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Abstract Polylactide (PLA) composites with three types

of fillers, calcium carbonate, barium sulfate, and mica,

have been prepared. Methods of preparation were melt

mixing in a Brabender plasticorder at 190 �C and solution

mixing in chloroform. The concentration of added fillers

was: 0.1, 1, and 5 mass% (only by melt mixing). Thermal

properties of prepared composites were investigated by

differential scanning calorimetry (DSC) and thermogravi-

metric analysis. The dispersity of filler in matrix was

examined by scanning electron microscopy. There was no

agglomeration in any composites. Results of DSC analysis

reveal the influence of preparation method on thermal

transitions. By the melt mixing method, the introduced

filler hindered crystallization but caused mostly just a slight

increase in Tg relative to pure PLA (57.4 �C). By solution-

mixing method, the absence of crystallization is noticed in

all samples. Concurrently composites displayed Tg higher

for ca. 5–6 �C relative to pure PLA (53.3 �C), with the

exception of composite with smallest content of calcium

carbonate nanofiller. Thermal stability is improved in all

composites, regardless of the filler used and preparation

method. It is especially pronounced regarding decomposi-

tion temperature (5 mass% loss) where the increase ranges

from 11 up to 55 �C in case of melt mixing and 17–35 �C
for solution mixing.

Keywords Melt mixing � Solution mixing � Calcium

carbonate � Barium sulfate � Mica

Introduction

Polylactide (PLA) is the most well-known and first com-

modity biodegradable polymer based on renewable

resources. It is a part of the current portfolio of sustainable,

environmental-friendly materials that are sought as

replacement at least partially for the currently prevailing

oil-based conventional plastics. Therefore, this unique

polymer is widely studied and recently more and more used

[1–3]. The diversity of PLA conversion methods enables

shaping it into transparent films, bottles, cups, food con-

tainers, cutlery, agricultural foils, and pots. In this way

application of PLA is extending from the initially medical

and pharmaceutical area toward ideal candidate for various

consumer products and packaging related applications

primarily due to its good gas permeability (displays

behavior like PET, much better than PE), food contact and

extraordinary organoleptic characteristics [4, 5]. All this

nominates PLA as an economically feasible material

among other biopolymers, which rapidly degrades in the

environment and the by-products are of very low toxicity

[1, 6]. Melt processing is the main conversion method for

PLA where injection molding and newly stretch blow

molding [7] as well as fiber spinning [8, 9] are the most

commonly used mods of processing, but there is also

possibility of the film and sheet casting [10, 11], thermo-

forming [12], etc. Furthermore, solution mixing is applied

to polylactide processing due to different behavior of

poly(L-lactide) (PLLA)/poly(D-lactide) (PDLA) stereo-

complexes [13, 14] as well as in case of PLA composites

[4, 15–17]. PLA has good mechanical properties, i.e., high
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strength and modulus. However, the inherent brittleness

and low toughness or restrained processability by exposure

to, e.g., stress or thermal crystallization might pose con-

siderable technical restraints regarding PLA processing

[18]. Previously mentioned brittleness and low toughness

of PLA along with still high production costs cause limi-

tation for a range of commercial applications. One

promising way to influence the desirable properties and/or

to make PLA products cheaper is to use it in blends,

copolymers, and composites. Thus, blends of PLA with

synthetic and biopolymers have been prepared. Also, lac-

tide has been copolymerized and/or combined with various

fillers in order to prepare material of improved properties,

such as toughness, modulus, impact strength, and thermal

stability, compared to the neat polymer [15, 16, 19–24].

Currently the most often are investigated composites of

PLA intended for biomedical applications. Fillers of nat-

ural origins such as cellulose [25–27], starch [28, 29], and

other [30, 31] are frequently used. Also MWCNT [32, 33],

organic fillers as well as inorganic: CaSO4, MgO, (Ca)3PO4

[34–36], strontium apatite [37], diopside [38] are used as

fillers. Among papers studying PLA composites with

inorganic fillers there are several using fillers like ours:

barium sulfate [39], mica [40–43], and calcium carbonate

filler [44–47]. Although they seem similar, there are sig-

nificant differences between abovementioned and our

research regarding either method of preparation, fillers’

size, and especially their concentration, which is mainly

significantly higher than in our research.

