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Abstract
Bone char (BC) is a promising porous material that can be used for preparing a form-stable composite phase change

material (PCM). In this paper, form-stable polyethylene glycol (PEG 6000)/BC composite PCMs were prepared by

impregnation method. The PEG was used as the phase change material, and two different particle sizes of BC (0.8–1 mm:

BC-1; 0.25–0.8 mm: BC-2) were acted as the supporting materials. The phase composition and chemical structure of the

composite PCMs (PEG/BC-1 and PEG/BC-2) were characterized using X-ray diffraction and Fourier transformation

infrared. The results indicated that the PEG can be well impregnated into BC pores with good compatibility. Thermal

properties and thermal stability of the composite PCMs were determined by differential scanning calorimeter (DSC) and

thermogravimetry analysis (TGA). DSC results showed that the maximum impregnation percentage for PEG into BC-1 and

BC-2 was 38.77 and 43.91%, respectively, without melted PCM seepage from the composites. The TGA analysis revealed

that the composite PCMs had good thermal stability above their working temperature range. The thermal cycle test of 100

melting–freezing cycles showed that the composite PCMs have good thermal reliability and chemical stability. The form-

stable composite PCMs can be used as thermal energy storage material for waste heat storage and solar heating system.
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Introduction

The shortage of foil energy and low energy efficiency has

become the main limitation for the economy development

of the world [1]. Research in renewable and clean energy

resource such as solar energy has been of vital importance

[2]. Thermal energy storage has been proved to be an

efficient technology for energy conservation which con-

tains sensitive heat storage and latent heat storage. Latent

heat storage using phase change materials (PCMs) is a

promising way to increase the energy efficiency through
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absorbing the industrial waste heat, solar thermal energy

and environmental heat [3, 4]. In recent years, PCM has

been developed for various applications such as thermal

regulation of buildings [5, 6], electronic cooling [7], solar

thermal systems [8–10] and food preservation [11].

According to the phase change type, PCM can be clas-

sified into four groups: solid–solid, solid–liquid, solid–gas

and liquid–gas. Among these groups, the PCM with solid–

liquid transitions is particularly valuable because of its

advantages of high-energy storage density and small vol-

ume change during the phase change [12]. A large number

of solid–liquid PCMs have been widely studied such as

paraffin [13, 14], polyhydric alcohols [9], organic acid [15]

and eutectic salt [16]. Polyethylene glycol (PEG) acting as

a solid–liquid PCM has attracted more interest due to its

suitable phase change temperature, high-energy storage

density, nontoxicity and good thermal reliability [17, 18].

However, leakage during the melting process is a problem.

Thus, the shape-stabilized PCM composed with supporting

material and phase change material is needed to maintain

the solid form even when the temperature is higher than the

melting point of PCM [19, 20]. This means that the PCM

does not leak and react with the surrounding material and

environment.

Impregnating the PCM into porous materials has been

studied [21–24]. Bone char (BC) is a porous adsorbent

which can be obtained from carbonization of animal bones.

Animal bone is a waste material that can be used to pro-

duce bone char by thermal treatment. It processes highly

porous structure and excellent absorption capacity [25, 26]

and has been used in sewage disposal and drinking water

purification [27]. Bone char has also been used for

absorption of lead [28], fluoride [29] and arsenic [30] to

clean the polluted water, but not been used to make com-

posite PCM.

In this paper, a new novel composite phase change

material was prepared by impregnation method. The PEG

was chosen as the PCM, and two different sized bone char

(0.8–1 mm: BC-1; 0.25–0.8 mm: BC-2) were used as the

supporting material. The characterization and properties of

the composites were determined. The results indicated that

the PEG/BC composited PCM will be a potential candidate

for waste heat storage and solar thermal energy storage

systems.

Experimental

Materials

Cattle bones were used to make bone char. PEG 6000 was

purchased from Interchem Agencies Ltd. Deionized water

was used throughout the experimental process.

Preparation of bone char

The raw cattle bones were cut into small pieces (volume,

8–10 cm3), and was treated with boiled deionized water to

remove the remaining protein and fat. The cleaned bones

were grinded and sieved into different size (0.8–1 and

0.25–0.8 mm) followed by carburizing in a furnace at

200 �C for 2 h [31]. The schematic of experimental process

is shown in Fig. 1a.

Preparation of form-stable composite PCMs

The form-stable composite PEG/BC was prepared by

directly impregnation method [32, 33], Fig. 1b. PEG was

put into a beaker and heated at 80 �C with magnetic stir-

ring. Hot ethanol (80 �C) was then added into the beaker

with melted PEG by the mass ratio of 1:1. BC with the

mass ratio of PEG/BC = 150/100 was added into the

beaker. The mixtures were magnetically stirred for 30 min

to obtain composite PCMs, followed by drying on filter

papers in an oven at 80 �C.

