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Abstract
In this work, the influences of heat generation/absorption and nanofluid volume fraction on the entropy generation and

MHD combined convection heat transfer in a porous enclosure filled with a Cu–water nanofluid are studied numerically

with of partial slip effect. The finite volume technique is utilized to solve the dimensionless equations governing the

problem. A comparison with already published studies is conducted, and the data are found to be in an excellent agreement.

The minimization of entropy generation and the local heat transfer according to various values of the controlling

parameters are reported in detail. The outcome indicates that an augmentation in the heat generation/absorption parameter

decreases the Nusselt number. Also, when the volume fraction is raised, the Nusselt number and entropy generation are

reduced. The impact of Hartmann number on heat transfer and the Richardson number on the entropy generation and the

thermal rendering criteria are also presented and discussed.
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List of symbols
B Dimensionless of heat source/sink length

B0 Magnetic field strength (T)

Be Bejan number

b Length of heat source (m)

Cp Specific heat at constant pressure ðJ kg K�1Þ
D Dimensionless heat source position

Da Darcy number

d Location of heat sink and source (m)

H Length of cavity (m)

Ha Hartmann number, B0L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf=qfmf

p
Gr Grashof number, gbfH

3DT=t2f
g Acceleration due to gravity (m s−2)

K Permeability of porous medium (m2)

k Thermal conductivity (W m−1 K−1)

Nu Local Nusselt number

Num Average Nusselt number of heat source

p Fluid pressure (Pa)

P Dimensionless pressure, pH=qnfa
2
f

Pr Prandtl number, tf=af
Re Reynolds number, V0H=tf
S Entropy generation (W K−1 m−3)

T Temperature (K)

Tc Cold wall temperature (K)

Th Heated wall temperature (K)

u,v Velocity components in x, y directions (m s−1)

U;V Dimensionless velocity components, u/V0, v/V0

x; y Cartesian coordinates (m)

X; Y Dimensionless coordinates, x/L, y/L

Greek symbols
a Thermal diffusivity, m2 s�1; k=qcp
b Thermal expansion coefficient, K−1
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/ Solid volume fraction

σ Effective electrical conductivity ðlS cm�1Þ
h Dimensionless temperature, ðT � TcÞ=ðTh � TcÞ
l Dynamic viscosity (N s m−2)

m Kinematic viscosity ðm2 s�1Þ
q Density (kg m−3)

Subscripts
c Cold

0 Reference

f Pure fluid

h Hot

m Average

nf Nanofluid

p Nanoparticle

Introduction

Combined convection in enclosures saturated porous media

is presented in several transport operations in engineering

devices. Indeed, the combined convection is advised for

altitude heat-dissipating electronic ingredients, where free

convection is notable for providing effective cooling.

Significance of the combined convection flow can be

located in heat exchangers, solar energy storage, greasing

technology, cooling the electronic systems and desiccation

technologies [1–4]. Among these applications, convection

in porous media with inner energy provenances is practical

in the notion of thermal inflammation and in investigations

considering the chemical reactions and these interested for

detaching fluids [5, 6]. Also, the new suspension called

nanofluid [7] can be applied to develop thermal conduct

system in several engineering implementations like trans-

port, micromechanics, instrument and cooling equipment.

A comparatively little issue of studies dealing with

mixed convective of nanofluids saturated in porous med-

ium was reported. Ahmed and Pop [8] investigated the

combined convective of nanofluid over a vertical plate

applying three various nanoparticles followed the common

pattern of Tiwari and Das [9], which combines only the

nanofluid volume fraction. Cimpean and Pop [10] consid-

ered the fully developed mixed convection flow of a

nanofluid in a permeable channel. Gorla et al. [11] exam-

ined the mixed convective flow of a nanofluid adjacent to a

vertical wedge embedded in porous media. Ghalambaz and

Noghrehabadi [12] investigated the influences of heat

generation/absorption on natural convective of nanofluids

along a plate saturated porous media. Matin and Ghanbari

[13] studied the Brownian motion and the thermophoresis

effects on combined convection of nanofluid in a perme-

able channel. Recently, Srinivasacharya and Kumar [14]

investigated combined convection through a wavy surface

saturated with a nanofluid in porous media. MHD mixed

convective flow of a nanofluid adjacent to a vertical

cylinder embedded in porous media was investigated by

Jafarian et al. [15]. Some more pertinent investigations on

the presented study can be found in the references [16–22].

