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Abstract
A novel simple approach is introduced to predict the decomposition onset temperature of cubic polyhedral oligomeric

silsesquioxane, POSS, compounds through their molecular structures. It is based on the number of organic groups attached

to silicon atoms and some structural moieties that depend on the type and size of substituents. The present method can be

easily applied for cubic POSS containing different substituents attached to silicon atom without using special computer

codes, which need expert users. The measured data for 50 cubic POSS compounds are used to construct new model with

good coefficient of determination (R2), i.e., R2 = 0.9384. Statistical parameters including the root-mean-squared error,

mean absolute percent error and maximum of errors of the new model are 19.2, 4.6 and 66.5 K, respectively, which

confirm high reliability of the new method. The method is tested for further four POSS compounds including complex

molecular structures, which give good results. Cross-validation of models is also used to evaluate the goodness-of-fit,

goodness-of-prediction, accuracy and precision of the new model.
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Introduction

Polyhedral oligomeric silsesquioxane (POSS) molecules

are inorganic/organic hybrid cage-type nanostructures with

the general formula of (RSiO3/2)n, where n is 6, 8, 10, etc.,

and R can be hydrogen, alkyl, alkylene, aryl or other

organofunctional derivatives. Due to the many useful

applications, various research works have been done on

POSS compounds in recent years [1]. Cubic POSS

((RSiO3/2)8) compounds are especially important because

they can be considered as starting materials for the syn-

thesis of a wide range of materials with the desired prop-

erties [2, 3]. In octafunctional POSS compounds, the

central inorganic core, Si8O12, is surrounded symmetrically

by distribution of organic moieties. The composition of

silsesquioxane containing inorganic core, Si8O12, and

organic groups describes their thermal and mechanical

properties. Moreover, the organic periphery on their silicon

atom, which can be easily functionalized, allows a facile

tuning of the silsesquioxane properties [1, 4]. Figure 1

shows the general structure of an octafunctional POSS

compound.

Cubic POSS materials are widely used in various

branches of material science such as catalysis [5–7], flame-

resistant nanocomposites [8, 9], biomedicals [10, 11], light-

emitting diode materials [12–14], ionic liquids [15], ionic

crystals [16], electrolytes with high thermal stability [17]

and functional coatings [18, 19]. Thermal stability is an

important characteristic of POSS compounds, which

improves the thermal properties of polymer nanocompos-

ites and hybrids. Thermal analysis methods are used to

investigate the thermal degradation of POSS materials.

Thermal stability and decomposition of cubic POSS have

been studied by the thermogravimetric analysis (TGA)

[4, 10]. Different thermal analysis methods have been used

widely for the evaluation of thermal stability

[4, 10, 20–36]. The heat of decomposition shows a rela-

tively large error of about 10%. Meanwhile, the exothermic

onset temperature, the temperature at which the first

deflection from the baseline is observed, thermal
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decomposition temperature and the temperature at which

maximum of mass loss give better reproducibility than that

of the heat of decomposition. For classes of organic com-

pounds containing energetic groups, there are some rela-

tionships between activation energy of thermolysis and the

other stimuli for initiation of their decomposition [37, 38].

Development of suitable predictive methods on thermal

stability parameters such as decomposition onset temper-

ature can help the scientists to increase their knowledge on

the synthesis of good candidate. Quantitative structure–

property relationship (QSPR) studies are usually used for

this purpose [39–45], but they require some complex

molecular descriptors, e.g., constitutional and topological,

as well as special computer codes, which need expert users.

Some molecular moieties of the desired compounds can

also be used to predict thermal stability parameters of

classes of organic compounds [46]. Since molecular

structure of a desired compound can be used to study its

thermal analysis, the purpose of this paper is to introduce a

novel simple model for evaluation of the decomposition

onset temperature (Tdecom) as important parameter for the

assessment of thermal stability of cubic POSS compounds.

It will be shown that there is no need for complex computer

code and descriptors as well as expert users. The new

model correlates Tdecom to the molecular structure of POSS

materials using several simple molecular descriptors.

Materials and methods

Experimental data of Tdecom under N2 for 54 cubic POSS

compounds were collected from different sources. Among

these compounds, 44 cubic POSS compounds containing

simple or similar molecular fragments were used to con-

struct the new model, which are given in Table 1. Ten

cubic POSS compounds containing complex molecular

moieties were also chosen to test the validity of the novel

correlation.

