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Abstract
Cosmeceutical products that contain malic acid (MA), salicylic acid (SA), and hyaluronic acid as well as a variety of

antioxidants are used worldwide. Therefore, safer ingredients of cosmeceutical products have become an important issue

based on sales volume. In general, the chemical composition may affect the thermal stability of a cosmeceutical product.

Temperature changes may occur in the manufacturing, storage, and transport of the product, affecting its stability. Because

cosmeceutical products are placed directly on the skin, sensitivity has become an increasing concern. However, potential risks

have not been clearly identified. To investigate the thermal stability behavior of regular cosmeceutical materials, thermo-

gravimetry and differential scanning calorimetry have been used. For this study, the thermal stability of MA and SA was

studied, and the acids were individually mixed with CuO or Fe2O3 to evaluate the effect of adding metal oxides. According to

the DSC curves, the apparent exothermic onset temperature occurred when MA and SA were mixed with Fe2O3. Apparent

activation energy values of individual samples calculated using the ASTM E698 and Ozawa–Flynn–Wall methods ranged

from 72.2 to 87.4 kJ mol-1 and from 84.2 to 98.7 kJ mol-1, respectively. The results can be used to calculate the optimal

parameters for safe cosmeceutical manufacturing and establishing a database of MA and SA for loss prevention protocols.
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List of symbols
A Frequency factor (s-1)

D Correction coefficient for apparent activation

energy (dimensionless)

Ea Apparent activation energy (kJ mol-1)

K Reaction rate constant (min-1)

R Gas constant (8.314 J mol-1 K)

T0 Apparent exothermic onset temperature (�C)
Tp Peak temperature (�C)
a Conversion degree (dimensionless)

b Heating rate (�C min-1)

DHd Heat of decomposition (J g-1)

Introduction

Malic acid (MA), a component in various common foods,

is a mild and relatively harmless acid when used in

appropriate amounts. This acid is used not only as a food

supplement, but also as a common additive in skin care

products because of its established exfoliating properties.

Some products containing MA include hair conditioners,

facial moisturizers, shampoos, nail products, and antiaging

treatments. One of its purposes is to adjust the acid–base

balance or pH of these products to ensure their optimal

function. Due to its chemical composition, it is able to

penetrate the skin deeply by reducing Ca2? from surface of

skin. As a result, cosmeceutical products that contain this

supplement can greatly help in improving skin smoothness

and complexion pigmentation. One of the greatest attri-

butes of MA, as both a food supplement and a skincare

agent, is that it is a completely natural organic compound

[1]. MA can soften cuticles, remove rough aging skin, and

increase collagen as well as elastic fiber protein production.

It also has a whitening effect and antioxidant capacity and

is commonly extracted from apples. Also known as alpha
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hydroxyl acid, it primarily functions because of its irritant

property that helps the body exfoliate the top layer of skin

cells [2].

Salicylic acid (SA), a white odorless crystalline pow-

der, occurs naturally in willow bark, white birch leaves,

and sweet birch bark. SA has an excellent ability for

exfoliating and cleaning pores, as well as removing

excessive keratin in hyperkeratotic skin disorders. SA is

safe, and its skin irritation is lower than that of MA.

Therefore, it has therefore recently become a common

component of skincare products. When applied on the

facial skin, SA helps the skin shed dead cells from the

outer layer and decreases swelling and redness. SA

reduces pimples and improves healing. Like other

hydroxyl acids, SA is a key component in many skin care

products for the treatment of corns, acne, seborrheic

dermatitis, ichthyosis, keratosis pilaris, calluses, and

warts [3, 4]. SA is a beta hydroxyl acid that is either found

naturally or synthetically produced for skin treatment

products. The major advantage of SA is its ability to expel

skin cells of the most outer layer, the stratum corneum.

This keratolytic effect depends on the concentration of SA

used in a cream product [5].

In cosmeceutical products, numerous mineral mate-

rials are added. Therefore, the thermal behavior of metal

ions mixed with MA and SA is worth analyzing. Mixing

different materials with metal oxides may entail

unknown risks [6, 7]. The thermal stability of MA, SA,

and samples mixed with CuO or Fe2O3 has been deter-

mined. Thermogravimetry (TG) has been used to obtain

the values of safety parameters and thermal stability,

such as the mass loss, mass loss derivative, initial mass

loss temperature, highest mass loss rate temperature, and

mass loss rate slowdown temperature [8, 9]. Differential

scanning calorimetry (DSC) can determine preliminary

thermokinetic parameters. Heat flow is used to ascertain

kinetic parameters, such as T0, Tp, and DHd. DSC is

widely employed to characterize thermally activated

processes that occur in materials during a defined

decomposition period involving a change in temperature

[10, 11]. Our aim was to confirm the thermokinetic

properties of cosmeceutical products and accordingly

reduce the risk of thermal hazards from the usage, stor-

age, and transport of cosmeceuticals products as much as

possible.

