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Abstract In this investigation, the laminar heat transfer of

kerosene nanofluid/multi-walled carbon nanotubes in the

microchannel heat sink is studied. The considered

microchannel is two layers in which the length of bottom

layer is truncated and is equal to the half of the length of

bottom layer. The length of microchannel bottom layer is

L = 3 mm, and the length of top layer is L1 = 1.5 mm.

The microchannel is made of silicon, and each layer of

microchannel has the thickness of t = 12.5 lm. Along the

external bottom wall, the sinusoidal oscillating heat flux is

applied. The top external and lateral walls are insulated,

and they do not have heat transfer with the environment.

The results of this research revealed that in different

Reynolds numbers, applying oscillating heat flux signifi-

cantly influences the profile figure of Nusselt number and

this impressionability is obvious in Reynolds numbers of

10 and 100. Also, by increasing the slip velocity coefficient

on the solid surfaces, the amount of minimum temperature

reduces significantly which behavior remarkably entails the

heat transfer enhancement.

Keywords Heat transfer � Kerosene/multi-walled carbon

nanotubes � Microchannel heat sink � Oscillating heat flux �
Slip velocity coefficient

List of symbols

A Area (m2)

B = b/H Dimensionless slip velocity

Cf Skin friction factor

Cp Heat capacity (J kg-1 K-1)

H Microchannel height (m)

K Thermal conductivity coefficient

(W m-1 K-1)

L Down-layer microchannel length

(m)

L1 Top-layer microchannel length

(m)

Nu Nusselt number

P Fluid pressure (Pa)

Pe = (usds/af) Peclet number

Pr = tf/af Prandtl number

q00(X) Oscillating heat flux (W m-2)

q0
00 Constant heat flux (W m-2)

R Thermal resistance (K W-1)

Re = qfucd/lf Reynolds number

T Temperature (K)

(U, V) = (u/U0, v/U0) Dimensionless velocity

components in x, y directions

(X, Y) = (x/d, y/d) Cartesian dimensionless

coordinates

u, v Velocity components in x,

y directions (m s-1)

uc (m/s) Inlet velocity in x directions

(m s-1)

us (m/s) Brownian motion velocity

(m s-1)

Greek symbols

b Slip velocity coefficient (m)

u Nanoparticles volume fraction
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kl = L1/L Dimensionless length ration

l Dynamic viscosity (Pa s-1)

h = (T - TC)/DT Dimensionless temperature

q Density (kg m-3)

s Shear stress (N m-2)

t Kinematics viscosity (m2 s-1)

Super- and subscripts

Ave Average

c Cold

Eff Effective

f Base fluid (pure water)

H Hot

In Inlet

Max Maximum

Min Minimum

nf Nanofluid

Out Outlet

S Solid nanoparticles

Introduction

The cooling of miniature equipment in the micro electro

mechanical and nano-electromechanical industries has

increased the need of understanding the fluid flow and heat

transfer in the micro- and nanogeometrics. The behavior of

fluid flow and heat transfer in the miniature scales and by

using nanofluid, due to the improvement in heat transfer

mechanisms in nano- and microdimensions, comparing to

the custom scales, is far different. Numerous numerical and

empirical studies have been done for investigating the flow

and heat transfer of custom fluids and nanofluid in the

microchannels whose main purpose is increasing the heat

transfer [1–5]. The investigation of heat transfer enhance-

ment in different industrial and experimental fluids by

using novel methods has been expanded as the study fields

among the adherents of this issue [6]. The microchannel

heat sink as an applicable miniature equipment has high

importance in heat transfer of electronic industries. This

equipment has been suggested by Tukerman and Pease [7]

for cooling the electronic chips. In recent decades, this

equipment has been investigated and optimized by

researchers in different structures and arrangements for

enhancing the cooling of electronic chips [8–10].