All of the above-mentioned investigations are based on

the first-law analysis. Lately, the second-law-based works

have acquired concern for analyzing thermal systems.

Entropy generation is applied like a gauging to evaluate

the rendering of thermal systems. The studying of the

energy employment and the entropy generation is one of

the fundamental aims in styling a thermal system. Bejan

[23–25] pointed to the several causes back to entropy

generation in applied thermal engineering. Generation of

entropy devastates ready mission of a system. Hence, it

produces good engineering significance of focus on irre-

versibility of heat transfer and fluid friction operation.

There are just extremely little works that study the sec-

ond-law analysis in the existence of a nanofluid as an

active fluid in porous medium. Many investigators

[26–28] presented theoretical and numerical contributions

on entropy generation due to flow and heat transfer of

nanofluids in several geometries and flow regimes. The

nanofluids flow along a permeable moving surface was

studied by Sheikholeslami et al. [29]. They exhibited that

an augment in the volume fraction reduced the momentum

boundary-layer thickness and the rate of entropy genera-

tion, while the thermal boundary-layer thickness pro-

moted. Ting et al. [30] examined the entropy generation of

nanofluids flow in thermic non-equilibrium saturated

porous medium in microchannels. The analysis of MHD

entropy generation on non-Newtonian nanofluid through a

radiate shrinking surface was investigated by Bhatti et al.

[31]. Das et al. [32] also investigated the unsteady MHD

entropy generation on nanofluid past accelerating

stretching sheet. Ismael et al. [33] studied the entropy

generation due to free convection in an enclosure domain.

They suggested a novel gauge for assessment of the

thermal rendering. Armaghani et al. [34] investigated the

heat transfer and entropy generation of nanofluid in a

partially porous media in an inclined cavity. Entropy and

heat transfer analysis in a conduit partially filled with

porous media-LTNE condition and exothermicity effects

was studied by Torabi et al. [35].

The above studies guide us to be certain that the

entropy generation and MHD combined convection in a

porous enclosure filled with a nanofluid with heat gener-

ation/absorption and partial slip effects have not been

studied yet. Hence, this work is the focus of the current

article. It is considered that this investigation will con-

tribute in developing the thermal rendering in several

engineering devices.
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Problem description and mathematical
modeling

The problem of steady two-dimensional MHD mixed

convection of a nanofluid inside a lid-driven square porous

enclosure of length H is considered with internal heat

generation Q and partial slip effects. The scheme of the

current problem is displayed in Fig. 1a. A heat sink and an

opposite heat source are located on a segment of the lower

and upper walls, respectively, each with a length b. Two

parts of the lower and upper walls of the enclosure are kept

at Tc and Th such that Th[Tc while the other parts are kept

adiabatic. The left and right walls are isolated and move

with a constant velocity V0. A magnetic field with strength

B0 is applied on left side of the enclosure with angle Ф
along the positive horizontal direction.

The nanofluid used in the analysis is supposed to be

incompressible, laminar and exposed to internal heat gen-

eration at a uniform rate Q, and the base fluid (water) and

the solid spherical nanoparticles (Cu) are in thermal equi-

librium and also the solid matrix and nanofluid are in

thermal equilibrium. The single-phase approach is used for

modeling the nanofluid heat transfer. The thermophysical

properties of the base fluid and the nanoparticles are found

in Table 1. The Boussinesq approximation is performed for

the nanofluid properties to relate density variation to tem-

perature variation and to pair in this way the temperature

profiles to the flow profiles. Thus, the governing equations

for steady mixed convection can be presented as, see

[36, 37]:

ou
ox

þ ov
oy

¼ 0; ð1Þ

u
ou
ox

þ v
ou
oy

¼ � 1

qnf

op
ox

þ tnf
o2u
ox2

þ o2u
oy2

� �
� mnf

K
u

þ rnB2
0

qnf
vsinUcosU� usin2U
� �

; ð2Þ

u
ov
ox

þ v
ov
oy

¼ � 1

qnf

op
oy

þ tnf
o2v
ox2

þ o2v
oy2

� �
� mnf

K
v

þ rnfB2
0

qnf
ðu sinU cosU� v cos2 UÞ

þ ðqbÞnf
qnf

gðT � T0Þ;