Experiments and methods

Materials

The structures of MA and SA are shown in Figs. 1 and 2.

MA (95.0 mass%) was purchased from Sigma-Aldrich

(Saint Louis, Missouri, USA). SA was purchased from

Avantor Performance Materials, Inc. (Center Valley,

Pennsylvania, USA). To test the thermal behavior of MA

and SA mixed with mineral materials, we acquired CuO

and Fe2O3 from Showa Kako Corporation (Osaka, Japan).

The hydroxyl acid and mineral samples were used as

powders to ensure an even mixture of the samples tested.

The samples were stored in an electronic cabinet at

25.0 �C. The relative humidity of the electronic cabinet

was constantly kept at 45.0%.

Thermogravimetry

TG was performed using a PerkinElmer Pyris 1 thermo-

gravimeter (Waltham, Massachusetts, USA). TG has a

powerful separating feature; the mass of the sample is

monitored relative to time while the temperature of the

sample in the designated atmosphere is varied. This tech-

nique is used to determine material compositions [12, 13].

We used it to test the mass loss and thermal stability

parameters of MA, SA, and mixtures of an individual acid

with metal oxides. TG is primarily used in research on

temperature-induced changes in chemicals to verify whether

the materials or chemicals experience a reduction in mass

and to determine the thermal characteristics and composi-

tions of the sample chemicals. The temperature range in this

study was adjusted from 30.0 to 300.0 �C, and the heating

rate was set to 0.5, 1.0, 2.0, 4.0, or 8.0 �C min-1. The

experimental atmosphere was ambient air, and the flow rate

was 20.0 mL min-1 [14, 15]. Each set of experiments was

replicated at least thrice to confirm the authenticity of

samples used in the TG tests.

Differential scanning calorimetry

For heat flow experiments, we employed DSC 821e of a

Mettler TA8000 system (Greifensee, Switzerland) with a

nitrogen gas atmosphere. DSC uses a sample and a refer-

ence substance kept in separate chambers. Each chamber is

heated by a separate source so that their temperatures are

HO
OH

OHO

O

Fig. 1 Structure of MA
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Fig. 2 Structure of SA
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always equal. This is accomplished using thermocouples;

the temperature of each chamber is frequently monitored,

and if a temperature difference is detected, then heat is

added to the cooling chamber to compensate for the dis-

crepancy. The heating rate used to preserve equivalent

temperatures is recorded as a function of the temperature.

This instrument can be used to establish basic thermoki-

netic parameters. The DSC instrument used in this study

was calibrated for a heating rate of 4.0 �C min-1.

All experimental samples were placed in a sealed high-

pressure plated crucible that can sustain temperatures up to

720.0 �C [16]. The system was tested to operate under

pressures of 100.0 bar. DSC is a highly reliable thermo-

analytical technique for collecting thermokinetic data

[17, 18]. DSC experiments can demonstrate the differences

in the amount of heat required to maintain the temperature

of microvolume samples, mainly through heat flow.

Approximately 3.5 ± 0.5 mg of the samples was used to

acquire the experimental data. The thermal heating rates

were set to 0.5, 1.0, 2.0, 4.0, and 8.0 �C min-1. The tem-

perature range was 30.0 to 400.0 �C. Each sample was

tested thrice for reproducibility to reconfirm the authen-

ticity of the experimental results.

Results and discussion

TG analysis of MA, SA, and mixtures of an individual acid

with CuO or Fe2O3 was performed. To determine the

various characteristic temperatures of these samples for

different decomposition behaviors, samples were tested

through TG at heating rates of 0.5, 1.0, 2.0, 4.0, and 8.0 �C
min-1. Figures 3 and 4 show the mass loss curves of MA

and SA, indicating that they had a similar decomposition

process and thermogravimetric loss. The thermogravimet-

ric curves showed that the mass loss of the two samples in

the heating environment was only pure thermal decompo-

sition, and as the heating rate increased, there was a delay

in the mass loss.

