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Abstract
In this research, the laminar and forced flow and heat transfer of oil/multi-walled carbon nanotubes nanofluid in a

microchannel have been numerically investigated. The studied geometrics is a two-dimensional rectangular microchannel

with the proportion of length to height of 150 (L/d = 150). The purpose of this research is to investigate the effect of using

rectangular, oval, parabolic, triangular and trapezoidal rib shapes on behavior and heat transfer of nanofluid flow in the

rectangular microchannel. This research has been simulated in Reynolds numbers of 1, 10, 50 and 100 and volume

fractions of 0, 2 and 4% of nanoparticles by using finite volume method. The results of this research indicate that the

existence of ribs enhances the friction factor and Nusselt number, significantly. Also, the shape of rib is one of the most

important factors for determining the behavior and heat transfer of cooling fluid flows. Among the investigated rib shapes,

the parabolic rib, comparing to the augmentation of friction factor, has the best proportion of Nusselt number enhancement.
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List of symbols
A Area (m2)

f Friction factor

Cp Heat capacity (Jkg-1 K-1)

D Microchannel height (lm)

H Ribbed height (m)

k Thermal conductivity coefficient

(Wm-1 K-1)

K Inlet microchannel length (m)

L Microchannel length (m)

M Ribbed length (m)

Nu Nusselt number

P Fluid pressure (Pa)

p Ribbed pitch (m)

Pe Peclet number

Pr = (tf)/af Prandtl number

Re = (qf u H)/lf Reynolds number

T Temperature (K)

U, V Dimensionless velocity components in

x, y directions

X, Y Cartesian dimensionless coordinates

u, v Velocity components in x, y directions

(ms-1)

uc Inlet velocity in x directions (ms-1)

us Brownian motion velocity (ms-1)

W Outlet microchannel length (m)

Greek symbols
a Thermal diffusivity (m2 s-1)

u Nanoparticles volume fraction

jb Boltzmann constant (JK-1)

l Dynamic viscosity (Pa s)

h Dimensionless temperature

q Density (kg m-3)

t Kinematics viscosity (m2 s-1)
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Super- and subscripts
c Cold

Eff Effective

f Base fluid (oil)

h Hot

Ave Average

Nf Nanofluid

s Solid nanoparticles

Introduction

Today, the heat transfer enhancement in volume unites the

transformation of heat transfer sections and the changes of

boundary conditions are some of the important factors in

different fields of heat transfer. In recent years [1–13],

producing compact heating systems has become a basic

and challenging purpose for obtaining higher efficiency in

different industries. According to some previous studies, to

increase the produced power in some power plants, or to

some upgrading, there is an emergency need to increase the

heat transfer capacity in existing systems [14–20]. One of

the best solutions for this problem is using nanofluids

instead of water in this cooling system. Among the effec-

tive methods, adding metallic and nonmetallic particles to

the base fluid, called nanofluid, has become an innovative

and impressive method for heat transfer enhancement. In

fact, nanofluids are a new generation of fluids with higher

potentiality and efficiency in the industrial applications.

Recent studies have revealed that unlike the fluids,

nanofluids have significant rate of heat transfer enhance-

ment [21–34]; therefore, in novel equipment, the heat

transfer issue has high importance among the researchers

using this science. By combining some methods such as

using nanofluids and microchannels with other methods,

the researchers have improved the efficiency of heat

transfer equipment. Behnampour et al. [35] numerically

investigated the effect of using rectangular, triangular and

trapezoidal ribs on behavior and laminar heat transfer of

water/AgO nanofluid flow with nanoparticles volume

fractions of 0–4% in a rectangular microchannel. His

results demonstrated that the rectangular rib causes the

most changes of velocity profile in the central line of flow

and the triangular rib has the best rate of performance

evaluation criterion. Akbari et al. [36] numerically studied

the effect of rib height changes on flow and laminar heat

transfer of water/Al2O3 nanofluid in a two-dimensional

microchannel. He figures out that, by increasing rib height,

Reynolds number and volume fraction of nanoparticles, the

rate of heat transfer improves. In another research, the

effect of rectangular rib on the behavior and laminar heat

transfer of water/Al2O3 nanofluid flow in a three-dimen-

sional rectangular microchannel has been studied by

Akbari et al. [37]. His numerical results demonstrated that,

by increasing Reynolds number, rib number and volume

fraction of nanoparticles, the heat transfer on the heated

surfaces improves. Karimipour et al. [38] simulated the

effect of using rectangular rib on the forced heat transfer of

water/Ag nanofluid in a rectangular microchannel under

the constant thermal boundary condition. His numerical

results indicated that, in higher Reynolds numbers, by

increasing volume fraction of nanoparticles and rib num-

ber, Nusselt number enhances significantly.

