TiO2–EG nanofluid at 298.15 K resulted from

Jang et al. correlation [84] and the proposed LSSVM model

at different nanoparticle sizes and volume fractions is

illustrated in Fig. 12. As can be found by all above com-

parisons, the LSSVM model proposed in this work shows

an invaluable predictive ability to determine the dimen-

sionless thermal conductivity of nanofluids.

Outlier detection and sensitivity analysis

It has been found that the data points used in the modeling

study can highly influence the predictive performance of

the resultant model [85]. Owning to different measurement

errors of experimental databases in the literature, analysis

Table 2 Thermal conductivity of nanoparticle and base fluid

Nanofluid Thermal conductivity

of particle/

W m-1 K-1

Thermal conductivity

of base fluid/

W m-1 K-1

Al–Water 204 0.62

Al–TO 204 0.11

Al–EG 204 0.25

Al–EO 204 0.15

Cu–water 383 0.62

Cu–EG 383 0.25

Cu–oil 383 0.11

Al2O3–water 27 0.62

Al2O3–EG 27 0.25

CuO–TO 20 0.11

CuO–water 20 0.62

CuO–EG 20 0.25

CuO–EMG 20 0.27

CuO–MEG 20 0.27

CuO–paraffin 20 0.21

Al2O3–DI water 27 0.61

TiO2–EG 8 0.25

TiO2–DI water 8 0.61

TiO2–water 8 0.62

ZnO–EG 29 0.25

ZnO–DI water 29 0.61

SiO2–oil 1 0.12

SiO2–water 1 0.62

SiO2–EG 1 0.25

MWCNT–water 1800 0.62

MWCNT–EG 1800 0.25

MWCNT–oil 1800 0.25

MWCNT–R113 1800 0.07

Ag–water 420 0.62
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of outlier for applied data points can lead to erroneous

measured data points. In order to carry out the outlier

analysis, the leverage mathematical approach is usually

used to calculate the residual values and Hat matrix of

input data points as expressed below [86].

H ¼ X XTX
� ��1

XT ð31Þ

In the above equation, X stands for m� n matrix in

which the terms m and n refer to the number of experi-

mental measurements and parameters of our model,

respectively. The main diagonal of Hat matrix can provide

the Hat values. Consequently, a graphical illustration by

William’s plot indicates the valid and suspected data

points. These results are shown in Fig. 13 to detect outliers.

A warning leverage value (H�) in this figure was calculated

by:

H� ¼ 3 nþ 1ð Þ=m ð32Þ

Furthermore, the leverage boundary has been indicated

by the green line and those data points which have higher

Hat values (H) than this warning value H* are introduced as

outliers. Two other red lines presented in this figure are

also referred to the standardized residuals boundaries with

the values ranging ? 3 and - 3. Accordingly, the valid

data points are also situated within these boundaries.

Sensitivity analysis is a popular statistical technique to

show the relationship between inputs and output. The effect

of inputs on output term is determined by the relevancy

factor (r). We can find the most effective variables on

thermal conductivity of nanofluids for the present case. The

relevancy factor is varied between - 1 and ? 1. The

higher value of this term is assigned to a specific input

variable, indicating the more influence of this input vari-

able on the corresponding output. The positive value is due

to an increasing effect, and its negative value shows a

Ranges

Temperature

Partical diameter
273–483 K

Particals

A1
Cu

Al2O3
CuO
TiO2
ZnO
SiO2

MWCNT
Ag

Thermal
conductivity of

partical

Thermal
conductivity of base

fluid

Volume void
fraction

Ranges

Ranges

9.2–150 mm

0.005–14 (%)

Base fluids

Water
EG

EMG
MEG
TO

DI water
Paraffin

Oil
R113

Parameters

Fig. 2 Parameters used for implementation of the model
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decreasing effect. A mathematical formulation of rele-

vancy factor is defined as follows [87]:

r ¼
Pn

i¼1 Xk;i � �Xk

� �
Yi � �Yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Xk;i � �Xk

� �2Pn
i¼1 Yi � �Yð Þ2

q ð33Þ

where Xk;i, �Xk, Yi, and �Y refer to the ‘‘i’’th input value, the

average value of the kth input, the ‘‘i’’th output value, and

the average value of output, respectively. Hence, as

demonstrated in Fig. 14, the values of nanofluid

Input

Random division of data into
training and testing

Training
data

Employ feature

Subset (       )

Construct
LSSVM model

Evaluate the model by
training and testing

σ2,Y

Implement GA
and select

data

Return the LSSVM
using optimum

feature

PSO–LSSVM
model

Determine

optimum

Yes

No

Meet stopping
criterion?

Testing
data

σ2,Y

σ2,Y

Fig. 3 Schematic diagram of proposed PSO–LSSVM model

Table 3 Details of trained LSSVM model

Type Value/comment

No. of training data 961

No. of testing data 320

Kernel Function RBF

c 10,626.6529

r2 0.4326

Optimization method PSO

Pop. size 110

Maximum iterations 1500

C1 1

C2 2
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Fig. 4 Experimental versus estimated thermal conductivities for:

a training data, b testing data, c total data
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dimensionless thermal conductivity show a direct rela-

tionship between temperature, the thermal conductivity of

base fluid, and volume fraction. Thermal conductivity of

base fluid is the most effective parameter, and the particle

diameter has the lowest effect on thermal conductivity of

nanofluid. As can be seen, a number of sixty data points

were detected as outliers.
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Table 4 Statistical analyses obtained from the LSSVM model

Analysis Total Training Testing

R2 0.994499 0.99535 0.991371

AARD/% 2.621034 2.462123 3.09834

MSE 0.0004 0.000354 0.000536

RMSE 0.019991 0.01882 0.023155

STD 0.015218 0.014345 0.017371
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nanofluid
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Conclusions

According to the results from statistical analyses and

graphical illustrations, we can find significant conclusions

as follows:

• A comprehensive databank adopted from previously

published articles was used in the present study, and the

successful performance of our LSSVM model was

shown in order to estimate thermal conductivity of

nanofluids.

• Optimizing tuning parameters of LSSVM strategy by

PSO algorithm led to encouraging results for predicting

thermal conductivity of nanofluids. In addition, a

satisfactory agreement was observed between the

outcomes of the proposed LSSVM model and exper-

imental values with obtained R2 and AARD % of

0.9913 and 3.10%, respectively.
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• A comparison of the LSSVM results with 15 different

correlations indicates great accuracy. Further, the

corresponding predictive capability of our model was

greatly accepted. Moreover, we can see a great

generalization ability of the LSSVM model to estimate

thermal conductivity of different nanofluids.

• The present model is highly nonlinear and complicated.

As a result, through using the LSSVM approach, which

is a connectionist technique with low tuning parame-

ters, can help to overcome any drawbacks and issues

that one might face.

Appendix: Program

I have developed a graphical user interface (GUI) version

of the model as illustrated in Fig. 15. This program is an

exe file presented in supplementary content, and it needs

Matlab software version 2012 (64bit) before running. As

indicated, three input parameters (temperature, diameter,

and volume fraction) should be given and by choosing one

of nanofluid in the panel and then clicking on calculate

button, the thermal conductivity of nanofluid is obtained.
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Thermophysical profile of ethylene glycol-based ZnO nanofluids.

J Chem Thermodyn. 2014;73:23–30.

72. Mondragón R, Segarra C, Martı́nez-Cuenca R, Juliá JE, Jarque
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