ð3Þ

u
oT
ox

þ v
oT
oy

¼ anf
o2T
ox2

þ o2T
oy2

� �
þ Q0

ðqCpÞnf
ðT � T0Þ; ð4Þ

where u and v are the velocity components along the x- and

y- axes, respectively, T is the fluid temperature, p is the

Th

0T
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∂

0T
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∂

0T
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Fig. 1 a Scheme of the problem under the consideration. b Control volume for the current investigation

Table 1 Thermophysical

properties of water and

nanoparticle materials [42]

q=kg m�3 Cp=J kg
�1 K�1 K�1=Wm�1 K�1 b=K�1

Pure water 997.1 4179 0.613 21 9 10−5

Copper (Cu) 8933 385 401 1.67 9 10−5
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fluid pressure, g is the gravity acceleration, Q0 is the heat

generation (Q0[0) or absorption (Q0\0) coefficient, qnf
is the density, lnf is the dynamic viscosity, mnf is the

kinematic viscosity.

The boundary conditions are:

On the lower wall:

y ¼ 0; u ¼ v ¼ 0;

T ¼ Th; ðd � 0:5bÞ� x�ðd þ 0:5bÞ;
oT
oy

¼ 0 otherwise

On the top wall:

y ¼ H; u ¼ v ¼ 0;

T ¼ Tc; ðd � 0:5bÞ� x�ðd þ 0:5bÞ;
oT
oy

¼ 0 otherwise

On the right wall:
x ¼ H; u ¼ oT

ox
¼ 0;

v ¼ krV0 þ Nlnf
ov
ox

On the left wall:
x ¼ 0; u ¼ oT

ox
¼ 0;

v ¼ klV0 þ Nlnf
ov
ox

:

ð5Þ
Thermophysical properties of nanofluid

The effective density and heat capacitance of the nanofluid

are determined by [38]:

qnf ¼ ð1� /Þqf þ /qp; ð6Þ
ðqcpÞnf ¼ ð1� /ÞðqcpÞf þ /ðqcpÞp: ð7Þ

The thermal expansion coefficient of the nanofluid can

be given as Khanafer et al. [38]:

ðqbÞnf ¼ ð1� /ÞðqbÞf þ /ðqbÞp: ð8Þ
Thermal diffusivity, anf , of the nanofluid was introduced

by Abu-Nada and Chamkha [39] as:

anf ¼ knf

ðqcpÞnf
: ð9Þ

In Eq. (9), knf is the thermal conductivity of the nano-

fluid which for spherical nanoparticles, based on the

Maxwell–Garnetts model [40], is:

knf

kf
¼ ðkp þ 2kfÞ � 2/ðkf � kpÞ

ðkp þ 2kfÞ þ /ðkf � kpÞ : ð10Þ

The effective dynamic viscosity of the nanofluid based

on the Brinkman model [41] is given by:

lnf ¼
lf

ð1� /Þ2:5 : ð11Þ

The effective electrical conductivity of the nanofluid

was presented by Maxwell [40] as

rnf
rf

¼ 1þ 3ðc� 1Þ/
ðcþ 2Þ � ðc� 1Þ/ ; ð12Þ

where c ¼ rp
rf
:

Dimensionless forms of equations

The following non-dimensional parameters

X ¼ x

H
; Y ¼ y

H
;U ¼ u

V0

;V ¼ v

V0

;

P ¼ p

qnfU2
; h ¼ ðT � T0Þ

DT
;Ri ¼ Gr

Re2
; Sl ¼ Sr ¼ Nlf

H
;

DT ¼ ðTh � TcÞ; T0 ¼ Tc þ Th

2
;

Q ¼ Q0H
2

ðqcpÞf � af
;B ¼ b

H
;D ¼ d

H
;