Results and discussion

Development of the new model

The study of Tdecom of different cubic POSS compounds

has shown that it is possible to introduce a new correlation

on the basis of the number of some specific atoms divided

by molecular weight of POSS compound by considering

the type and size of substituents without using complex

molecular descriptors. It was found that the existence of

several molecular fragments can increase or decrease the

predicted Tdecom on the basis of elemental composition by

two correcting functions. The following correlation was

derived on the basis of the measured values given in

Table 1 by using multiple linear regression method

(R2 = 0.9384) [47]:

Tdecom ¼ 516:0þ 3:034� 104
nC

Mw
� 1:021� 104

nH

Mw

� 2:560� 104
nO

Mw
þ 9:941� 104

nCl

Mw

þ 121:3Tþ
decom � 108:3T�

decom ð1Þ

where nC, nH, nO and nCl are the number of carbon,

hydrogen, oxygen and chlorine atoms in R (Fig. 1),

respectively; Tþ
decom and T�

decom are two correcting func-

tions, which are used to show increasing and decreasing the

contribution of nonadditive structural parameters, respec-

tively; Mw is the molecular weight of the desired POSS

compound. To derive Eq. (1) by multiple linear regression

method, several steps have been done to find the variables

containing statistically significant. At first, various combi-

nation of elemental composition, functional groups and

structural parameters have been tested. It was found that
nC
Mw ; nH

Mw ; nO
Mw and nCl

Mw and the presence of some sub-

stituents with specific molecular structures are important.

Moreover, four variables nC
Mw ; nH

Mw ; nO
Mw and have signifi-

cant contributions with respect to the other elements by

evaluation of statistical parameters. Finally, the contribu-

tion of structural parameters has also been included by two

terms and T�
decom for increasing and decreasing Tdecom. The

study of Tdecom for polynitro arenes has confirmed that the

same trend exists for coefficients nC, nH and nO [48]. As

seen in Table 2, there is a direct dependency of and on the

substituent type and size. For example, the values of Tþ
decom

and T�
decom should be considered for phenyl and alkyl

substituents under certain conditions, respectively, because

the thermal behavior of phenyl substituents of POSS is

completely different from those of alkyl substituted POSS.
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Fig. 1 General structure of a cubic POSS compound with the formula

of (RSiO3/2)8
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Table 1 Predictions of Eq. (1) for the decomposition onset temperature of cubic POSS compounds, compared to the experimental data (training set)

No. R Experimental Tdecom/K Predicted Tdecom/K Dev.

1 373.2 [52] 383.7 10.6

2 553.2 [1] 563.5 10.4

3 461.2 [53] 480.3 19.2

4 463.2 [53] 461.4 – 1.7

5 525.2 [53] 532.5 7.4

6 439.2 [54] 433.5 – 5.7

7 593.2 [1] 526.7 – 66.5

8 595.2 [55] 600.1 4.9

9 611.2 [56] 604.9 – 6.2

10 473.2 [54] 474.0 0.9

11 477.2 [1] 474.0 – 3.1

12 473.2 [57] 492.5 19.4

13 654.2 [56] 668.0 13.9

14 508.2 [54] 512.7 4.6

15 693.2 [1] 669.4 – 23.7

16 615.2 [58] 580.6 – 34.5

H

H

SiH

H2N

H2NHCl,

Cl

CH

N+

Br

O2N

O2N

NO2

O

O

O

O

17 738.2 [59] 764.1 26.0

18 687.2 [58] 681.4 – 5.7

H2N
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Table 1 continued

No. R Experimental Tdecom/K Predicted Tdecom/K Dev.

19 583.2 [1] 580.5 – 2.6

20 538.2 [54] 550.2 12.0

21 573.2 [60] 537.6 – 35.5

22 708.2 [59] 699.7 – 8.4

23 704.2 [59] 699.7 – 4.4

24 686.2 [59] 639.1 – 47.1

25 575.2 [1] 557.5 – 17.7

26 563.2 [54] 565.0 1.9

27 635.2 [61] 636.2 1.1

28 591.2 [61] 612.9 21.8

29 668.2 [61] 654.0 – 14.2

30 623.2 [1] 636.0 12.8

31 715.2 [56] 705.9 – 9.2

32 583.2 [54] 568.4 – 14.8

33 623.2 [1] 633.4 10.2

34 556.2 [1] 563.3 7.1

Si

Si

O

O

O O
O

Cl

Br
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In fact, some phenyl substituents show considerably a

higher high thermal stability. Since the collected data of

Tdecom are under nitrogen atmosphere, cleavage of weak

bond in substituents is one of the important factor for the

contribution of . Since the coefficients of nC
Mw

and nCl
Mw

in

Eq. (1) have positive sign, increment of the number of

carbon and chlorine atoms can increase the value of Tdecom.