Gravandyan et al. [39], by using rectangular ribs with

different pitches, studied the effective factors on flow

structure and heat transfer of water/TiO2 in a two-dimen-

sional microchannel. He figured out that sudden changes of

fluid flow velocity in the microchannel have different

effects on friction factor behavior, and by increasing

Reynolds number, these effects become more considerable.

Also, in the indented zones, the enhancement of AR ratio

has a great effect on the depreciation of fluid momentum.

Although numerous studies have been done in heat transfer

field, due to the advantages of using nanofluids in different

geometrics [40–48], investigating heat transfer mecha-

nisms is continuous. In this paper, the effect of using

rectangular, triangular, trapezoidal, oval and parabolic ribs

has been simulated in a two-dimensional rectangular

microchannel with constant heat flux boundary condition.

In order to improve the heat transfer in the studied

microchannel, oil/MWCNT has been used in different

volume fractions. The effect of simultaneous use of

nanofluid, minimized dimensions, the existence of rib with

different forms, numerical simulation of flow parameters

and the forced and laminar heat transfer with the mentioned

properties have made the present research more advanta-

geous. The results of present numerical simulation have

been compared by different values of volume fraction of

nanoparticles, Reynolds numbers and rib shapes.

Problem statement and geometrical
dimensions

The present study has been simulated in a two-dimensional

rectangular microchannel with the length of L = 7.5 mm

and the height of d = 50 lm. The top wall with the length

of L and the bottom wall with the length of K = 3.75 mm

are insulated from the inlet area. The rest of the bottom

wall of microchannel with the length of L–K = 3.75 mm is

under the constant heat flux of q00 = 10,000 W m-2. The

inlet temperature of cooling fluid is constant and

Tc = 298 K. Oil and the nanoparticles of MWCNT are in

thermal equilibrium. This research has been done in Rey-

nolds numbers of 1, 10, 50 and 100 and volume fractions of

0, 2 and 4% of solid nanoparticles and for the rectangular,
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oval, parabolic, triangular and trapezoidal rib shapes. In

order to have better comparison for each rib shape

described in this research, the height (H) and the length of

rib (m) have been considered as constant. Figure 1 indi-

cates the considered geometrics of the present research.

In Fig. 1, p is the pitch of rib, H is rib height, d is the

height of microchannel, L is the length of microchannel,

K is the inlet length of microchannel, m is the width of rib,

and w is the outlet length of microchannel. In this research,

the numerical simulation of heat transfer and nanofluid

flow inside the mentioned microchannel has been done for

the rectangular, trapezoidal and triangular rib shapes. In

this study, in order to have better investigation and accurate

comparison of the numerical results in different rib shapes,

in all of the states, p, H, m and w have been considered

constant and, respectively, equal with p = 300 lm,

H = 20 lm, m = 100 lm and w = 2250 lm. The

molecular diameter of oil fluid is df = 2 Å, and the

nanoparticles of carbon nanotubes are spherical and have

uniform shape with the diameter of dp = 5 nm [49]. The

properties of oil fluid, MWCNT nanoparticles [49] and

nanofluid with different volume fractions are presented in

Table 1.