Kulkami et al. [11] numerically studied the multi-purposed

optimization of double-layer microchannel heat sink with

the cross-figured inlet section. Their results evidenced that

the microchannel with narrower design has lower thermal

resistance and higher pumping power and the pumping

power by increasing the heat flux reduces significantly.

Husain and Kim [12, 13] optimized the indented

microchannel heat sink and indicated that the thermal

resistance of microchannel heat sink by optimization

reduces considerably. Xie et al. [14] studied the efficiency

of double-layer microchannel heat sink with the wavy wall

in the states of parallel and contrary flows. They investi-

gated the effects of wavy wall limitation and the ratio of

mass flow on the thermal resistance and pressure drop

parameters. Seyf and Nikaaein [15] by using Al2O3, zinc

and Cu nanoparticles in the ethylene glycol/water fluid

numerically studied the effects of nanoparticles dimensions

and Brownian motion of nanoparticles on the thermal

performance of a rectangular microchannel heat sink. Their

results showed that the amount of nanofluid conductivity

without considering the Brownian motion reduces almost

to 6.5%. Wu et al. [16] numerically studied the thermal

resistance, pumping power and thermal distribution on the

wall surface of double-layer microchannel heat sink (DL-

MCHS). In their research, different parameters of

microchannel dimensions and different flow conditions

have been studied. The results of his study showed that the

improvement in total efficiency of double-layer

microchannel heat sink depends on the pumping power.

Chen and Chung [17] used the water/Cu nanofluid. In their

investigation, the absorbed energy by the nanofluid was

more than the absorbed energy by water, and it has been

observed that by enhancing volume fraction of nanoparti-

cles, the high-temperature differences accomplish between

the inlet and outlet sections of microchannel heat sink in a

low flow rate. Jang and Choi [18] by using nanofluid

numerically studied the cooling performance of a

microchannel heat sink. They reported that the nanofluid

causes the reduction in thermal resistance and dimension-

less temperature difference in microchannel heated wall

and cooling fluid. Sui et al. [19] numerically investigated

the fluid flow in the wavy microchannels. Their numerical

results indicated that with the uniform cross section, the

thermal performance of wavy microchannel is higher than

the rectangular flat one. Ho et al. [20] studied the forced

convection cooling performance of a Copper microchannel

heat sink with water/Al2O3 nanofluid as the cooling fluid.

Their results showed that the heat sink cooled by nanofluid,

comparing to the heat sink cooled by water, has more

average heat transfer coefficient. Till now, numerous

researches about the heat transfer in the microchannels and

nanofluid have been presented, and sometimes, the slip

velocity conditions, the effects of magnetic field and the

forced heat transfer under the influence of constant tem-

perature or constant heat flux have been investigated dis-

parately [21–35]. Nikkhah et al. [36] numerically studied

the water nanofluid/functional multi-walled carbon nan-

otubes in a two-dimensional microchannel with slip and

no-slip boundary conditions. They concluded that the

augment of solid nanoparticles weight fraction and slip
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velocity coefficient cause the increase in Nusselt number,

and in higher Reynolds numbers, this enhancement is more

considerable. In their research, the computational fluid

dynamics and laminar heat transfer of kerosene

nanofluid/multi-walled carbon nanotubes in the double-

layer microchannel heat sink are simulated in the two-di-

mensional domain. By considering the effect of slip

boundary condition on the outcome results of numerical

simulation, in this study, the slip velocity boundary con-

dition on the solid walls is used. The results of this research

are presented for different volume fractions of nanoparti-

cles, slip velocity coefficients and different ranges of

Reynolds numbers. The main purpose of this study is

investigating the behavior of temperature domain and

hydrodynamic of laminar flow of nanofluid in the two-

dimensional double-layer microchannel.