ð13Þ
are introduced into Eqs. (1)–(5) to yield the following

dimensionless equations:

oU
oX

þ oV
oY

¼ 0; ð14Þ

U
oU
oX

þ V
oU
oY

¼ � oP
oX

þ 1

Re

tnf
tf

� �
o2U
oX2

þ o2U
oY2

� U

Da

� �

þ qf
qnf

� �
rnf
rf

� �
Ha2

Re
ðV sinU cosU� U sin2 UÞ;

ð15Þ

U
oV
oX

þ V
oV
oY

¼ � oP
oY

þ 1

Re

tnf
tf

� �
o2V
oX2

þ o2V
oY2

� V

Da

� �

þ Ri
ðqbÞnf
qnf � bf

hþ qf
qnf

� �
rnf
rf

� �
Ha2

Re
ðU sinU cosU� V cos2 UÞ;

ð16Þ

U
oh
oX

þ V
oh
oY

¼ 1

Pr Re

anf
af

o2h
oX2

þ o2h
oY2

� �

þ 1

Re Pr

ðqcpÞf
ðqcpÞnf

Qh; ð17Þ

where

Pr ¼ mf
af
;Re ¼ V0H

tf
;Gr ¼ gbfH

3DT
t2f

;

Ha ¼ B0H
ffiffiffiffiffiffiffiffiffiffiffi
rf=lf

p
;Da ¼ K=H2;

are the Prandtl number, Reynolds number, Grashof num-

ber, Hartmann number and Darcy number, respectively.

The dimensionless boundary conditions for Eqs. (14)–

(17) are written as:
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On the bottom wall:

Y ¼ 0; U ¼ V ¼ 0;

h ¼ 0:5; ðD� 0:5BÞ �X�ðDþ 0:5BÞ;
oh
oY

¼ 0 otherwise

On the top wall:

Y ¼ 1; U ¼ V ¼ 0;

h ¼ �0:5; ðD� 0:5BÞ�X�ðDþ 0:5BÞ;
oh
oY

¼ 0 otherwise

On the right wall:

X ¼ 1 U ¼ oh
oX

¼ 0;

V ¼ kr þ Sr

ð1� /Þ2:5
oV
oX

On the left wall:

X ¼ 1; U ¼ oh
oX

¼ 0;

V ¼ kl þ Sl

ð1� /Þ2:5
oV
oX

:

ð18Þ
The local Nusselt number is defined as:

Nus ¼ � knf

kf

oh
oY

� �
Y¼0;1

; ð19Þ

and the average Nusselt number is defined as:

Num0 ¼ 1

B

ZDþ0:5B

D�0:5B

NusdX

0
@

1
A

Y¼0

;

Num1 ¼ 1

B

ZDþ0:5B

D�0:5B

NusdX

0
@

1
A

Y¼1

;

Num ¼ Num0 þ Num1

2
: ð21Þ

Governing equation for entropy generation

The entropy generation in the flow profiles is caused by the

non-equilibrium flow imposed by boundary conditions.

According to [42, 44], the dimensional local entropy gen-

eration can be expressed by:

s ¼ knf

T2
0

� �
oT
ox

� �2

þ oT
oy

� �2
" #

þ lnf
T0

� �
1

K
ðu2 þ v2Þ þ 2

ou
ox

� �2

þ ov
oy

� �2
" #(

þ ou
oy

þ ov
ox

� �2
)

þ rnf
T0

� �
B2
0ðu sinU� v cosUÞ2:

ð22Þ
Employing the dimensionless parameters given in

Eq. (14), the formulation of the dimensionless entropy

generation (S) can be written as:

S ¼ s � H
2 � T2

0

kfðDTÞ2
¼ knf

kf

� �
oh
oX

� �2

þ oh
oY

� �2
" #

þH � lnf
lf

� �
� Re2 � Pr2 1

Da
ðU2 þ V2Þ

�

þ2
oU
oX

� �2

þ oV
oY

� �2
" #

þ oV
oX

þ oU
oY

� �2
)

þH � rnf
rf

� �
� Ha2 � Re2 � Pr2 � ðU sinU� V cosUÞ2

¼ Shþ Svþ Sj: ð23Þ
here Sh, Sv and Sj are, respectively, the dimensionless local

entropy generation rate due to heat transfer, fluid fraction

and Joule heating. In Eq. (23), Θ is the irreversibility

factor, which defines the proportion of the viscous entropy

generation to the thermal entropy generation. It is expres-

sed as:

H ¼ lf � T0
kf

af
DTH

� 	2

: ð24Þ

The Bejan number, Be, defined as the proportion

between the entropy generation due to heat transfer by the

total entropy generation, is given as:

Be ¼ Sh

S
: ð25Þ

With a view to current the influence of nanoparticles, the

magnetic field and the difference of temperature on the

average Nusselt number, total entropy generation and Bejan

number, the Nusselt number ratio, total entropy generation

ratio and Bejan number ratio are given as follows:

Nuþ ¼ Num

ðNumÞ/¼0

and Nuþþ ¼ Num

ðNumÞHa¼0

; ð26Þ

Sþ ¼ S

ðSÞ/¼0

and Sþþ ¼ S

ðSÞHa¼0

: ð27Þ

The thermal performance criterion can be presented as

[31]:

e ¼ S

Nu
: ð28Þ

In this paper, we introduce the ratio of the thermal per-

formance as:

eþ ¼ Sþ

Nuþ
: ð29Þ
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Numerical solution and validation

Because of the nonlinear interactions among Eqs. (14)–(17)

in the current investigation, the solution for these equations

with the boundary conditions (18) and 20) can be calcu-

lated computationally by using the collocated finite volume

method. In order to demonstrate this solution, let us take

Eq. (15) as an example. This equation can be written as:

oU2

oX
þ oUV

oY
¼ � oP

oX
þ 1

Re

tnf
tf

� �
o
oX

oU
oX

� �
þ o
oY

oU
oY

� �
� U

Da

� �

þ qf
qnf

� �
rnf
rf

� �
Ha2

Re
ðV sinU cosU� U sin2 UÞ:

ð30Þ

Integrating this equation over the control volume pre-

sented in Fig. 1bZZ
X

oU2

oX
þ oUV

oY


 �
dXdY ¼ �

ZZ
X

oP
oX

dXdY

þ 1

Re

tnf
tf

� �ZZ
X

o
oX

oU
oX

� �
þ o
oY

oU
oY

� �
� U

Da

� �
 �
dXdY

þ qf
qnf

� �
rnf
rf

� �
Ha2

Re

ZZ
X
V sinU cosU� U sin2 U
� 

dXdY :

ð31Þ
The upwind differencing scheme and the central dif-

ference scheme are taken for the convective terms and the

diffusion terms, respectively. Evaluating these integrals

and re-arranging, the following algebraic equation is

obtained:

aUPUP ¼
X
i

aUi Ui þ SU ; ð32Þ

where i = E, W, N, S. Similar treatments are utilized for

Eqs. (16) and (17). The resulting algebraic equations have

been solved iteratively, through the alternate direction

implicit procedure (ADI), by utilizing the SIMPLE algo-

rithm [45]. The velocity correction has been done utilizing

the Rhie and Chow interpolation. For convergence, the

under-relaxation technique has been employed. The itera-

tion is performed until the normalized residuals of the

mass, momentum, temperature and entropy generation

equations become less than 10−6. The non-uniform grid

contains of 101 9 101 grid nodes in the X and Y directions,

respectively. The obtained data are separated of the number

of the grids. The grid independency data are found at Ha ¼
10; Da ¼ 10�3; Gr ¼ Re ¼ 104; D ¼ 0:5; B ¼ 0:5;Q ¼
1:0;U ¼ 45;/ ¼ 0:05; Sl ¼ Sr ¼ 1:0; kl ¼ �kr ¼ 1:0 and

displayed in Table 2. The CPU time is also appeared in

Table 3 for different Richardson numbers.

Figure 2 displays a comparison between the temperature

contour reported in this investigation with those of

Khanafar and Chamkha [36] and Iwatsu et al. [37]. The

data show an excellent endorsement between this investi-

gation and the previously published investigations.