Characterization of form-stable composite PCMs

The pore volume, pore size and surface area of BC-1 were

analyzed by Brunauer–Emmett–Teller method (BET, 3

Flex). The results are shown in Table 1. The chemical

stability of the composite PCMs was determined by X-ray

diffraction (XRD, Bruker D2 phaser) and FT-IR spec-

trometer (IRAffinity-1 Shimadzu). The XRD scanning

range was from 10 to 80 �C. The infrared spectrum was

measured in the range of 400–4000 cm-1 with a resolution

of 4 cm-1 and the averaging over 30 scans.

Different scanning calorimeter (DSC-60) was used to

analysis the thermal properties of PCMs. A small amount

of PCM sample was placed in an Al pan with cover lid and

subjected to the DSC furnace. The parameters were set at a

heat rate of 1 �C min-1. The accuracy of temperature and

enthalpy measurements was ± 1 �C and ± 2 J g-1. Before

testing the thermal properties, the DSC equipment was first

calibrated which used the octadecane with thermal

enthalpy of 240 J g-1 as the energy calibration object and

used water, In and Zn (melting point: 0 8C, 156.5 8C and

419.5 8C) as the temperature calibration object. The ther-

mal stability of PCM was defined by thermogravimetric

analysis (TGA, Shimadzu TGA-50) and derivative ther-

mogravimetry (DTG). The heating rate was set as

10 �C min-1 in the temperature range of 30–600 �C. The

weight of TGA instrument was calibrated using the stan-

dard weight before it was used. A thermal cycle test

involving 100 consecutive melting and solidifying cycles

was proceeded to verity the thermal reliability. After
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thermal cycling, the chemical and thermal properties of

composite PCMs were determined by FT-IR and DSC.

Results and discussions

Characterization of composite phase change
material

The textural properties of BC-1 and BC-2 are shown in

Table 1. It can be seen that the pore volume of BC-1 and

BC-2 was 2.858 and 2.997 mm3 g-1 with the pore size of

13.5 and 12.2 nm, respectively. The surface area of BC-1

and BC-2 was 112.551 and 116.643 m2 g-1, respectively,

which proves that the BC-1 and BC-2 have a good potential

as the PCM supporting material.

The chemical compatibility of the components of the

composite was characterized by evaluating the phase and

chemical bond between PEG and BC using XRD and FT-

IR technique. Figure 2 shows the XRD patterns of PEG,

BC-1, BC-2 and composite PEG/BC-1, PEG/BC-2. While

PEG has significant peaks at 19� and 23�, BC-1 and BC-2

possess the same diffraction peaks, indicating that they

have the same phases. The XRD patterns of BC-1 and

BC-2 show a poorly crystalline phase, possibly due to the

existing of organic substances [34]. The main phase of

BC-1 and BC-2 was hydroxyapatite with the characterize

peaks of 26.27�, 32.29�, 40.25�, 47.06�, 49.89� and 53.43�.
It can also be seen that all sharp and intensive diffractions

of PEG are observed in the PEG/BC-1 and PEG/BC-2

composite PCMs, indicating that the crystal structure of

PEG is not destroyed after impregnation. All the other

peaks correspond to BC-1 and BC-2, and no new peaks are
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Fig. 1 a Schematic for the preparation of bone char and b schematic for the preparation of composite PCMs
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Fig. 2 XRD patterns of PEG, BC-1, BC-2 and composite PCMs

(PEG/BC-1, PEG/BC-2)

Table 1 Surface area, pore

volume and pore size of BC-1

and BC-2

Samples Surface area/m2 g-1 Pore volume/mm3 g-1 Pore size/nm

BC-1 112.551 2.858 13.5

BC-2 116.643 2.997 12.2
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observed; evidence of PEG and PEG-1 or PEG-2 is highly

chemical compatible.

Figure 3 shows the FT-IR spectrum of PEG, BC-1,

BC-2 and the composite PEG/BC-1, PEG/BC-2, indicating

that the pure PEG has the characteristic peaks at 961.30,

1097.51, 1279.00, 1359.89, 1466.69 and 2880.02 cm-1.

The peak at 1097.51 cm-1 is attributed to the stretching

vibration of the functional group of C–O. The peaks at

2880.02 and 961.30 cm-1 come from the stretching

vibration of –CH2 of PEG. The BC-1 and BC-2 bands at

603.11 and 1021.10 cm-1 can be attributed to the molec-

ular vibration of PO4
3-, similar to the FT-IR of camel bone

charcoal [35]. The band at 1419.22 cm-1 is attributed to

the stretching vibration for C–O bonds of carboxyl groups

[36]. Finally, the band at 560.39 cm-1 corresponded to the

calcium present in the organic structure, which is attributed

to the bond between calcium and phosphate group [37, 38].