Problem statement

In the present study, the laminar flow of kerosene

nanofluid/multi-walled carbon nano tubes in volume frac-

tions of 0, 4 and 8% of nanoparticles is investigated. Fig-

ure 1 indicates the studied geometrics of this paper. In this

research, the material of microchannel is silicon. In Fig. 1,

the bottom layer of microchannel is L = 3 mm and the

height is H = 50 lm. The top layer of microchannel with

the length of L2 is equal to L2 = 1.5 mm, and by placing on

the bottom layer at the interface area, the heat transfers

with it and in this region, the amount of heat generation is

constant and is equal to 100 kw/m3. In each layer of

microchannel, the silicon material with the thickness of

t = 12.5 lm has surrounded the layers. The external areas

of top layer with the length of L2 are insulated, and the

bottom area of microchannel, on the external wall with the

length of L, is under the influence of sinusoidal flux with

the equation of q00 Xð Þ ¼ 2q000 þ q000 sin pX
4

� �
in which the

amount is calculated from the equation of (q0
00). With the

definition of dimensionless slip velocity coefficient as

(B = b/H), the ratio of slip velocity coefficient to the

height of microchannel, in this research, the numerical

simulation is done for the dimensionless slip velocity

coefficients (B = b/H) of 0.001, 0.01 and 0.1 and Reynolds

numbers of 1, 10 and 100. The inlet fluid at the top and

bottom layers enters with the temperature of 301 K as

shown in Fig. 1. All of the internal walls which are in

contact with fluid have the slip velocity boundary condi-

tion. The used nanofluid properties of this simulation and

the material of microchannel wall are described, respec-

tively, in Table 1.

In this simulation, the fluid flow and heat transfer are

considered as laminar and fully developed. The nanofluid

properties are considered as constant and independent from

the temperature. The solid–liquid suspension in less den-

sities is modeled as single-phased, and on the channel

walls, the oscillating heat flux is applied. The slip boundary

condition is used on the microchannel. The numerical

simulation domain is two dimensional.

Governing equations

The dimensionless governing equations on the simulation

domain are defined as follows [39, 40]:

Continuity equation:

oU

oX
þ oV

oY
¼ 0 ð1Þ

Momentum equation:

U
oU

oX
þ V

oU

oY
¼ � oP

oX
þ lnf

qnfmf

1

Re

o2U

oX2
þ o2U

oY2

� �
ð2Þ

U
oV

oX
þ V

oV

oY
¼ � oP

oY
þ lnf

qnfmf

1

Re

o2V

oX2
þ o2V

oY2

� �
ð3Þ

Energy equation:

U
oh
oX

þ V
oh
oY

¼ lnf

af

1

Re Pr

o2h
oX2

þ o2h
oY2

� �
ð4Þ

For non-dimensioning Eqs. (1)–(4), following parame-

ters are used [36]:
Insoulation Solid Heat generation

L1

L1

L

C

B

D

H

t

A

Uin,Tin

Uin,Tin

q ′′(X) = 2q0′′ + q0′′sin( πX
4 )

MWCNT//kerosene nanofluid
X

y

Fig. 1 The studied schematics of this research

Table 1 The thermophysical properties of base fluid and nanoparti-

cle of multi-walled carbon nanotubes and silicon [37, 38]

u/% q/

kg m-3
Cp/

J kg-1 K-1
k/

W m-1 K-1
l/Pa s Pr

0 783 2090 0.145 0.001457 21

4 815 1989 0.265 0.001613 12.1

8 845 1895 0.390 0.001795 8.72

Silicon 2329 702 124 – –
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X ¼ x

H
Y ¼ y

H
V ¼ v

uc

h ¼ T � Tc

DT
U ¼ t

uc

B ¼ b
H

DT ¼ q000H

kf

Pr ¼ tf

af

P ¼
�P

qnfu
2
c

ð5Þ

Another parameter for investigating the microchannel

performance is the friction coefficient which is calculated

from the following equation [41]:

Cf ¼
2 � sw

qu2
in

ð6Þ

The average Nusselt number can be obtained as follows

[42, 43]:

Nux ¼ h� H

kf

! Nuave ¼
1

L

Z L

0

Nux Xð ÞdX ð7Þ

The amounts of thermal resistance [44, 45] of bottom

wall of microchannel and pressure drop are calculated from

the following equation:

R ¼ Tmax � Tmin

q000 � A
¼ Tmax � Tin

q000 � A
! A ¼ W � L ! R�W

¼ Tmax � Tmin

q000 � L
ð8Þ

DP ¼ Pin � Pout ð9Þ

In Eq. (9), Tmax, Tmin, A and q0
00 are, respectively, the

maximum temperature of bottom wall, the minimum tem-

perature (the temperature of inlet fluid), cross section and

the applied heat flux to the AB wall.

The governing boundary conditions
on the problem-solving

The hydrodynamic and thermal boundary conditions used

in this problem are as follows:

U ¼ 1; V ¼ 0 and h ¼ 0 for X ¼ 0 and

0:25� Y � 1:25 and X ¼ 60; 1:75� Y � 2:75

V ¼ 0 and
oh
oX

¼ oU

oX
for X ¼ 60 and

0:25� Y � 1:25 and X ¼ 30; 1:75� Y � 2:75

V ¼ 0; U ¼ 0 and
oh
oY

¼ 2q000 þ q000 sin
pX
4

� �

for Y ¼ 0 and 0�X� 60

V ¼ 0; Us ¼ B
oh
oY

and knf

oh
oY

¼ ks

oh
oY

for Y ¼ 0:25 and 0�X� 60

V ¼ 0; U ¼ 0 and
oh
oY

¼ 0 for Y ¼ 1:5 and

0�X� 30 and Y ¼ 3 and 0�X� 60

V ¼ 0; Us ¼ B
oU

oY
and knf

oh
oY

¼ ks

oh
oY

for

Y ¼ 1:25 and 0�X� 60

V ¼ 0; �Us ¼ B
oU

oY
and knf

oh
oY

¼ ks

oh
oY

for

Y ¼ 1:75 and 30�X� 60

V ¼ 0; �Us ¼ B
oU

oY
and knf

oh
oY

¼ ks

oh
oY

for

Y ¼ 2:75 and 30�X� 60

ð10Þ

The mesh study and numerical solving procedure

In order to ensure the results independency of this

research, the rectangular organized grids have changed

from the number of 30,000 to 100,000. The studied

parameters in the validation of present investigation are

including Nusselt number along the AB wall and the

amount of pressure drop. The changes in these two

parameters are investigated in Reynolds numbers of 10

and 100 and volume fraction of 8% of nanoparticles in

the slip velocity coefficient of 0.01. According to Table 2,

by choosing grid number of 100,000, comparing to other

grid numbers, more accurate results can be obtained.

However, the grid number of 63,000, compared to the

grid number of 100,000, has acceptable error and less

demanded time for solving the numerical domain; there-

fore, in this numerical simulation, the grid number of

63,000 has been used. In this study, in order to enhance

the solving accuracy, to couple velocity and pressure,

SIMPLEC algorithm [46, 47] has been used, and the

maximum loss for results convergence of this simulation

has been chosen 10-6 [48–50].

Table 2 The changes in studied grid numbers in the present study

Re Parameters Grid point

30,000 50,000 63,000 100,000

Re = 100 Nuave 9.786 10.2103 10.4661 10.623

Error 7.9% 3.89% 1.48% Base grid

DP/Pa 101,231 97,635 94,908.5 94,851

Error% 6.72% 2.94% 0.06% Base grid

Re = 10 Nuave 3.68 4.011 4.0248 4.101

Error 10.27% 2.2% 1.86% Base grid

DP/Pa 9845 9271 9161.3 9100.5

Error 8.2% 1.88% 0.67% Base grid
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Results and discussion

Validation

The results of the present study have been validated with

the numerical study of Nikkhah et al. [36] in Reynolds

number of 100 for the dimensionless temperature param-

eter at central section of flow. Nikkhah et al. [36] numer-

ically investigated the laminar flow and heat transfer of

water nanofluid/functional carbon nanotubes in a rectan-

gular microchannel with the ratio of length to the height of

channel equal to 32. Their investigation has been done in

Reynolds numbers of 1–100 for volume fractions of

0–0.25% of nanoparticles. According to Fig. 2 and proper

coincidence of the results of the present research with the

study of Nikkhah et al. [36], it can be said that the solving

procedure and the applied boundary conditions are

accurate.