In this study we prepared composites based on PLA by

filling it with different commercial inorganic particles

calcium carbonate, barium sulfate, and mica by melt

mixing method. The intention was to size the dispersity of

fillers in matrix and the change of thermal behavior

depending on the amount, type, and size of filler. The

amount of added fillers is small and ranges from 0.1 to

5 mass%. Furthermore, for comparison reasons, we have

prepared also composites with 0.1 and 1 mass% fillers by

solution mixing.

Experimental

Materials

PLA (pellets, Ingeo Biopolymer 3251D, NatureWorks

LLC, USA) was used as polymer matrix. Socal U1S2

ultrafine surface-treated precipitated calcium carbonate

(CaCO3, 0.07–0.13 lm, Solvay Chemicals International,

Austria), barium sulfate, Schwerspat (BaSO4, 20–600 mesh

(840–20 lm), Posshel Erzkontor GmbH) and mica, Glim-

mer [(K, Na, Ca)(Al, Mg, Fe, Li)2–3(OH)2(Si, Al)4–5O10,

20–800 mesh (840–15 lm), Posshel Erzkontor GmbH]

were used as fillers. Chloroform solvent (Carlo Erba

Reagenti SpA) was used as received.

Sample preparation

Composites preparation by melt mixing

The melt blending was performed in a Brabender mixer at

190 �C. Polymer pellets and inorganic fillers (0.1, 1 and

5 mass%) were added to the chamber of the mixer, which

was heated to 190 �C and had the blades rotating at

10 rpm. The plunger was then lowered to enclose the

chamber, and the rotation was increased to 60 rpm. After

5 min, the blades were stopped and the blends were

removed from the chamber using a spatula and cut into

pieces using scissors. The blend was allowed to cool to

room temperature on the bench top. Obtained composites

were then pressed in laboratory compression molder for

5 min at 200 �C and samples for testing were obtained.

Composites preparation by solution mixing

In solution-mixing procedure polymer pellets were dis-

solved in 75 mL of chloroform overnight. Inorganic fillers

(0.1 and 1 mass%) were added to the solution and mixture

was homogenized by Ultra-Turrax homogenizer for 1 min

at 9000 rpm. Obtained mixture was poured in Teflon mold

and vacuum-dried for 45 min at 90 �C. Afterward it was

dried in drier at 60 �C till constant mass. Obtained material

was then pressed in laboratory compression molder for

5 min at 200 �C and samples for testing were obtained.

Sample abbreviation of the prepared materials is

PLAxyN, where ‘‘x’’ represents type of filler: b—barium

sulfate, c—calcium carbonate, d—mica, ‘‘y’’ represents

method of material preparation: m—melt mixing, s—so-

lution mixing, and ‘‘N’’ represents the amount of added

filler.

Composite characterization

Thermogravimetric analysis (TG) was performed by TGA

Q500 V20.13 Build 39 instrument at a heating rate of

10 �C min-1 in a temperature range from room tempera-

ture to 450 �C in nitrogen atmosphere. Mass of examined

samples was around 15 mg.

Differential scanning calorimetry (DSC) analysis was

performed by DSC823e Mettler Toledo instrument. Masses

of examined samples were 10–12 mg. Three heat–cool–

heat runs were performed, whereas heating and cooling

rates were 10 �C min-1 in range from 0 to 200 �C. The

time of dwells at zero or 200 �C was 2 min. Data from the

cooling and second heating scan were used.
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Scanning electron microscopy (SEM) recording was

carried out by VEGA 3 TESCAN microscope, with a

detector of secondary electrons. All samples were previ-

ously sputter coated with Au or Pd in the argon plasma to

enhance their conductivity.

