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Abstract
In this work, new version: we report essential data on the stability of gamma-irradiated polyurethanes chemically modified

by octa(3-hydroxy-3-methylbutylmethylsiloxy) POSS (o-POSS) which varies from 2, 4, 6, 8 to 10 mass%. These hybrid

materials were tested by isothermal (190 �C) and nonisothermal (b = 2, 3.7, 5 and 10 K min-1) chemiluminescence, and

the thermal stability of gamma-radiation-aged samples was correlated with the change in the nanofiller loading and

absorbed dose. The compositions where inorganic phase is less than 6% show an increasing thermal strength as o-POSS

concentration enhances. The other samples with higher nanoparticle content present less stability in respect of inferior

homologous composition. The nonisothermal chemiluminescence profiles are changing from one type of sample to the

other where nanofiller induces different effects. The considerations on mechanistic aspects are discussed, too.
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Introduction

The hybrid materials are essential in all economical fields

where the improved endurance is required. The enlarging

knowledge areas of polyhedral oligomeric silsesquioxanes

(POSS)-modified polymers have received deep attention

[1–5] because the presence of this inorganic filler allows

the manufacture of long-life engineering products. The

diversity of polymer materials such as PMMA [6], silicone

[7], epoxy resins [8] and polyurethanes [9] was studied,

where POSS filler acts as a compound suitable for new

resistant structures. These papers emphasize additive con-

tribution to the polymer functionality. An intimate inter-

action between POSS nanoparticles and polyurethane

structure was previously presented [10].

The degradation of polyurethanes has been amply dis-

cussed because these materials have several applications in

medical wear, chemical engineering, aircraft industry,

nuclear areas [9, 11, 12]. The excellent radiation stability

of polyurethanes [13] and their large processing dose range

[14] recommends them for long-term applications. The

degradation of polyurethanes accelerated by their exposure

to high-energy radiation [14–16] occurs somewhat slowly

because they show an evident tendency to cross-link [17].

The chemiluminescence (CL) examination on the thermal

stability of polyurethane composite reveals the contribution

of bond dissociation and the elimination of carbon dioxide

to the evolution of thermal degradation in polyurethane

matrices [18, 19]. The spectroscopic (ATR-FTIR) analysis

identified oxygenated products as main degradation prod-

ucts formed during natural and artificial aging of poly-

urethane foams [20].

The degradation mechanism of polyurethanes and their

POSS composites was previously analyzed. The thermal

stability study on the degradation of rigid polyurethanes

foams modified with polyhedral oligomeric silsesquioxane

on whose structure propanediolizobutyl or (3-hydroxy-3-

methylbutyldimethylsiloxy) moieties were grafted has

pointed out the changes in physical and structural features
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caused by the interaction between polymer matrix and

inorganic particles [12].

However, the studies on the stabilization of poly-

urethanes are scarcely published [9, 12, 21]. They under-

line the delay of oxidative degradation by the additive

activities in respect of the scavenging free radicals, the

efficient adsorption on particle surface or the penetration of

radicals through channels existing in POSS morphology.

The telechelic behavior of PU in the presence of modified

POSS nanoparticles [22] confirms the remarkable thermal

resistance of these compositions proving the further

capacity of material for the oxidation prevention of creat-

ing radicals. The proofs on the improved endurance PU/

POSS systems are the results of phase stability investiga-

tion over large temperature range (50–400 �C) [23].
In this paper, the stability investigations by chemilu-

minescence on radiation processes of MDI-based poly-

urethane modified with octa(3-hydroxy-3-

methylbutyldimethylsiloxy) polyhedral oligomeric

silsesquioxane (o-POSS) are analyzed.

Experimental

Synthesis materials

Hybrid polyurethane/o-POSS materials were synthesized

using 4,40-diphenylmethane diisocyanate (MDI, Sigma-

Aldrich), poly(tetramethylene glycol) (Invista), 1,4-bu-

tanediol (Sigma-Aldrich) and o-POSS (Hybrid Plastics)

(Fig. 1) in a two-step process [10].

Methods

Radiation processing was accomplished in air at room

temperature in an irradiation device (Ob Servo Sanguis,

Hungary) provided with 60Co source. The doses were 25,

50 and 100 kGy. The dose rate was 1 kGy h-1. The sam-

ples were measured immediately after the end of each

irradiation.

Isothermal and nonisothermal chemiluminescence

spectra were recorded by means of LUMIPOL 3 (Slovak

Academy of Sciences, Bratislava). Thermal regimes were

as follows: for isothermal investigations, the temperature

was performed at 100, 110 and 120 �C, and for non-

isothermal determinations the four heating rates, 2, 3.7, 5

and 10 �C min-1. Small square pieces weighing around

3 mg were placed on aluminum pans which do not influ-

ence the oxidation profile.