X
0 5 10 15 20 25 30

θ H
/2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

My study
Nikkhah et al. [36]

ϕ = 0.12

Re = 100

Fig. 2 The validation with numerical study of Nikkhah et al. [36]
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Fig. 3 The changes in dimensionless temperature in Reynolds

number of 1 and different dimensionless slip coefficients in volume

fraction of 0%
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B = 0.01

B = 0.001
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0 0.001 0.002 0.003x/m

0 0.001 0.002 0.003x/m

Fig. 5 The changes in dimensionless temperature in Reynolds

number of 1 and different dimensionless slip coefficients in volume

fraction of 8%

0.275091 0.825272 1.37545 1.92563 2.47582 3.026 4.126363.57618

B = 0.1

B = 0.01

B = 0.001

0 0.001 0.002 0.003x/m

0 0.001 0.002 0.003x/m

0 0.001 0.002 0.003x/m

Fig. 4 The changes in dimensionless temperature in Reynolds

number of 1 and different dimensionless slip coefficients in volume

fraction of 4%
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Figures 3–5 demonstrate the dimensionless temperature

contours in Reynolds number of 1, volume fractions of

0–8% of nanoparticles and different dimensionless slip

coefficients at the dimensionless length of 1.2. By entering

the fluid to the microchannel, by considering the maximum

temperature of surface and fluid, the most changes in

dimensionless temperature arise in this region. By more

processing of fluid, due to the contact with hot surface on

the direction of fluid motion in the microchannel, the

changes in dimensionless temperature enhance in a way

that this augment of dimensionless temperature causes the

reduction in heat transfer and enhancement of hot areas in

the microchannel. Due to the generation of uniform heat

between the top and bottom layers of microchannel, this

factor influences the top and bottom areas of microchannel.

According to the existence of hot areas in the top layer of

microchannel and increase in the dimensionless tempera-

ture in this area, the heat transfer reduces in these regions.

The amount of dimensionless temperature changes and the

existence of hot area at the bottom layers are completely

obvious from the middle area of microchannel to the lateral

in Reynolds number of 1 and volume fraction of 0%. In all

figures, by enhancing the dimensionless slip velocity

coefficient and volume fraction, the elimination of hot

areas at the top and bottom layers has been approximately

solved.

Figure 6 illustrates the average friction coefficient for

the bottom and top layers, respectively, along the walls of

(AB) and (CD). This study has been done for dimension-

less slip velocity coefficient of 0.001–0.1 in volume fac-

tions of 0–8% of nanoparticles in Reynolds numbers of 1,

10 and 100. By enhancing Reynolds number, the contact of

surface and fluid reduces which causes the reduction in

friction coefficient. By increasing volume fraction of

nanoparticles, due to the enhancement of viscosity and

density of cooling fluid, the average friction coefficient

increases. By augmenting the dimensionless slip velocity

coefficient, due to the movement of fluid with less

ϕ
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B = 0.001
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Re = 100

Re = 10

Re = 1
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C
f
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f
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B = 0.001
B = 0.01
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Re = 100
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Fig. 6 The amount of average friction coefficient for the bottom and top layers, respectively, along the walls of (AB) and (CD)
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(b)(a)Fig. 7 The amounts of average
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along the walls of (AB) and

(CD)
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resistance and depreciation on the surface, the friction

coefficient decreases significantly. In each of the studied

Reynolds numbers, the amount of average friction coeffi-

cient in Reynolds number of 1 is remarkable. In Reynolds

numbers of 10 and 100, this factor decreases considerably.