Figures 5–8 show the decomposition phenomena of MA

and SA mixed with CuO or Fe2O3 analyzed through TG at

heating rates of 0.5, 1.0, 2.0, 4.0, and 8.0 �C min-1. The

figures clearly illustrate that the final mass loss was

approximately 45.0–55.0% for MA and SA when metal

oxides were added. For MA mixed with CuO or Fe2O3, the

first step of thermal decomposition occurred in the 30.0–

150.0 �C temperature range, and the mass loss was

approximately 10.0%. The second step of the thermal

decomposition occurred from 150.0 to 250.0 �C and from

150.0 to 300.0 �C. The mass loss of MA mixed with CuO

was more moderate than that of MA mixed with Fe2O3, and

the final mass loss was approximately 40.0%.

For SA mixed with CuO or Fe2O3, the first step occurred

in the 30.0–120.0 �C range, which is lower than that for

MA mixed with metal oxides. For both samples, rapid

0 100 200 300 400 500

0

20

40

60

80

100

MA
Heating rate = 0.5 °C min–1

Heating rate = 1.0 °C min–1

Heating rate = 2.0 °C min–1

Heating rate = 4.0 °C min–1

Heating rate = 8.0 °C min–1

Temperature/°C

M
as

s l
os

s/
%

–60

–40

–20

0

20

M
as

s l
os

s d
er

iv
at

iv
e/

%
 m

in
–1

Fig. 3 Plots of mass loss and mass loss derivative versus temperature

for MA at heating rates of 0.5, 1.0, 2.0, 4.0, and 8.0 �C min-1 in TG

tests
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Fig. 4 Plots of mass loss and mass loss derivative versus temperature

for SA at heating rates of 0.5, 1.0, 2.0, 4.0, and 8.0 �C min-1 in TG

tests
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Fig. 5 Plots of mass loss and mass loss derivative versus temperature

for MA mixed with CuO at heating rates of 0.5, 1.0, 2.0, 4.0, and

8.0 �C min-1 in TG tests
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decomposition occurred in the second step, and the final

mass loss was approximately 50.0%. The final mass loss of

MA or SA mixed with CuO or Fe2O3 was approximately

40.0% and was due to the addition of the metal oxide. The

melting points of CuO and Fe2O3 are 1201.0 and

1566.0 �C, respectively.
DSC tests of MA, SA, and mixtures of an individual

acid with CuO or Fe2O3 were conducted. Random sam-

pling was used in all experiments to avoid unexpected

factors that may cause inaccuracy. Figures 9–14 show the

DSC curves of heat flow versus temperature for the

decomposition of the materials at heating rates of 0.5, 1.0,

2.0, 4.0, and 8.0 �C min-1. The samples underwent reac-

tions during the heating process. As the heating rate

increased, the degradation temperature of the samples

became higher, as previously reported [19]. Figures 9–11

show that the reaction time for MA and MA mixed with

CuO or Fe2O3 increased after decomposition through the

heat accumulation effect, and this increase was accompa-

nied by the release of heat. During the reaction, both MA

mixed with CuO and that mixed with Fe2O3 at 60.0 �C
both underwent a phase inversion involving melting,

resulting in an endothermic reaction. An exothermic event

occurred between 100.0 and 150.0 �C with continued

thermal decomposition. Here, the phase transition process

was required to absorb the heat generated, and the heat

consumed by the endothermic reaction led to a decrease in

heat flow. The thermal decomposition reaction of MA

mixed with CuO or Fe2O3 continued to be exothermic. The

second exothermic peaks of MA mixed with CuO or Fe2O3

occurred between approximately 100.0–150.0 and 150.0–

250.0 �C and dominated the most intense temperature

range. The test data are listed in Tables 1 and 2. Moreover,

DHd obtained from the samples was measured in the

exothermic peak area. Because heat absorption and heat

0 100 200 300 400

MA mixed with Fe
2
O

3
Heating rate = 0.5 °C min–1

Heating rate = 1.0 °C min–1

Heating rate = 2.0 °C min–1

Heating rate = 4.0 °C min–1

Heating rate = 8.0 °C min–1

Temperature/°C

M
as

s l
os

s/
%

–60

–40

–20

0

20

M
as

s l
os

s d
er

iv
at

iv
e/

%
 m

in
–1

40

50

60

70

80

90

100

110

Fig. 6 Plots of mass loss and mass loss derivative versus temperature

for MA mixed with Fe2O3 at heating rates of 0.5, 1.0, 2.0, 4.0, and

8.0 �C min-1 in TG tests
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Fig. 7 Plots of mass loss and mass loss derivative versus temperature

for SA mixed with CuO at heating rates of 0.5, 1.0, 2.0, 4.0, and

8.0 �C min-1 in TG tests
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Fig. 8 Plots of mass loss and mass loss derivative versus temperature

for SA mixed with Fe2O3 at heating rates of 0.5, 1.0, 2.0, 4.0, and

8.0 �C min-1 in TG tests
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generation occurred successively, the integral of heat

generation was calculated from the baseline, at which the

heat flow was 0 W g-1. Additionally, the T0 of the

endothermic and exothermic phases was determined as the

intersection point of the DSC curve and the baseline, as

shown in Figs. 10–14.