Results and discussion

The thermal properties of neat PLA and PLA-based com-

posites were studied by DSC. The typical non-isothermal

DSC curve of pure PLA is shown in Fig. 1. Three runs in

the range 0–200 �C, start with first heating fallowed by

cooling and finish with second heating, showed glass

transitions. Almost the same value of the Tg in both heating

runs, 57 �C, were recorded (Table 1). Regarding two

characteristic transitions, crystallization and melting, pure

PLA sample in the first heating run displayed a large

crystallization peak in the range 85–112 �C centered at

about 98 �C followed by melting in the range 157–178 �C.

In attempt to get more correct values, the integration of the

whole run, i.e., from the beginning of crystallization exo-

therm to the end of melting endotherm was made and

calculated difference equals DH = 3.3 J g-1. Since devi-

ations in crystallization and melting enthalpies during first

heating run occur occasionally in polymers as a conse-

quence of previous processing, the second heating rung is

taken into consideration because in that case the thermal

history of sample is erased. Along with some other semi-

crystalline polymers, PLA is known for a slow crystal-

lization ability due to which it does not have time to

crystallize during cooling. However, crystallization of the

same pure PLA during cooling run was registered previ-

ously, while we studied its blends with poly(methyl

methacrylate) prepared by melt mixing. Here, crystalliza-

tion developed during cooling shifted to lower temperature

and is much smaller in extent in comparison with first

heating run. Crystallization during second heating run

occurs consequently if no crystallization or one smaller in

extent occurs during cooling [48–50]. In the second heating

run, crystallization also shifted to lower temperature like in

the cooling run. The integration of the whole run, i.e., from

the beginning of crystallization exotherm to the end of

melting endotherm, was made in the second heating run.

The same procedure was applied to the composites, as well.

The difference between enthalpies of melting and crystal-

lization in the second heating run (DH = 22.7 J g-1) is

fairly proportional to the crystallization enthalpy during

cooling due to the formation of crystallization nuclei [24].

From the value of integration of whole area and using

enthalpy of fully crystalline PLA (DHm� = 93.6 J g-1)

[49], with a presenting the mass fraction of the filler, cal-

culated according to the Eq. (1):

Xc (% ) =
DHm � DHccj jð Þ
DH�

mð1 � aÞ

� �
� 100 ð1Þ

a crystalline content of 24.3 % was established.

For simplicity reasons, only cooling and second heating

run will be discussed for the prepared PLA composites.

Thermal properties related values [glass transition (Tg),

cooling crystallization (Tc, DHc), cold crystallization (Tcc,

DHcc), and melting of crystal domains (Tm, DHm)] of the

PLA, and its composites prepared by melt mixing are

summarized in Table 1. Figure 2 clearly shows that during

the cooling run all composites independent on the type and

amount of filler have similar glass transition temperatures

that vary ±1 �C around the Tg of PLA (54 �C). However,

only composites with finest calcium carbonate nanofillers

display a very small exothermic peak (DHc\-3.0 J g-1),

while in other two composites almost there is no exother-

mic peak (DHc * 0 J g-1). Since mentioned peak in the

PLA prepared by melt mixing is much higher

(DHc = -18.6 J g-1), it indicates that introduced fillers

disturb the cooling crystallization. It is in line with previ-

ous findings that filler type employed in composites influ-

ences considerably the degree of crystallization [51]. One

explanation for those phenomena is based on the amount of

free volume occurring between the polymer chains where

filler can accommodate [52].

Figure 3 shows second heating run in PLA and com-

posites prepared by melt mixing. Also here all composites

show glass transitions temperatures close to pure PLA apart

from composite with finest calcium carbonate nanofillers

that displays an increase of ca. 3 �C. Cold crystallization is

registered in all samples, whereat in composites it is twice

as high as in pure PLA. Although added filler caused

increase in cold crystallization, it can actually affect the

cold crystallization process in both directions: decrease or

increase [24, 53–55]. Fillers added in amount of 0.1 mass%
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Fig. 1 DSC heating and cooling curve of PLA recorded at

10 �C min-1
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cause the Tcc increase of 2–3 �C, while addition of 1 or

5 mass% cause increase of ca. 7–8 �C. The lower Tcc in

pure PLA is to be attributed to the crystallinity before the

second heating run that acted as a nucleating agent [48, 56].