The PEG/BC-1 and PEG/BC-2 have the same FT-IR

spectrums, which contain all characteristic peaks of PEG

and BC without significant new peak, evidence of no

chemical interaction between PEG and BC.

Thermal properties of composite phase change
materials

Figure 4 shows the DSC curves of the PEG, PEG/BC-1 and

PEG/BC-2, with thermal properties listed in Table 2. It can

be seen that the melting and freezing temperatures are,

respectively, at 59.87 and 45.56 �C for PEG, 58.51 and

43.02 �C for PEG/BC-1, and 58.36 and 42.36 �C for PEG/

BC-2. Compared with PEG, the phase change temperatures

of PEG/BC-1 and PEG/BC-2 have changed a little proba-

bly due to the physical interaction implied in the FT-IR

analysis [39]. However, Figure. 4a shows that each melting

peak exhibited one shoulder on its increasing part, which

may be attributed to the melting of polymer’s one folded

chains preceding that of the linear chains as previously

underlined by Kovacs and Conthier [40]. Reversely, the

composite PCMs show the bimodal crystallization behavior
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on its freezing thermogram which probably due to the

freezing temperature of the open-folded chains was a little

different with the original PEG chains.

The latent heat of melting and freezing is 162.07 and

161.32 J g-1 for PEG. The latent heat of composite PEG/

BC-1 and PEG/BC-2 largely depends on the absorbed

amounts of PEG. Table 1 lists the latent heat of melting

and freezing of 62.67 and 59.93 J g-1 for PEG/BC-1 and

71.17 and 68.43 J g-1 for PEG/BC-2. Compared with the

latent heat of PEG/BC-1, PEG/BC-1 with pure PEG, the

PEG mass percentage in the composites can be determined

from Eq. (1). The g represents the mass percentage of

PCM in the composite. DHCPCM is the melting latent heat

of composite PCMs (PEG/BC-1 and PEG/BC-2), and

DHPEG is the melting latent heat of PEG measured by DSC.

The calculated results are listed in Table 3.

g ¼ DHCPCM

DHPEG

� 100% ð1Þ

Other important parameters include impregnation effi-

ciency (d) and thermal storage capacity (r), which are

calculated by the following equations to characterize the

thermal properties of composite PCMs (PEG/BC-1 and

PEG/BC-2) [41].

d ¼ DHM�CPCM þ DHF�CPCM

DHM�PCM þ DHF�PCM

� 100% ð2Þ

r ¼
DHM�CPCM þDHF�CPCM

g

DHM�PCM þ DHF�PCM

� 100% ð3Þ

where HM�CPCM and HM�PCM are the melting and freezing

enthalpy of PEG/BC-1 and PEG/BC-2. HM�CPCM and

HM�PCM are the melting and freezing enthalpy of pure PEG.

The calculated value of d and r are listed in Table 3. The

impregnation efficiency represents the effective latent heat

storage of PEG inside the BC porous structure. As we can

see, the sample PEG/BC-1 and PEG/BC-2 achieved the

impregnation efficiency of 37.91 and 43.17% when the

maximum PCM percentages reach to 38.67 and 43.91%,

respectively. It is also found that PEG/BC-1 and PEG/BC-2

have the thermal storage capacity of 98.03 and 98.31%,

indicating that almost all impregnation PEG can store

thermal energy through phase change.

Leakage analysis of composite phase change
materials

The leakage of composite PCMs of PEG/BC-1 and PEG/

BC-2 would limit its application. Figure 5 shows the

leakage results of pure PEG and composite PCMs. As seen

in Fig. 5, the pure PEG melted after heat treated at 80 �C
for 1 min, but the shape of PEG/BC-1 and PEG/BC-2 has

no change after heat treated at 80 �C for 30 min, and the

filter paper also has no trace of leakage. These results

reveal that there were no leakage in phase change process

of PEG/BC-1 and PEG/BC-2.

Thermal stability of the composite phase change
materials

TGA curves are shown in Fig. 6a, b to assess the thermal

stability of PEG, BC-1, BC-2, PEG/BC-1 and PEG/BC-2.