Governing equations of the two-dimensional
laminar flow

The governing equations of flow and the forced, two-di-

mensional, laminar, constant and single-phase heat transfer

including consistency, momentum and energy equations

are as follows [50]:
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The equations related to the non-dimensioning of gov-

erning equations of laminar and forced nanofluid flow are

described as follows [51]:

X ¼ x

H
; Y ¼ y

H
; U ¼ u

uc
; V ¼ v

uc
; P ¼

�P

qnfu2c
;

h ¼ T � Tc

DT
; Re ¼ uc � H

tf
; Pr ¼ tf

af
; DT ¼ q00Dh

kf

ð5Þ

By substituting the dimensionless Eq. (5) in Eqs. (1–4),

the consistency, momentum and energy equations in the

dimensionless state can be written as follows [52]:
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The dimensionless boundary conditions for the studied

geometrics of the present paper are defined as follows:

U ¼ 1; V ¼ 0 and h ¼ 0 for X ¼ 0 and 0� Y � 1

ð10Þ

V ¼ 0 and
oU

oX
¼ 0 for X ¼ 150 and 0� Y � 1 ð11Þ

U ¼ 0; V ¼ 0 and
oh
oY

¼ 0 for Y ¼ 1 and 0�X� 150

ð12Þ

U ¼ 0;

V ¼ 0 and
oh
oY

¼ 0 or
oh
oY

¼ � kf

knf
for Y

¼ 0 and 0�X� 150

ð13Þ

The equations related to the computation
of nanofluid properties and flow parameters

Following equations are used for calculating the density

[53] and the specific heat capacity of nanofluid [54]:

qnf ¼ l� uð Þqf þ uqs ð14Þ

qCp

� �
nf
¼ l� uð Þ qCp

� �
f
þu qCp

� �
s

ð15Þ

Chon equation [55] has been used for computing the

thermal conductivity of nanofluid.

km

kf
¼ 1þ 64:7/0:746 df

dnp

� �0:369
knp

kf

� �0:7476

Pr0:9955 Re1:2321

Re ¼ qfkbT
3pl2lf

; Pr ¼ lf
qfaf

; l ¼ A� 10
B

T�C; C ¼ 140ðKÞ;

B ¼ 247ðKÞ; A ¼ 2:414� 10�5 ðPa:sÞ; T ¼ Tin

ð16Þ

In the above equations, the indexes of q, k, u and Cp are,

respectively, the density, thermal conductivity coefficient,

volume fraction of nanoparticle and the specific heat

capacity and the subindexes of s, f and nf are, respectively,
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Fig. 1 The schematic of the studied microchannel. a Elliptical, b rectangular, c trapezoidal, d triangular, e parabolic
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the solid nanoparticles, base fluid and nanofluid. For cal-

culating the effective dynamic viscosity, Brinkman equa-

tion is used [56–58]:

lnf ¼
lf

l� uð Þ2:5
ð17Þ

For calculating the local Nusselt number along the

microchannel walls, following equation is used [59]:

NuðxÞ ¼ hðxÞ : H
kf

ð18Þ

For calculating Fanning friction factor, following equation

is used [60]:

Cf ¼
sw

1
2
� q� u2in

ð19Þ

The performance evaluation criterion [61] and the pressure

drop [62, 63] between the inlet and outlet sections are

calculated by following equations:

PEC ¼
Nuave

Nuave;u¼0

� �
f

fu¼0

� � 1=3ð Þ ð20Þ

DP ¼ �Pout � �Pin ð21Þ

Numerical procedure and assumptions

In the present paper, the finite volume method [64–73] and

the second-order discretization have been used for simu-

lating the fluid flow and heat transfer [74, 75]. In order to

couple the velocity–pressure equations in the numerical

solving of this paper, SIMPLEC algorithm has been used

[76, 77]. Also, for obtaining acceptable results, the maxi-

mum residual has been considered 10-6 [78–80]. The flow

inside the microchannel is laminar, steady, Newtonian,

single-phase and incompressible, and the no-slip boundary

condition has been applied to the microchannel walls. In

this simulation, the nanofluid is homogeneous and the

radiation effects are negligible.