The values of melting enthalpy are similar in all samples.

But in composites, unlike in pure PLA, the values of

melting and cold crystallization enthalpy are close, which

indicates that crystallization of composites has not pro-

gressed [53].

For comparison reasons the thermal behavior of a couple

of each composites as well as neat PLA prepared by

solution mixing are monitored by DSC, Figs. 4 and 5. Also

here for the simplicity reasons only cooling and second

heating run will be discussed. Characteristic thermal

properties of samples prepared by solution mixing are

summarized in Table 2. It was found that neither pure PLA

nor its composites display any crystallization during the

cooling run, Fig. 4. One can see that only composite with

Table 1 Thermal properties of neat PLA and its composites prepared by melt mixing

Sample Tg/�C -DHc/J g-1 Tc/�C Tg/�C Tcc/�C Tm/�C DHm � DHccj j /J g-1 Xc/%

PLAm 54.0 18.6 94.2 57.4 95.9 167.1 22.7 24.3

PLAcm0.1 53.4 1.8 94.8 60.4 99.1 168.6 0.9 0.9

PLAcm1 54.1 3.0 95.0 58.2 102.8 169.2 2.2 2.4

PLAcm5 55.0 3.0 94.1 57.5 96.1 167.9 0.01 0.01

PLAdm0.1 54.7 *0 – 58.2 99.1 169 1.4 1.5

PLAdm1 54.4 *0 – 57.8 101.9 168.7 0.3 0.3

PLAdm5 55.0 *0 – 58.1 101.6 168.7 0.7 0.7

PLAbm0.1 54.6 *0 – 58.1 98 169.2 3.4 3.6

PLAbm1 54.1 *0 – 58.8 103.9 169.7 1 1

PLAbm5 53.9 *0 – 58.6 102.1 169.2 0.2 0.2
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Fig. 2 DSC cooling scan of PLA and its composites prepared by melt

mixing recorded at 10 �C min-1
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Fig. 3 DSC second heating scan of PLA and its composites prepared

by melt mixing recorded at 10 �C min-1
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lowest amount of finest calcium carbonate nanofiller dis-

played glass transition temperature close to PLA, while

other composites showed the Tg increase of ca. 6 �C.

Interestingly, the Tgs obtained from the cooling runs for

PLA from solution and melt mixing differ for about -5 �C.

Second heating run of examined samples is shown in

Fig. 5. Once more, sample PLAcs0.1 displays Tg value

close to PLA while in other composites it deflects by ca.

6 �C. Since values of crystallization and melting enthalpies

in pure PLA prepared by solution mixing are similar, one

can say crystalline content is low (Xc = 2 %), as opposed

to *24 % notified in PLA prepared by melt mixing.

Crystalline content deflection is much less stressed in

composites because those prepared by melt mixing method

displayed low values of Xc, as well. Obviously, solution-

mixing method does not favor formation of crystalline

phase neither in pure PLA nor in composites. The effect of

filler is not registered apart from a weak contribution in

case of calcium carbonate filler at a very low concentration.

There is no clear trend regarding crystalline content in one

set of composites relative to another. Crystalline content

does not exceed value of 3.6 % in both series of samples. A

more detailed look shows that composites prepared by melt

mixing display a relative higher values, but not for all

samples. Obviously, introduction of fillers does not favor

formation of crystalline phase regardless of the preparation

method.

The thermogravimetric analysis of the PLA-based

composites prepared by melt mixing is shown in Figs. 6–8.

All samples were heated up to 450 �C under a nitrogen

flow. Then the decrease in mass percentage was monitored.