Results and discussion

The radiation processing, which is an accelerated proce-

dure for polymer modification, provides high concentra-

tion of reactive intermediates (free radicals as former

entities). In the opposition with PP/POSS, PP being

degraded by c-irradiation in air [24], polyurethane/POSS

hybrids exhibit higher oxidation resistance at small filler

loadings [9]. As a result of polypropylene radiolysis, the

values of decomposition temperature fall significantly

down for low absorbed dose (less than 20 kGy), while the

stability of polyurethane is improved for the concentration

up to 4% [9].

The modification of POSS molecular configuration by

the grafting of branched moiety brings about a supple-

mentary effect on the efficiency in oxidation delay. The

contribution of this kind of grafted POSS was previously

reported for the promotion of cross-linking [25] via clas-

sical reactions, but high-energy exposure involves more

intimately the changing amplitude. The molecular archi-

tecture would be defined by the competition between oxi-

dation and radical scavenging [5]. If the substitute is not

enough active for the slowing down degradation rate,

polyurethane molecules are dominantly converted into

alcohol by-products [26].

Isothermal CL investigation on pristine polyurethane

shows curves with a minimum value (Fig. 2).
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Fig. 1 Molecular configuration of octa(3-hydroxy-3-methyl-

butyldimethylsiloxy) polyhedral oligomeric silsesquioxane
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Fig. 2 Isothermal CL spectra recorded on pristine polyurethane

samples. (1) 100 �C, (2) 110 �C and (3) 120 �C
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They demonstrate fragmentation process accompanied

by a slight oxidation on the descendant part followed by an

advanced oxidation on the ascendant part of curves. An

accelerated degradation is obtained as the working tem-

perature increases because the quicker diffusion of oxygen

feeds this process. The related mechanism was previously

reported [11, 27]. The temperature of 110 �C would be

considered as an acceptable value for reliable experiments.

The presence of octa(3-hydroxy-3-methyl-

butyldimethylsiloxy)/polyhedral oligomeric silsesquioxane

in the studied polyurethane matrix changes profoundly the

shape of oxidation curves (Fig. 3).

The nonirradiated samples show CL curves with pro-

nounced descending former part followed by an equilib-

rium plateau or slight monotone ascending portion. This

last tendency is characteristic for pristine and 2% modified

polyurethane, where the filler loading is minimal. It can be

easy noticed that the increase in the o-POSS concentration

improves significantly the oxidation strength of basic

polymer till it reaches a reasonable figure (6%). This fea-

ture was also found for polyurethane samples containing

neat POSS [9], but the stability threshold was only 4%.

Although the content of filler becomes higher, up to 10%

the sample stabilities remain higher than that was observed

for pristine polyurethane. The CL curves recorded for

superior concentrations (6 and 8%) of o-POSS are placed

in the upper region in respect of the most stable material

(6%) because the oxidation takes place faster. The highest

content of o-POSS delays oxidation only on the first step of

degradation. It would be explained by the saturation of

o-POSS reacting positions; consequently, the competition

between adsorption and oxidation of free radicals is gained

by the oxidation aging.

The most suggestive comparison between the degrada-

tion of irradiated samples may be made on pristine and 6%

loaded polyurethane (Fig. 4).

In the case of pristine material, the irradiation causes a

former stabilization at 25 kGy, while higher doses promote

oxidation. The curve shapes over the first 10 min of oxi-

dation are sharper in the case of modified polymer because

the scavenging of free radicals is efficient. The higher CL

intensities recorded on irradiated samples especially at

100 kGy prove the availability of high radical concentra-

tion for oxidation in respect of unprocessed polymer.

However, the values of CL intensities after the accom-

plished degradation tend to similar figures that characterize

each filler concentration (Fig. 5).

The evolution of oxidation as the temperature increases

is presented in Fig. 6.

On the low-temperature range (room temperature

-180� C), the emission intensities are comparable

because the concentration of free radicals is not high

enough, at elevated temperatures, for example 250 �C.
The relative position of specific intensities confirms the

behavior found by isothermal investigation. The neat

polyurethane is the most unstable material, and the dif-

ference between pristine and compounded materials

appears evidently during for advanced degradation state
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Fig. 3 Isothermal CL spectra recorded for all nonirradiated poly-

urethane hybrids. Testing temperature: 110 �C
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Fig. 4 Isothermal CL spectra recorded for neat (a) and 6% o-POSS

hybrid (b) polyurethane c-irradiated at various doses. Testing

temperature: 110 �C, (red square) 0 kGy, (green circle) 25 kGy,

(dark red triangle) 50 kGy, (white inverted triangle) 100 kGy. (Color

figure online)
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when the filler acts as intermediate scavenger. As it was

previously reported [28], the degradation process occurs

by the secondary peroxyl radicals which are further

involved in different reactions like hydrogen and radical

abstraction, disproportionation or partial recombination.