Results and discussion

Eclectic data results performed by streamlines, isotherms,

local and global entropy generation, local and global Bejan

number, and local and average Nusselt number are illus-

trated in this section. The thermal rendering criterion is

also presented. The effects on each of the mentioned

parameters are studied for various nanofluid volume frac-

tions (ϕ = 0–0.2), heat generation/absorption parameters

(Q = −2–2) and Hartmann numbers (Ha = 0–100). The

outcomes are gained for the following fixed parametric

values: Da = 10−3, Θ = 10−2, Ф = 45°,
B ¼ 0:5;D ¼ 0:5; Sl ¼ Sr ¼ 1.

Influence of Hartmann number (Ha)

Figure 3 indicates the effect of the Hartmann number on

the streamlines, isotherms, local entropy generation and the

Bejan number for Ri ¼ 1;/ ¼ 0:05; kl ¼ �kr ¼ 1;Q ¼ 1.

Generally, the effects of the buoyancy together with the

enjoined boundary condition make the fluid rotates clock-

wise with a single-cell circulation near the left wall and

counterclockwise in the middle and within the right wall.

The streamlines and the core shape of the cell are more

symmetric when Ha = 0. For Ha = 100, the counter-

clockwise rotation is stronger and more expanded than the

Table 2 Grid-independency

study for Cu–water nanofluid
Grid size 41 9 41 61 9 61 81 9 81 91 9 91 101 9 101 121 9 121

Num 1.469836 1.448858 1.437232 1.429925 1.424576 1.424554

Table 3 CPU time for obtaining the results at different Richardson numbers and fixed values of the other parameters

Ri = 0.001 Ri = 0.01 Ri = 0.1 Ri = 1.0 Ri = 10

CPU time (min:sec) 3:35 4:38 6:26 6:46 7:09
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clockwise rotation. The cells are moved to the upper of the

enclosure because of the buoyancy influence and the

inclined magnetic field. By enhancing the Hartmann

number, the streamlines tend to be diagonal for Ha = 100.

The isothermal lines show a similar trend for both Ha = 0

and Ha = 100. The temperature gradient near the sink and

the source is greater than at other places of the cavity, and

therefore, the beginning and end of the heat source and heat

sink experience more heat transfer and therefore a greater

Nusselt number. The entropy generation is also significant

near the left and the right walls because of the temperature

gradient and the boundary layers and vanishes in the

middle of the enclosure. The local Bejan number shows a

more concentration at the lower and upper surfaces for

Ha = 0 and Ha = 100, respectively.

As observed in Fig. 4, the local Nusselt number is

decreased through raising the Hartmann number. When the

Hartmann number is decreased, an augmentation in the

Khanafer and Chamkha [36] Present study Iwatsu et al. [37]
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temperature gradient leads to enhance the Nusselt number.

This reason is also being acceptable for variation in the

Nusselt number with the Hartmann number within the heat

source at the lower wall.

Figure 5 shows the same purpose and parameters of

Fig. 3 but for λl = λr = 1. Contrariwise with λl = − λr = 1,

the fluid rotates clockwise shaping a single-cell circulation.

The core form of this cell is transformed from mostly

vertically extended to mostly horizontally extended with

two cells when Ha increases from 0 to 100. The isotherms

in the center of the enclosure tend to be horizontal via

increasing the Hartman number from 0 to 100. The local

entropy generation is also significant within the left and

right walls because the velocity and temperature gradient

are sensible. The local Bejan number is significant in the

center of the enclosure for Ha = 0, and because of the heat

transfer irreversibility near the heat sink/source, the Bejan

number is sizable at the upper and lower walls.

Figure 6 illustrates Nus for kl ¼ kr ¼ 1 at Y = 0, 1. As

Fig. 5 indicates, for Ha = 100, the isothermal lines are

more crowded than those corresponding to Ha = 0 at the

beginning of the heat source, and thus, the temperature

gradient has a higher value, and hence, the maximum

Nusselt number happens at the beginning of the heat source

for Ha = 100, but at the end of heat source, the temperature

gradient at Ha = 0 is more than that for Ha = 100, and

therefore, the Nusselt number is greater in value at Ha = 0

at the end of heat sink. A comparable conduct is found for

the Nusselt number at Y = 1 in Fig. 6, but for Ha = 0 and

Ha = 100, the maximum Nusselt number happens at the

end and the beginning of the heat sink, respectively.