The corresponding DTG curves are shown in Fig. 7. The

mass of BC-1 and BC-2 decreased during TGA test due to

the loss of water and activated carbon in the porous and

crystal BC. Therefore, the actual mass of PEG in the BC-1

and BC-2 can be calculated by Eq. (4), where u is the
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Fig. 4 DSC curves of the PEG, PEG/BC-1 and PEG/BC-2

Table 2 DSC data of PEG and composite PCMs

Samples (Before thermal cycles)

Melting

(After thermal cycles)

Melting

(Before thermal cycles)

Freezing

(After thermal cycles)

Freezing

Temperature/�C Latent

heat/J g-1
Temperature/�C Latent

heat/J g-1
Temperature/�C Latent

heat J g-1
Temperature/�C Latent

heat/J g-1

PEG 59.87 162.07 – – 45.56 161.32 – –

PEG ? BC-1 58.51 62.67 58.14 61.33 43.02 59.93 42.76 60.04

PEG ? BC-2 59.36 71.17 59.04 71.03 42.36 68.43 44.03 71.16
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actual mass percentage of PEG in the BC-1 and BC-2; a, b

and c, respectively, represent the weight losses of pure

PEG, BC (BC-1 and BC-2) and PEG/BC when temperature

reached 460 �C.

u ¼ c� b

a� b
ð4Þ

The actual mass percentage of PEG in BC-1 and BC-2

was 46.39 and 46.09% which was higher than the value

calculated by the thermal enthalpy, implying that not all

PEG in the porous of BC act as PCM.

As seen from Fig. 7, the pure PEG exhibits a degrada-

tion step with the peak at 423.5 �C. PEG/BC-1 and PEG/

BC-2 display a two-step thermal degradation process due

to the different heat transfer rate in the porous of BC [42].

However, the beginning degradation temperature of PEG/

BC-1 and PEG/BC-2 was 274.5 and 382.5 �C, indicating

that PEG/BC-1 and PEG/BC-2 have a good thermal sta-

bility under 250 �C, especially for PEG/BC-2. Accord-

ingly, PEG/BC-1 and PEG/BC-2 have potential

applications in solar energy storage and energy efficiency

buildings.

Before

Heat

Treat

Heat

Treat

80 °C

After 

Heat

Treat

PEG

PEG
1 min 30 min 30 min

Fig. 5 Leakage test of composite phase change materials

Table 3 Thermal characteristic

of composite PCMs
Samples PCM percentage g/% Impregnation efficiency d/% Thermal storage capacity r/%

PEG/BC-1 38.67 37.91 98.03

PEG/BC-2 43.91 43.17 98.31
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Thermal reliability of form-stable composite
PCMs

The composite PCM must be stable in terms of chemical

and thermal manner after melting and freezing thermal

cycles. Therefore, thermal cycles test was carried out to

determine the change in chemical structure and thermal

properties. Figure 8 shows the FT-IR spectrum of PEG/

BC-1 and PEG/BC-2 before and after thermal cycles. As

seen from the spectrum, the shape and position of all peaks

of PEG/BC-1 and PEG/BC-2 have no change after 100

thermal cycles, indicating that the chemical structure of

composite PCMs has not been affected by melting and

freezing cycles.

Figure 9 shows the DSC curves of PEG/BC-1 and PEG/

BC-2 before and after thermal cycles with data listed in

Table 2. The melting and freezing temperatures of PEG/

BC-1 have only changed by - 0.37 and - 0.26 �C after

100 thermal cycles, while the melting and freezing

enthalpy changed by - 1.34 and 0.11 J g-1. For PEG/

BC-2, the melting and freezing temperatures have changed

by 0.72 and - 0.58 �C, and the enthalpy changed by

- 0.14 and - 0.22 J g-1. The changes in thermal proper-

ties are at a reasonable level for energy storage applica-

tions. It can also be seen that the freezing behavior has

changed apparently after thermal cycles, which may be

caused by the position change of PEG impregnated in BC

and the different positions in BC have different thermal

transfer rates [42].

Conclusions

Two different sized bone char (0.8–1 and 0.25–0.8 mm)

were used as the supporting materials to prepare composite

PCMs. PEG (PEG 6000) acts as the phase change material.
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Two shape-stable composite PCMs were prepared by

impregnate method. The maximum mass ratio of PEG into

BC-1 and BC-2 is 38.67 and 43.91%, respectively. The

form-stable composite PEG/BC-1 and PEG/BC-2 melt at

58.51 and 58.36 �C with latent heat of 62.67 and

71.17 J g-1; and the freeze temperatures are 43.02 and

42.36 �C with latent heat of 59.93 and 68.43 J g-1. The

PEG/BC-1 and PEG/BC-2 PCMs possess good thermal

stability especially PEG/BC-2 above their working tem-

perature. Moreover, the chemical structure and thermal

properties of these PCMs are well maintained after 100

thermal cycles. The results indicate that these form-

stable composite has potential applications in solar thermal

energy storage and energy efficient buildings.
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