The DSC heating curves for heating rates of 0.5, 1.0,

2.0, 4.0, and 8.0 �C min-1 in Figs. 12–14 show the reac-

tion behavior of SA and SA mixed with CuO or Fe2O3. The

difference from MA mixed with CuO or Fe2O3 is that the

endothermic phenomenon was faster and more intense.

During the reaction, a phase inversion occurred at

approximately 150.0 �C, which is much higher than the

temperature of 60.0 �C for the endothermic reaction of MA

mixed with CuO or Fe2O3. As the temperature increased to

160.0 �C, an exothermic reaction was initiated. The test

sample data, presented in Tables 3 and 4, show that the

addition of CuO or Fe2O3 in a solid state to SA produces

melting during the heating process, and the sample changes

from solid to liquid. The second exothermic peaks occurred

between 150.0 and 200.0 �C and between 160.0 and

260.0 �C. The exothermic period of SA mixed with CuO

was shorter and more intense than that of SA mixed with

Fe2O3.

Five heating rates and baseline curves were employed as

prerequisites for thermal analysis [20], and kinetic results

were obtained using the ASTM E698 method to calculate

the apparent activation energy (Ea) [21, 22]. Ea is the

minimum energy required for a chemical reaction to occur.

For a complex chemical reaction, the conversion, time, or

environmental temperature can affect Ea. The linear

regression relationship between the conversion rate and the

heating rates, obtained using the ASTM E698 method, is

shown in Eqs. (1) to (3) and can be used to determine Ea

(a):

Ea ¼
� 2:303R

D

� �
d log10 bð Þ
d 1=Tp
� �

" #
ð1Þ

Table 1 Thermal stability data from nonisothermal heating experiments for MA mixed with CuO at heating rates of 0.5, 1.0, 2.0, 4.0, and 8.0 �C
min-1

MA ? CuO Endothermic Exothermic

b/�C min-1 Mass/mg T0/�C Tp/�C T0/�C Tp/�C DHd/J g
-1

0.5 3.4 96.15 96.33 99.91 99.98 11.13

1.0 3.5 98.18 98.27 102.42 102.42 30.80

2.0 3.1 50.02 102.15 102.59 104.28 30.33

4.0 3.3 87.69 104.15 107.02 113.40 65.52

8.0 3.1 43.61 105.32 110.05 125.31 47.55

Table 2 Thermal stability data from nonisothermal heating experiments for MA mixed with Fe2O3 at heating rates of 0.5, 1.0, 2.0, 4.0, and

8.0 �C min-1

MA ? Fe2O3 Endothermic Exothermic

b/�C min-1 Mass/mg T0/�C Tp/ C T0/�C Tp/�C DHd/J g
-1

0.5 3.5 81.77 94.0 97.63 161.16 172.25

1.0 3.4 72.22 91.73 100.40 173.90 179.38

2.0 3.0 78.45 91.07 134.42 187.96 168.90

4.0 3.0 63.44 93.54 177.34 196.43 174.68

8.0 3.2 54.17 99.37 127.99 209.50 289.49
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D ¼ � d ln q xð Þ½ �
dx

¼ �
d ln xþ 2ð Þ�1

xð Þ�1
exp � xð Þ

h i
dx

ð2Þ

A ¼ Eab
RT2

p

exp
Ea

Tp

� �
ð3Þ

Through the linear regression, five heating rates and

corresponding peak temperatures were examined. Fig-

ures 15 and 16 show a diagram developed using ASTM

E698; Tp from each heating rate was used in a non-

isothermal experiment with five data sets analyzed using

linear regression. Finally, the slopes of the linear regres-

sions of the five heating rates were used to calculate Ea for

MA mixed with Fe2O3, SA, SA mixed with CuO, and SA

mixed with Fe2O3. The values are approximately 87.4,

76.7, 72.2, and 76.3 kJ mol-1, respectively, as shown in

Figs. 15 and 16.