The one-step mass loss process was observed in the TG

curves, whereas from DTG curves a shoulder can be seen

in a couple of composites, but it is the most clearly

demonstrated in polylactide sample. Thermal stability

measurements performed for PLA matrix and nanocom-

posites prepared with calcium carbonate filler are shown in

Fig. 6. One can see that influence of added filler depends

on its amount. The least amount caused the highest

increase, whereas the decomposition temperature of PLA

increased from ca. 255 �C up to 305 �C in composite with

0.1 mass% of nanofiller. Composites with 1 and 5 mass%

of nanofiller displayed decomposition temperature at 296

0 50 100 150 200

Temperature/°C

H
ea

t f
lo

w
/m

W
 m

g–
1

Scale bar

Exo
0.

2
1
0.1

1
0.1

PLAds

PLAcs

PLAbs

PLAs

1
0.1

Fig. 4 DSC cooling scan of PLA and its composites prepared by

solution mixing recorded at 10 �C min-1
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Fig. 5 DSC second heating scan of PLA and its composites prepared

by solution mixing recorded at 10 �C min-1

Table 2 Thermal properties of neat PLA and its composites prepared by solution mixing

Sample Tg*/�C Tg**/�C Tcc/�C Tm/�C DHm � DHccj j /J g-1 Xc/%

PLAs 48.3 52.8 92.5 167.7 1.85 2.0

PLAcs0.1 48.6 51.9 90 167 3.37 3.6

PLAcs1 54.3 58.3 95.8 169.2 1.07 1.1

PLAds0.1 55.6 59.1 98.3 169.7 0.63 0.7

PLAds1 54.0 58.3 100.8 171.5 0.87 0.9

PLAbs0.1 54.2 58.1 98.9 169.2 0.19 0.2

PLAbs1 55.1 58.5 98.2 169.7 0.45 0.5

* Cooling run

** Second heating run
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and 266 �C, respectively. Here, decomposition temperature

is defined as 5 % mass loss in the TG curve. Composite

with 5 mass% of filler also showed deviation regarding the

maximum of DTG curve that decreased to 304 �C in

comparison with 319 �C in pure PLA, while lower amounts

of filler (0.1 and 1 mass%) caused increase in the DTG

curve maximum up to 337 and 329 �C, respectively.

Interestingly, in a very similar study [45] where composites

of PLA with CaCO3 micro- and nanofillers in twin-screw

extruder were prepared and similar characterization (SEM

and thermogravimetric analysis for thermal stability sizing,

like us, and mechanical properties) was performed, lower

stability of composites (10 and 20 mass%) relative to pure

PLA was notified.

When preceding nanocomposite materials are compared

with microcomposites prepared with other two types of
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fillers, there are some differences as well as similarities.

Thus, all prepared composites show increase in initial

decomposition temperature relative to pure PLA, ranging

between 35 and 55 �C, Figs. 7 and 8. In composites with

mica filler, increasing amount of filler caused the increase

in thermal stability through the whole temperature range,

which also means the shift of DTG curve maximum

upward. However, composites with barium sulfate evi-

denced similar thermal stability for 0.1 and 1 mass% of

filler and worsening of properties with further increase in

filler content. Since the utter two types of fillers have

similar nominal particle size which is much larger in

comparison with the calcium carbonate filler, one could

expect a greater similarity between them. Adversely, cal-

cium carbonate and barium sulfate fillers, despite a sig-

nificant difference in particle diameter, both showed a

negative influence of concentration increase to 5 mass% in

composites. This is in line with literature findings [45]

where it was shown that composites with high content (10

and 20 mass%) of nano- or micro-CaCO3 filler in PLA

matrix displayed significant decrease in the onset of tem-

perature of thermal degradation. They did not record

influence of the size of fillers on thermal stability of

composites. However, according to some literature, oppo-

site effect is observed where nanocomposites show a sig-

nificant increase in thermal stability relative to

microcomposites due to the char formation in the

nanocomposite that may act as a physical barrier between

the polymer medium and the superficial zone where flame

combustion occurs [57–59].