In the investigation of the amount of average friction

coefficient at the top and bottom layers of microchannel, it

can be said that comparing the top layer of microchannel to

the bottom layer in volume fraction and Reynolds number

and dimensionless slip velocity in the same conditions, the

amount of average friction coefficient is more. This

behavior is due to the enhancement of velocity gradients at

the top layer comparing to the bottom layer.

Figure 7 shows the local Nusselt number for the bot-

tom layer (a) and top layer (b), respectively, along the

walls of (AB) and (CD). This study has been investigated

for the slip velocity coefficient of 0.1, Reynolds numbers

of 1–100 at the bottom layer and Reynolds numbers of

1–10 at the top layer and volume fractions of 0–8%. By

increasing Reynolds number, the local Nusselt number

enhances. According to the increase in thermal conduc-

tivity coefficient of nanofluid, by enhancing volume

fraction and the heat transfer, Nusselt number enhances.

The other reason of this augmentation of Nusselt number

in higher volume fractions is due to the acceleration of

energy exchanging process in fluid because of the random

movement of nanoparticles inside it. This process causes

more uniform temperature distribution inside the nano-

fluid, and consequently, the rate of heat transfer between

the wall and nanofluid increases. Because the fluid is only

conductor heat flux between the upper- and down-layer

microchannels, and since heat flux penetrates into all

layers of fluid and is mixed during the movement of the

fluid, therefore, the oscillatory shape of the heat flux is

gone and the heat flux reaches the top layer uniformly.

Hence, the shape of the Nusselt number diagrams in the

upper layer does not depend on the oscillatory shape of

the heat flux.
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Figure 8 demonstrates the changes in static pressure for

the bottom layer (a) and top layer (b) along the central line

of flow in the dimensionless slip coefficient of 0.01.

According to the figures, the amounts of pressure changing

continue from the inlet section of microchannel to the

outlet section. In the investigation of this parameter, it can

be observed that the amounts of pressure changing at the

top layer are less than at the bottom layer which is due to

the reduction in the length of top channel comparing to the

bottom channel. By increasing volume fraction of

nanoparticles, due to the enhancement of particles number

and density and viscosity of cooling fluid, the amount of

static pressure on the direction of movement decreases

more than the base fluid. By enhancing the slip velocity

coefficient, the penetration of the effect of solid wall in the

microchannel boundaries to the central core of flow redu-

ces; therefore, by increasing the slip velocity coefficient,

the amount of pressure drop decreases. According to

Fig. 9, the minimum amount of pressure drop for the base

fluid in slip velocity coefficient of 0.1 can be observed in

each Reynolds number.

Figure 10 indicates the changes in average maximum

temperature at the bottom layer of microchannel along the

wall of (AB) in volume fractions of 0–8% for Reynolds

numbers of 1, 10 and 100 for different slip velocity coef-

ficients. The reduction in maximum temperature of surface

is tantamount with better thermal removal from the hot

surface. Among the studied states, the minimum amount of

this parameter accomplishes in the highest fluid velocity

and volume fraction. The effect of dimensionless slip

velocity coefficient on the reduction in maximum temper-

ature is considerable, in a way that in the dimensionless

slip velocity coefficient of 0.1, comparing to the states of

0.001 and 0.01 has remarkable reduction. According to

these figures, by increasing Reynolds number and volume

fraction of nanoparticles and due to better mixture of fluid

flow and heat transfer enhancement and increase in con-

vection heat transfer coefficient, the maximum temperature

factor reduces.

Figure 11 shows the changes in minimum temperature

at the bottom layer of microchannel along the wall of (AB).

According to the figures, the minimum temperature of
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surface accomplishes in a state in which the fluid has the

highest heat transfer. The changes in this factor are the

same as the changes in maximum temperature, and the

reduction in minimum temperature entails the heat transfer

enhancement.