Independency from grid and validation

Table 2 indicates the demanded grid number for results

independency from gridding. The selected grid number has

been studied from 20,000 to 60,000 for the oil as the base

fluid in Reynolds number of 50. In this investigation, the

independency of flow and heat transfer parameters is

intended. For the chosen grid number, the amounts of

average Nusselt number and friction factor on the indented

wall with rectangular ribs have been compared in different

grid numbers. According to the changes of parameters in

chosen grid number, it is observed that the grid number of

Table 1 The thermophysical

properties of the base fluid and

solid nanoparticles

Oil [49] MWCNT [49] Nanofluid u = 0.02 Nanofluid u = 0.04

Cp/Jkg
-1K-1 2032 1700 2012.9 1995.1

q/kgm-3 2032 2600 901.66 936.32

k/Wm-1K-1 0.133 3000 0.5255 0.7912

l/Pa s 0.0289 – 0.0305 0.0321

Pr 441.53 – 116.83 80.94

Table 2 The study of grid

independency for state of

Re = 50 and u = 0.0% of

nanoparticles

Parameters calculated 500 9 40 45 9 700 800 9 50 900 9 55 1000 9 60

Nuave 14.034 15.082 15.98 16.321 17.101

Error/% 21.9 13.4 7 4.8 Base

Cf ave 0.32 0.324 0.326 0.327 0.327

Error/% 2.2 0.92 0.306 0 Base

Re

N
u av

e

0

1

2

3

4

5

6

7

Behnampour et al. [35]
Present study

1 10 50 100

= 0.02

 = 0

 = 0.04ϕ ϕ

ϕ

Fig. 2 The validation of present numerical investigation with the

study of Behnampour et al. [35]
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60,000, in comparison with less grid numbers, has more

accurate results. In this research, this grid number has been

used as an acceptable grid number in the simulation of

numerical solving domain of heat transfer and flow.
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Fig. 3 The local Nusselt number figures along the indented surface for the base fluid
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Figure 2 indicates the validation of the present paper

with the research of Behnampour et al. [35].

Behnampour et al. [35] numerically investigated the lam-

inar flow of water/Ag nanofluid in a rectangular
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Fig. 4 The local Nusselt number figures along the indented surface for nanofluid with volume fraction of 4% of nanoparticles
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microchannel with nanoparticles volume fractions of 0–4%

by using finite volume method and SIMPLEC algorithm. In

Fig. 2, the numerical results of calculated average Nusselt

number on the heated wall of microchannel with rectan-

gular ribs in Reynolds number range of 1–100 have been

compared with each other. According to the coincidence of
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results with the numerical study of Behnampour et al. [35],

the numerical solving procedure and its simulation are

accurate.

Results and discussion

Figures 3 and 4 demonstrate the changes of local Nusselt

number along the indented wall (hot wall) in different rib

shapes and for the base fluid and nanofluid with volume
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fraction of 4%, respectively. Also, these figures indicate the

investigation of local Nusselt number in Reynolds numbers

of 1–100. Placing different rib shapes along the

microchannel and on the direction of fluid motion causes

sudden changes of average Nusselt number graphs, and by

increasing fluid velocity, the amount of these changes

enhances. By colliding the fluid with ribs, due to the

deviation of fluid direction, significant changes have been
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created in velocity parameters, influencing the amounts of

heat transfer coefficient and Nusselt number. In all of the

local Nusselt number graphs, it can be observed that the

maximum rate of sudden jumps in Nusselt number

behavior has been seen along the primary ribs and

gradually; by decreasing fluid momentum, due to the col-

lusion of fluid with other ribs, these sudden changes are

reduced. Also, the shape of ribs causes significant changes

in local Nusselt number graphs; therefore, the existence of

rib with sharp angles causes the most sudden changes in
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these figures. The existence of rib with curved surfaces

causes better contact of flow with surface. According to

Figs. 3 and 4, the enhancement of volume fraction and

Reynolds number causes the improvement in Nusselt

number. Hence, comparing to Figs. 3 and 4, it has higher

level.

The changes of pressure drop along the central line of

flow in Reynolds numbers of 10 and 100, and different rib

shapes and volume fractions of 0, 2 and 4% of nanoparti-

cles are demonstrated in Figs. 5 and 6, respectively. By

moving the fluid among the ribs, the amount of fluid

mixture improves. On the other hand, due to the encounter

and contact of fluid with surface, fluid momentum

decreases and this behavior causes the enhancement of

pressure drop. When fluid velocity is higher, due to the

augmentation of velocity changes and higher depreciation

of fluid, the momentum drop increases. Also, the existence

of ribs with different forms influences the hydrodynamical

behavior of cooling fluid flow. The impressionability of

pressure changes caused by rib shape in Reynolds number

of 10, comparing to Reynolds number of 100, is less. The

main reason of this manner is because of slower motion of

fluid and less changes of fluid velocity because of colliding

with obstacles. Also, the enhancement of volume fraction

of nanoparticle causes the augmentation of density and

fluid viscosity which entails more energy drop of fluid.