Meanwhile, decreasing the values of nH and nO can also

increase the value of Tdecom. There is no contribution for

the other atoms in Eq. (1) because their contributions do

not improve the value of the coefficient of determination

(R2). The values of Tþ
decom and are given in Table 2 for

different molecular fragments. They can adjust high devi-

ations of the predicted Tdecom only on the basis of
nC
Mw

; nH
Mw

; nO
Mw

and from experimental data. For those POSS

compounds where the estimated results of Tdecom from
nC
Mw

; nH
Mw

; nO
Mw

and show relatively large underestimated and

overestimated predictions with respect to experimental

data, respectively, the contributions Tþ
decom and are valid.

As seen in Table 2, direct attachment of aromatic rings,

hydrogen atoms and saturated or unsaturated hydrocarbon

under certain conditions as well as the presence of some

Table 1 continued

No. R Experimental Tdecom/K Predicted Tdecom/K Dev.

35 596.2 [1] 621.0 24.9

36 608.2 [54] 633.4 25.2

37 677.2 [1] 666.3 – 10.9

38 628.2 [54] 634.3 6.1

39 618.2 [61] 619.1 1.0

40 663.2 [61] 683.1 20.0

41 588.2 [61] 576.0 –12.1

42 471.2 [62] 496.6 25.4

43 455.2 [62] 455.2 0.0

44 455.2 [62] 452.8 – 2.3

O

O

O

O

O

O

O

O

O

O

O

O

Si

Si

Si

Si

H2N

HO
n = 3

n = 3

n = 2

n

n

n

A novel method for predicting decomposition onset temperature of cubic polyhedral oligomeric … 765

123



specific functional groups to the central inorganic core are

important parameters for taking the existence and different

values for Tþ
decom and . For those compounds where the

conditions of either Tþ
decom or given in Table 2 are not

satisfied, their values in Eq. (1) are equal to zero. It should

be mentioned that Eq. (1) can be applied only for POSS

compounds containing eight similar substituents.

Statistical evaluation of the new model

Table 3 shows statistical parameters corresponding to

variables given in Eq. (1). The values of standard deviation

(SD) for variables indicate the significant of individual

variables for estimation of the dependent variable. As seen

in Table 3, the variables are significant because the values

of SD of the variables are small relative to corresponding

coefficients. The P value gives the probability that the

observed results in a study could have occurred by chance.

If the detected effect is not due to random variations for

P value\ 0.05, the effect will be significant. As indicated

in Table 3, the results of P-value of four variables are less

than 0.05, which confirm that they have a highly significant

impact. Figure 2 shows the predicted Tdecom using the

developed model versus experimental values given in

Table 1. Figure 3 also shows the range of the absolute

percent errors of new model for these data.

Table 2 Values of Tþ
decom and T�

decom for prediction of the onset decomposition temperature of R8(SiO1.5)8 Compounds

R decomT +
decomT −

, , , ,

1.0 0

,

0.5 0

0 1.0

R = saturated or unsaturated hydrocarbon
0

1.0–0.3(n – 3)  ,  3≤ n ≤6

n = number of carbon atom 

0
0.6 (X = Cl)

0.8 (X = Alkyl)

0

0.5 (X = NH2)

0.8 (X = –OR´)

0 0.6 (X = –OOCR´)

Br

(CH
2
)
n

(CH
2
)
n

O
2
N

NO
2

Me

Me

Si

O

OR'

R' = substituents containing C,H,O atoms

H

R

H
2
N H

3
C

X

X

X n

O
O

Si
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Table 4 shows reliability of Eq. (1) method for several

further POSS compounds containing complex molecular

structures. As seen in Table 4, the predicted results are also

close to the measured data. Table 5 indicates statistical

parameters of the new model in cross-validation. Good-

ness-of-prediction is measured by Q2 where Q2 is smaller

than R2 but if the model is well behaved, there should not

be a significant difference between Q2 and R2 [49] and in a

robust model the Q2 is independent of partition size and

also close to R2 [50]. For a suitable QSPR model, its R2 is

greater than 0.6 and its Q2 values are greater than 0.5 [51].