Generally, at Ha = 100, the symmetric profiles of the

isothermal lines near the heat sink and source lead to an

equal value for the Nusselt number at the end and the

beginning of the heat source and sink.

Influence of Richardson number (Ri)

The ratio of natural to forced convection modes is mea-

sured by the Richardson number. Its influence is examined

by keeping the other dependent parameters at

Ha ¼ 10;¼ 0:05;Q ¼ 1.

Figure 7 shows the influences of the Richardson number

on the streamlines, isotherms, local entropy generation and

the Bejan number at kl ¼ �kr ¼ 1. For Ri = 0.001, the

predominance of forced convection can be described by the

predominant shear action where two counter-rotated vor-

tices everyone is guided by a moving wall. Moving up the

core and a third vortex within the lower wall due to

enhanced buoyancy effect can be observed in the stream-

lines for Ri = 10. The corresponding isotherms trend to be

nearly plumed from the heat source toward the heat sink

with isothermal zones localized close the moving walls and

dense isotherms near the heat sink for Ri = 0.001. For

Ri = 10, the isotherms tend to be horizontal in the middle

of the enclosure and with approximately equal isotherms

distribution on both portions of the heat sink/heat source.

The formation and growth of the boundary layer and the

fluid friction irreversibility lead to more generation of

entropy at the top wall for Ri = 10 than for Ri = 0. The

Bejan number is significant within the upper and lower

walls for both of the Richardson numbers, and for Ri = 10

it is sensible in the middle of the cavity because of the heat

transfer irreversibility.

Figure 8 indicates the influences of the Richardson

number on the streamlines, isotherms, local entropy gen-

eration and the Bejan number at kl ¼ kr ¼ 1. When the
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Richardson number is raised from 0.001 to 10 and due to

the dominance of natural convection, the streamlines are

strengthened and dominated by a single main clockwise

circulation, while the particularly vertical isotherms dis-

close the ascendancy of the convection mode. By

enhancing the boundary-layer thickness for Ri = 10 and the

fluid irreversibility as well as the heat transfer

irreversibility near the walls, the entropy generation is

more sensible than that for Ri = 0.001.

Figure 9 displays the local Nusselt number at Y = 0, 1

for kl ¼ �kr ¼ 1&kl ¼ kr ¼ 1. As displayed in the iso-

therms figures, for little Richardson number, the tempera-

ture gradient is very high within the heat sink/source, and

therefore, the maximum Nusselt number happens for

Ri = 0.001. In other words, the predominance of forced
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convection over natural convection for low Richardson

number produces an increment in heat transfer. At the

beginning and the limit of the heat sink/source, the

isothermal lines are very crowded, and therefore, these

areas experience maximum Nusselt numbers for

Ri = 0.001 and kl ¼ �kr ¼ 1. As displayed in Fig. 8a, the

temperature gradient at the limit of the heat sink and the

beginning of the heat source is very significant, and thus,

the maximum Nusselt number happens at the limit of the

heat source and beginning of the heat sink for Ri = 0.001

and kl ¼ kr ¼ 1.

Figure 10 displays the variation of Nuþ with the

Richardson number. Generally, by raising the nanofluid

volume fraction, the average Nusselt number is decreased

for all range of values of the Richardson number. Supple-

menting highly conductive solid nanoparticles will cause a

nanofluid with an elevation in the viscosity, density and

thermal conductivity. The first two properties enhance the

viscous and inertia forces, respectively, while the increased

thermal conductivity enhances the heat transfer. Thus, the

tendency of the Nusselt number ratio is exhibited in

Fig. 10. This figure elucidates that the increased viscous

and inertia forces govern over the increased thermal con-

ductivity and both the buoyancy and the shear influences as

well. This is a sensible cause for the reduction in the

Nusselt number with the addition of nanoparticles. For

u� 0:05, the rate of reduction of Nuþ for high Richardson

numbers is more than that of low Ri values. But for

u� 0:05, enhancing the volume fraction shows a more

reduction for Nuþ at little Richardson numbers. The impact

of enhancing the volume fraction is observed by the

reduction of the entropy generation ratio (Sþ) at Ri = 1–

1000 as presented in Fig. 11. This figure indicates that Sþ is

enhanced by raising the volume fraction at Ri = 0.001 and

0.01.