Figures 7 and 8 explain the behavior of local dimen-

sionless temperature along the central line of flow in dif-

ferent volume fractions of nanoparticles and rib shapes in

Reynolds numbers of 1 and 50, respectively. Using ribs on

hot surfaces and the collusion of fluid with ribs cause more

changes in the dimensionless temperature profile at the

central line of flow. In Reynolds number of 10, due to

slower motion of fluid and sufficient time for heat trans-

ferring from the hot surface with the cooling fluid, the

pattern of dimensionless temperature figure is somehow

related to the rib shape. The increase in fluid velocity

causes significant reduction in dimensionless temperature

and this behavior decreases the growth of thermal bound-

ary layer. This behavior indicates the reduction in hot

surfaces impression on the central line of flow. The

enhancement of volume fraction of nanoparticles and
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Reynolds number entails the dominancy of inlet fluid

temperature (better cooling) on the internal areas of

microchannel.

Figure 9 indicates the amounts of average Nusselt

number at the range of Reynolds numbers of 1–100 in

volume fractions of 0, 2 and 4% of nanoparticles and dif-

ferent rib shapes. In the average Nusselt number figures, it

can be observed that the enhancement of volume fraction

of nanoparticles in the base fluid causes the improvement

in conductive heat transfer coefficient and the increase in

Nusselt number. This behavior is completely obvious in

Reynolds numbers of 50 and 100, comparing to Reynolds

numbers of 1 and 10. The increase in fluid velocity, rib

shapes and geometrics causes the enhancement of con-

vection heat transfer coefficient and Nusselt number. In

Reynolds numbers of 50 and 100, the rib shape causes

significant changes in heat transfer enhancement, and in

Reynolds numbers of 1 and 100, there is less changes.

According to the studied rib shapes, for the mathematical

numbers of 1 and 10, the maximum amount of heat transfer

is related to the trapezoidal rib shape. In Reynolds numbers

of 50 and 100, the sharp angles of rib cause heat transfer

enhancement; therefore, in the investigated states, the

rectangular rib shape has the maximum value of heat

transfer. In all Reynolds numbers, the minimum amount of

heat transfer is related to the parabolic rib shape. This

behavior is because of the penetration of velocity gradients

on the direction of fluid motion in this rib shape. Each

shape of rib which can influence the disordering of thermal

boundary layer has the maximum amount of Nusselt

number. In Reynolds numbers of 50 and 100, after the

rectangular rib, the oval, trapezoidal, triangular and para-

bolic rib shapes have the maximum and minimum amounts

of Nusselt number, respectively.

Figure 10 demonstrates the amounts of average friction

factor in different Reynolds numbers, volume fractions and

rib shapes. Because of the fluid motion among the ribs,

fluid momentum becomes deprecated. Also, by adding
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higher amounts of volume fractions of nanoparticles to the

base fluid, due to the viscosity and higher density of

cooling fluid and the contact of surface and fluid, more

friction factor has been created on the internal surfaces of

microchannel. On the other hand, the fluid motion on the

indented surfaces causes the contact of cooling fluid with

microchannel walls, and in lower Reynolds numbers, due

to the slow velocity of fluid, the fluid contacts with surfaces

completely. This behavior causes the fiction coefficient

figures to have higher levels in Reynolds numbers of 1,

comparing to other Reynolds numbers. On the other hand,

by increasing Reynolds number, due to the enhancement of

fluid momentum, the contact of fluid with microchannel

walls does not completely happen; therefore, by increasing

Reynolds number, the level of friction factor graphs

reduces. Among the investigated rib shapes, the rectangular

rib shape, due to the creation of the most velocity gradients

on the direction of cooling fluid, has the maximum value of

friction factor. By generally observing the behavior of

friction factor, it can be said that the increase in rib length

and the existence of sharp angles of ribs have great influ-

ence on velocity domain; therefore, this behavior causes

the increase in friction factor. In all of the studied Reynolds

numbers, the rectangular, trapezoidal, oval, parabolic and

triangular rib shapes have the maximum and minimum

amounts of average friction factor, respectively. In the

parabolic rib shape, comparing to the oval form, by

increasing fluid velocity in Reynolds number of 100, the

amount of average friction factor becomes more

significant.