As seen in Table 5, the coefficient of determination for

LOO-CV (Q2
LOO) of Eq. (1) is 0.9189. Meanwhile, the

fivefold CV (Q2
5CV), which is the average of 100 runs, is

0.8812. Both Q2
LOO and Q2

5CV are smaller than R2. Since all

values of R2, Q2
LOO, and Q2

5CV are significantly greater than

the threshold values, i.e., 0.6 for R2 and 0.5 for Q2,

respectively, Eq. (1) is a reliable predictive QSPR model.

Since both the Q2
LOO and Q2

5CV values are close to the R2,

the new model is robust, well behaved and more impor-

tantly, not over-fitted model. The mean absolute percent

error (MAPE) and root-mean-squared error (RMSE) values

and for LOO-CV and fivefold CV of Eq. (1) are close to

the MAPE and RMSE of Eq. (1). Table 6 compares some

statistical parameters for training and test sets. As seen,

RMSE, MAPE and maximum error (Max Error) for test set

is lower than training set, which indicates that external

validation test for four further POSS compounds containing

complex molecular structures is good.

Conclusions

This work introduces a novel method for prediction of

Tdecom of different POSS compounds. As indicated in

Eq. (1), the novel model requires the values of nC
Mw

; nH
Mw

; nO
Mw

and as well as two correcting functions Tþ
decom and . The

new method is a very simple model because there is no

need to use computer codes and complex molecular

descriptors. Equation (1) can explain important structural

parameters to have the desired values of Tdecom for a new

designed POSS compound. In contrast to the other QSPR

methods, Eq. (1) gives the simplest and reliable method for

Table 3 Regression coefficients

of Eq. (1), as well as their

standard deviations (SD),

P values and confidence

intervals

Descriptor Coefficients SD P value Lower bound (95%) Upper bound (95%)

Intercept 516.0 14.8 3.560 9 10-35 486.2 545.9
nC
Mw

3.034 9 104 2.276 9 103 1.379 9 10-17 2.577 9 104 3.492 9 104

nH
Mw

- 1.021 9 104 1.161 9 103 1.722 9 10-11 - 1.254 9 104 - 7.873 9 103

nO
Mw

- 2.560 9 104 4.004 9 103 6.797 9 10-8 - 3.366 9 104 - 1.755 9 104

nCl
Mw

9.941 9 104 1.875 9 104 2.995 9 10-6 6.170 9 104 1.371 9 105

Tþ
decom

121.3 10.07 5.658 9 10-16 101.0 141.5

T�
decom - 108.3 10.23 4.969 9 10-14 - 128.9 - 87.70
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Fig. 2 Predicted Tdecom/K using the developed model versus exper-

imental values for training set
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Table 4 Predictions of Eq. (1) for the decomposition onset temperature of cubic POSS compounds, compared to the experimental data (test set)

No. R Experimental Tdecom/K Predicted Tdecom/K Dev.

1 510.2 [1] 550.5 40.3

2 573.2 [1] 535.3 – 37.9

3 604.2 [1] 597.4 – 6.8

4 569.2 [54] 568.4 – 0.8

5 673.2 [61] 687.4 14.2

6 437.2 [62] 496.1 58.9

7 481.2 [62] 497.0 15.8

8 541.2 [62] 497.5 – 43.7

9 453.2 [62] 451.0 – 2.2

10 457.2 [62] 459.1 1.9

N3

O2N

HS

HO

HO

HO

n = 2

n = 4

n = 4

n = 6

n

n

n

O

O

O

n
O

O

O

O

O
Si

Si

Si

O
Si

n = 6
n

O
O O

Si

Table 5 Statistical parameters

of the new model in cross-

validation

Parameter Whole model Cross-validation

Leave-one-out Fivefolda

Coefficients of determination 0.9384b 0.9189c 0.8812d

MAPE 4.6e 3.1f 3.2g

RMSE 19.2h 24.4i 22.9j

aFor 100 runs; bR2; cQ2
LOO;

dQ2
5CV;

eMAPEModel;
fMAPELOO;

gMAPE5CV;
hRMSEModel;

iRMSELOO;
jRMSE5CV

Table 6 Statistical parameters

of the new model in external

validation

Data set Datapoints RMSE MAPE Max error R2 F statistic Significance F

Training set 44 19.2 4.6 66.5 0.9384 119.230 1.01 9 10-26

Test set 10 29.9 9.8 58.9 – – –
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calculation of Tdecom of different POSS compounds with

good heat safety.
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