Figure 12 presents that the supplement of nanoparticles

causes increment in eþ at low Richardson numbers

(Ri = 0.001–1). As presented in Fig. 11a, b, eþ is reduced

by enhancing the nanofluid volume fraction for Ri = 100

and 1000, and therefore, the nanoparticles addition may be

useful for high Richardson numbers.

Influence of heat generation (Q)

Figures 13–16 display the influence of the heat generation

parameter on the mentioned items for the constant para-

metric values of: Ri ¼ 1;Ha ¼ 10; kl ¼ �kr ¼ 1 and kl ¼
kr ¼ 1. Figures 13 and 14 display the influences of the heat

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1 1 1

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

(a)

111

Fig. 7 Streamlines, isotherms, total entropy generation and local Bejan number Ha ¼ 25;/ ¼ 0:05;B ¼ 0:5;D ¼ 0:5; kl ¼ 1; kr ¼ �1;
Sr ¼ Sl ¼ 1;Q ¼ 1. a Ri = 0.001, b Ri = 10

1300 A. J. Chamkha et al.

123



generation parameter on the streamlines, isotherms,

entropy generation and Bejan number at kl ¼ �kr ¼ 1 and

kl ¼ kr ¼ 1, respectively. The stream lines keep their

general pattern with rising values of Q, but their strength

and intensity are rarely decreased for both of the vertical

partial slips. The isotherms in Fig. 13 exhibit that the

temperature gradient is reduced within the heat source

when the heat generation parameter is increased. Also, as

exhibited in Fig. 14, when Q is increased, the isotherms

have a tendency to be vertical in the middle of the enclo-

sure. As displayed in Fig. 13, by raising the heat generation

parameter, the local entropy generation has no significant

change and the local Bejan number is vanished near the

heat sink. Figure 14 also shows that the Bejan number is

increased when the heat generation is enhanced.

Figure 15 shows the variation of Sþ with rising values of

the volume fraction for both of kl ¼ �kr ¼ 1 and kl ¼ kr ¼
1. It is noticed that S+ decreases as a result of increasing u
for low nanofluid volume fractions (/ ¼ 0 ffi 0:05 for kl ¼
�kr ¼ 1&u ¼ 0 ffi 0:07 for kl ¼ kr ¼ 1) and then increa-

ses with increasing u(/ ¼ 0� 0:05 for kl ¼ �kr ¼
1&u ¼ 0� 0:07 for kl ¼ kr ¼ 1) for all covered ranges of

Q. It should be seen that S+ for all ranges of values of Q

and / is less than unity, and therefore, adding nanoparticles

to the pure fluid produces the reduction of the entropy

generation. Figure 16 shows the change in eþ with the

increment in the volume fraction. As displayed in Fig. 16,

when the volume fraction is enhanced, the thermal ren-

dering criterion is enhanced as well. The figure depicts that

a little volume fraction nanofluid can be useful for this

subject.

Conclusions

The influences of nanofluid volume fraction, Hartmann

number, Richardson number and heat generation/absorp-

tion on the entropy generation of mixed convection in a lid-

driven square porous enclosure saturated by a Cu–water

nanofluid with partial slip are numerically studied. The

outcomes have produced the following concluding

remarks:

1. A raise in the volume fraction of the nanoparticles

decreases the entropy generation inside the porous
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cavity for all values of the heat generation parameter

Q.

2. A raise in the nanofluid volume fraction reduces the

average Nusselt number for all values of the Richard-

son number Ri.

3. A nanofluid with small volume fraction shows a

suitable effect on the thermal rendering.

4. The local Nusselt number is enhanced via raising the

Hartman number.

5. The best thermal performance is seen at Ri = 0.001 for

both kl ¼ �kr ¼ 1 and kl ¼ kr ¼ 1:

6. The Nusselt number at all ranges of the Richardson

number for kl ¼ kr ¼ 1 is greater than that corre-

sponding to kl ¼ �kr ¼ 1:
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Fig. 13 Streamlines, isotherms, total entropy generation, local Bejan number at kl ¼ �kr ¼ 1. a Q ¼ �2, b Q ¼ 2
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