Figure 11 shows the performance evaluation criterion

for different rib shapes and volume fractions of nanopar-

ticles and Reynolds numbers of 1, 10, 50 and 100. The

performance evaluation criterion is a quantitative com-

parison between Nusselt number and friction factor in the

indented microchannel in each volume fraction, comparing
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to the pure oil as the base fluid. In all of the studied

Reynolds numbers, the enhancement of fluid velocity

causes significant augmentation of performance evaluation

criterion. The reason of this behavior is the influence of

Nusselt number and heat transfer enhancement, comparing

to the friction factor enhancement, because of adding

volume fraction of nanoparticles. In all of the figures, the

increase in volume fraction of nanoparticles has a great

effect on the enhancement of performance evaluation cri-

terion and the figures with higher volume fractions have

higher levels. Among different studied rib shapes, in

Reynolds number range of 1–100, the best conformity

between Nusselt number enhancements and the friction

factor happens in the parabolic, triangular, trapezoidal,

oval and rectangular rib shapes, respectively. Although the

existence of sharp angles of the rectangular rib shape

entails Nusselt number enhancement, these angles cause

significant augmentation of velocity gradients in the cool-

ing fluid and therefore cause the increase in friction factor.

Figure 12 explains the amounts of average pressure drop

in the central line of flow for each different rib shape in

Reynolds number range of 1–100. These figures investigate

different Reynolds numbers and volume fractions of

nanoparticles, separately. The enhancement of volume

fraction of nanoparticles and fluid velocity causes the

increase in viscosity–density and the momentum of cooling

fluid, respectively. The existence of ribs on the direction of

fluid motion causes momentum damping and the reduction

in kinetic energy of fluid. On the other hand, each shape of

ribs which can create more velocity gradients has higher

pressure drop on the direction of fluid motion and in all

Reynolds numbers, and the maximum amount of pressure

drop is related to the graphs with higher level of volume

fraction. The behavior of pressure drop changes is similar

to the behavior of average friction factor. In all of the

investigated Reynolds numbers, the rectangular, trape-

zoidal, oval, parabolic and triangular rib shapes have the

maximum and minimum amounts of average friction fac-

tor, respectively. Also, by increasing Reynolds number, the

behavior of oval rib improves and its amount reduces.
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Conclusions

In this research, the effect of using rectangular, oval,

parabolic, triangular and trapezoidal rib shapes on the

manner of laminar heat transfer of oil/MWCNT nanofluid

in a two-dimensional rectangular microchannel with the

length of L = 7.5 mm and the hydrodynamical diameter of

H = 50 lm has been numerically investigated. The results

of this research have been compared with each other in

Reynolds numbers of 1, 10, 50 and 100 and different

volume fractions of solid nanoparticles. The increase in

volume fraction of nanoparticles and Reynolds number

entails the dominancy of inlet fluid temperature (better

cooling) on all of the internal areas of microchannel. The

augmentation of solid nanoparticles, due to the collusion of

particles with ribs, causes the enhancement of density and

fluid viscosity and more energy drop of fluid. By colliding

the fluid with ribs, due to the deviation of fluid direction,

significant changes have been created in velocity parame-

ters, influencing the amounts of heat transfer coefficient

and Nusselt number. In the investigated states, the rectan-

gular and parabolic ribs have the maximum and minimum

amounts of average Nusselt number, respectively. Also, the

rectangular, trapezoidal, oval, parabolic and triangular ribs

have the maximum and minimum amounts of average

friction factor, respectively. Among different studied rib

shapes, in Reynolds numbers of 10, 50 and 100, the best

conformity of Nusselt number enhancements and friction

factor has been obtained in the parabolic, rectangular,

trapezoidal, oval and rectangular rib shapes, respectively.

In general, according to the importance of heat transfer

enhancement methods, it is expected that the results of this

research, as well as other researches in this field, be

applicable and useful in today’s industries such as in

electronics, power stations, aerospace and automobile

manufacturing.
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