Figure 12 illustrates the changes in thermal resistance at

the bottom layer of microchannel along the wall of (AB) in

Reynolds numbers of 10 and 100 in different volume

fractions and the dimensionless slip velocity coefficient.

This factor investigates the amount of maximum and

minimum differences (the temperature of inlet fluid) of

bottom layer of microchannel wall. The enhancement of

dimensionless slip velocity coefficient causes the reduction

in thermal resistance which entails the increase in heat

transfer. In the studied Reynolds numbers of this research

and in all considered factors, the increase in Reynolds

number and volume fraction of nanoparticles causes the

reduction in thermal resistance. With the increase in the

fluid velocity (Reynolds number), the amount of heat

transfer increases; due to an increase in the heat transfer

coefficient, the maximum of surface temperature will

reduce. By increasing the slip speed, the fluid moves with

less deterrence on solid surfaces. As a result, the temper-

ature of the hot surfaces is better transferred and the ther-

mal resistance is reduced.

Figure 13 shows the changes in average Nusselt number

at the bottom layer of microchannel along the wall of (AB).

According to the amount of heat transfer in the investigated

microchannel under the influence of velocity and volume

fraction and different dimensionless slip velocity coeffi-

cients, it can be seen that the maximum amount of average

Nusselt number arises in Reynolds number of 100. In the

studied Reynolds numbers, the amount of heat transfer

increases between 1.5 and 2.5 times.

Figure 14 illustrates the changes in dimensionless tem-

perature at the bottom layer of microchannel along the wall

of (AB) for the dimensionless slip velocity coefficients of

0.01 and 0.1. This investigation describes the differences in

dimensionless temperature in different volume fractions

and Reynolds numbers and the effect of slip length on this

parameter. The reduction in dimensionless temperature on

the hot wall is tantamount with heat transfer enhancement.

It can be concluded from Fig. 14, the augment of Reynolds

number and volume fraction of nanoparticles at the bottom

layer of microchannel, the amount of dimensionless tem-

perature reduces significantly.

Conclusions

In this research, the numerical simulation of laminar heat

transfer of kerosene nanofluid/multi-walled carbon nan-

otubes in the microchannel heat sink by using finite volume

method has been investigated. The results evidenced that in

different Reynolds numbers, applying oscillating heat flux

considerably influences the profile figure of Nusselt num-

ber, and this impressionability is obvious in Reynolds

numbers of 100 and 10. Also, by enhancing the slip

velocity coefficient on the solid surfaces, the amount of

minimum temperature of surface decreases significantly

which causes remarkable increase in heat transfer.

According to the existence of hot area at the top layer of

microchannel and increase in dimensionless temperature in

this region, the heat transfer of this area reduces. By

enhancing the dimensionless slip velocity coefficient,

because the fluid moves on the surface with less resistance

and depreciation, the friction coefficient decreases

remarkably. In each of the studied Reynolds numbers, the

amount of average friction coefficients in Reynolds number

of 1 is more significant. By increasing Reynolds number

and volume fraction of nanoparticles and due to better

mixture of fluid flow and heat transfer enhancement and

augmentation of convection heat transfer, the maximum

temperature factor reduces. The increase in dimensionless
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slip velocity coefficient entails the reduction in thermal

resistance which causes the enhancement of heat transfer

amount. Eventually, existence of incomplete upper layer on

microchannel, due to the short path of fluid flow and lack

of fully development fluid flow, better control of the down-

layer temperature and increased heat transfer in

microchannel, is created. It is recommended that in order to

better distribute the temperature in a single-layer

microchannel, the form of two-layer microchannel with

incomplete upper layer is used. The extension of this paper

for nanofluid according to previous works [51–113] affords

engineers a good option for nanoscale and microscale

simulation. According to some previous studies, to increase

the produced power in some power plants, or to some

upgrading, there is an emergency need to increase the heat

transfer capacity in existing systems [114–120]. One of the

best solutions for this problem is using nanofluids instead

of water in these cooling systems.
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