Their feeding is practically delayed by o-POSS nanopar-

ticles which retain the oxidation initiators.

The comparison of nonisothermal CL spectra for non-

irradiated samples (Fig. 7) reveals the delay of oxidation

by o-POSS nanoparticles.

This kind of materials reveals a limiting concentration

threshold at 6%, while the delimitation of protection

regime in other engineering polymers like polyethylene,

ethylene-propylene elastomer or any other thermoplastic

material was never demonstrated.

The detailed analysis of the radiation degradation of

polyurethanes based on infrared spectroscopy [15] where

the tendency to cross-linking is proved by Charlesby–

Pinner representation and the degradation features is

justified by the changes in characteristic spectral absorp-

tion. The most sensitive parts of polyurethane molecules

are found in amorphous zone as soft fragments and ethy-

lene glycol moieties. In our cases, the scavenging activities

shown by the polyurethane/o-POSS formulations irradiated

at low dose (25 kGy) characterizing the sterilization

operation are similar on the low- and medium-temperature

ranges and they do not strictly depend on material com-

position (Fig. 8).

The more intensive heating brings about an accelerated

oxidation in the samples with medium amount of o-POSS.

It may be ascribed to the availability of substituted octa(3-

hydroxy-3-methylbutyldimethylsiloxy) to hinder the

detachment of scavenged intermediates due to its large

volume.

The history of materials gets influence on the degrada-

tion manner by which polymer items are degrading. The

irradiation and the features related to the radiochemical

scission and cross-linking yields are permanently in com-

petition during c-exposures. The comparison between
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Fig. 5 Final values of CL emission intensities for oxidation of all

polyurethane samples. The meaning of coloring is the same as in

Fig. 3. (Color figure online)

Fig. 6 Evolution of CL intensity for all unirradiated polyurethane

samples at three temperatures. The meaning of coloring is the same as

in Fig. 3. (Color figure online)
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Fig. 7 Nonisothermal CL spectra recorded on all unirradiated

polyurethane samples at heating rate 2 �C min-1. The meaning of

coloring is the same as in Fig. 3. (Color figure online)
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Fig. 8 Nonisothermal CL spectra recorded on all polyurethane

samples irradiated at 25 kGy. Heating rate 2 �C min-1. The meaning

of coloring is the same as in Fig. 3. (Color figure online)
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Figs. 8 and 9a, higher emission intensities for longer

exposure of polyurethane/o-POSS samples, can be

accounted, but the likeness of each composition for the two

doses does not confirm similarity in the progress of

degradation.

The differences in the radical concentrations and in the

filler loadings cause the shift of intensity peaks toward

higher temperatures. The simultaneous molecular frag-

mentation, radical scavenging by filler and their reactions

change the oxidation profile. The most relevant behavior

for the both situation is the preservation of stability

ranking.

Figure 9b, c illustrates the thermal behavior of similarly

irradiated samples by CL measurements at two different

heating rates. The higher the testing rate, the greater the

emission intensities. The most stable composition is poly-

urethane/6% o-POSS which shows this favorable charac-

teristic even at higher temperatures. The analysis of

intimate mechanism of this material response leads to the

conclusion that this filler content corresponds to a satura-

tion threshold for radical scavenging. Further, the increased

o-POSS amount does not sustain superior stability; by

contrary, the oxidation progresses faster because of the

greater concentration of blocked initiators.

Conclusions

The thermal behavior of polyurethane/octa(3-hydroxy-3-

methylbutyldimethylsiloxy)/polyhedral oligomeric

silsesquioxane presents a stability threshold at the con-

centration of o-POSS of 6%. The contribution of this filler

in the nanosize state in polyurethane matrix is based on its

availability for the scavenging radicals formed by molec-

ular fragmentation. Similar stability limit was also shown

by polyurethane loaded with pristine POSS, but the highest

stability was noticed at 4%. The investigations accom-

plished by isothermal and nonisothermal chemilumines-

cence revealed the increase in thermal and radiation

stabilities up to limit concentration followed by the more

accelerate oxidation. The prented results are useful for the

assessment of polyurethane based medical wear which

have to resist over long operation term. The accelerated

degradation carried out under c-irradiation is a proper

manner to demonstrate the availability of these hybrid

materials for nuclear application.
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27. Roşu D, Roşu L, Mustaţă L, Varganici C-D. Effect of UV

radiation on some semi-interpenetrating polymer networks based

on polyurethane and epoxy resins. Polym Degrad Stab.

2012;97:1261–9. https://doi.org/10.1016/j.polymdegradstab.

2012.05.035.
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