The Ozawa–Flynn–Wall method was adopted to treat

the data using integration equations. This fast method is

widely used because some intrinsic limitations can be

avoided [23, 24]:

ln b1ð Þ þ 1:0516
Ea

RTp1

� �
¼ ln b2ð Þ þ 1:0516

Ea

RTp2

� �

¼ ln b3ð Þ þ 1:0516
Ea

RTp3

� �
¼ � � �

ð4Þ

Briefly, Ea is known as the energy point that a chemical

reaction must overcome: the higher the Ea value, the more

difficult the reaction will be. The Ea value was calculated

using the Ozawa–Flynn–Wall method with different iso-

conversion rates according to nonisothermal heating rates

for MA or SA mixed with CuO or Fe2O3. Based on the

reaction rate results, we compared the different isocon-

version rates from 0.99 to 0.01 to obtain the slope and

calculate the Ea value of MA or SA mixed with CuO or

Fe2O3. Moreover, since decomposition and melting phe-

nomena occurred throughout the DSC experiment, the

exothermic process was selected to determine Ea. The

reaction rates for five heating rates versus the different

isoconversion rates from 0.99 to 0.01 were used to calcu-

late the relationship through linear regression. The results

were exceptionally consistent; the slopes were parallel to

the reaction rates. The Ea range of MA, SA, and mixtures

of an individual acid with CuO or Fe2O3 was from 84.2 to

98.7 kJ mol-1.

Cosmeceutical products that contain both MA and SA

are minimally exposed to a low- to medium-temperature

environment. However, phenomena that occur in storage

and transport processes may lead to hazardous accidents.

Therefore, in actual usage conditions, the mentioned pro-

cesses must still be properly planned and managed. Our

results indicated that a minute amount of heat is generated

when MA and SA are mixed with Fe2O3 during usage,

transport, storage, or disposal.

Table 3 Thermal stability data from nonisothermal heating experiments for SA mixed with CuO at heating rates of 0.5, 1.0, 2.0, 4.0, and 8.0 �C
min-1

SA ? CuO Endothermic Exothermic

b/�C min-1 Mass/mg T0/�C Tp/�C T0/�C Tp/�C DHd/J g
-1

0.5 3.4 140.95 149.32 153.50 161.87 35.42

1.0 3.2 151.09 152.77 154.14 158.10 68.74

2.0 3.5 155.86 158.89 159.94 160.32 68.74

4.0 3.4 92.02 157.78 161.80 167.61 19.38

8.0 3.3 138.33 160.85 163.16 178.63 51.48

Table 4 Thermal stability data from nonisothermal heating experiments for SA mixed with Fe2O3 at heating rates of 0.5, 1.0, 2.0, 4.0, and 8.0 �C
min-1

SA ? Fe2O3 Endothermic Exothermic

b/�C min-1 Mass/mg T0/�C Tp/�C T0/�C Tp/�C DHd/J g
-1

0.5 3.4 157.67 158.56 162.68 216.85 86.39

1.0 3.2 144.70 203.26 161.43 215.81 80.27

2.0 3.2 143.78 158.95 171.43 229.76 87.14

4.0 3.5 158.37 159.78 170.40 238.86 105.07

8.0 3.3 155.92 161.14 169.33 259.20 296.29
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Conclusions

Our results show that metal oxides such as Fe2O3 are cat-

alyst materials for MA and SA. In a low- to medium-

temperature environment, adding Fe2O3 increased the DHd

of MA and SA to 289.49 and 296.29 J g-1, respectively.

Adding Fe2O3 produces a perceivable exothermic reaction

with MA and SA that could endanger people. Fe2O3 is a

very common substance in the manufacturing of mineral

makeup products. When iron reacts with oxygen and

moisture exists in the environment, Fe2O3 forms in rust.

According to our results, the Ea of each sample calculated

through ASTM E698 is consistent with the Ea range

acquired using the Ozawa–Flynn–Wall method. According

to the DSC curves, the exothermic reactions of MA and SA

mixed with Fe2O3 were greater than those of MA and SA

mixed with CuO. Adding Fe2O3 to MA and SA not only

caused an endothermic reaction initially but also resulted in

an exothermic reaction. Therefore, it is essential to choose

pipes or receptacles with adequate chemical properties to

avoid rust formation. In production processes involving

MA and SA, contact with Fe2O3, which is commonly used

in mineral makeup, must be avoided.
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