Interestingly, mica filler with a laminar structure dis-

played improvement in thermal stability with increasing

concentration. This behavior probably can be attributed to

better adhesion, i.e., interactions between matrix and filler,

in spite of filler’s large dimensions. The difference in

morphology of fillers likely changes the degradation

mechanism that causes difference in thermal stability of

material. Also, it is important to emphasize the most

important difference in intrinsic characteristics between the

used fillers. It is shown here that depending on the char-

acter of the filler, already as small share as 0.1 mass% is

enough to improve thermal stability of certain PLA com-

posites, while for some others the shares exceeding

5 mass% seem promising. Furthermore, although degra-

dation temperature (determined at the DTG maximum

peak) in microcomposites varies (mutually between 7 and

14 �C and between 11 and 26 �C relative to pure PLA), it

is much more uniform relative to nanocomposites.

The thermal stabilities of the PLA matrix and its com-

posites with 0.1 and 1 mass% of fillers prepared by solu-

tion mixing are shown in Figs. 9 and 10. All samples show

one-step mass loss process. Individually PLA displays the

strongest deflection, where sample prepared by solution

mixing shows 13 �C increase of 5 mass% and 14 �C
decrease in 50 mass% loss temperature compared to PLA

prepared by melt mixing. Roughly, composites prepared by

solution mixing show similar thermal behavior to their melt

mixing prepared counter parts. Having in mind the mode of

preparation, the deviation between composites is small

regarding the degradation temperature (50 mass% loss)

(2–6 �C). However, regarding decomposition temperature

(5 mass% loss), composites with mica filler show a close

match (0–3 �C), while in composites with calcium car-

bonate and barium sulfate, a difference of up to 11 �C is

noticed depending on the preparation mode. From all the

above, the smallest influence of preparation procedure on

the thermal properties is noticed in composites with mica

filler.

The morphology of composites was assessed by SEM

observation of samples with 1 mass% fillers prepared by

both methods. The results of the fractured surfaces are

shown in Fig. 11. Different procedures of preparation do

not have any pronounced effect on morphology of samples.

Thus, PLA prepared by solution mixing (Fig. 11a1) has a

few small voids, caused probably by evaporation of the

solvent remains, which are not present in PLA prepared by

melt mixing (Fig. 11a2). All SEM micrographs revealed

Fig. 11 SEM images of surfaces of neat PLA (a) and its composites

with 1 mass% fillers: calcium carbonate (b), barium sulfate (c) and

mica (d); (1) prepared by melt mixing (2) prepared by solution mixing
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that there is no selective location of filler in matrix.

Composite with calcium carbonate showed homogeneous

distribution of filler without any agglomerates, regardless

of the preparation method (Fig. 11b). In case of composites

with barium sulfate, it was more difficult to spot the par-

ticles of filler at given magnification (Fig. 11c). However,

in composites with 5 mass% of filler, a fairly well distri-

bution was established (see supplement material). Also in

case of composites with mica, due to the large size and

specific shape of filler, just a part of the particle is shown

on micrograph (Fig. 11d). Mica particles with a thin lay-

ered structure are randomly distributed through the sample,

for both preparation methods. Furthermore, a good adhe-

sion between particles and polymer matrix can be seen.

Apart from mica characteristic [60], that good adhesion

explains why only by these series of composites thermal

stability increases with increasing ratio of filler.

Conclusions

Based on the results obtained by the different techniques

used in this study, we can conclude that we managed to

prepare uniform composites of PLA with calcium carbon-

ate, barium sulfate, or mica fillers.

By means of SEM, agglomeration of any filler in the

matrix was not recorded regardless of the significant dif-

ferences in their character, dimensions and shapes, inde-

pendent on the preparation method, as well. However, DSC

analysis revealed the influence of the preparation method

on characteristic thermal transitions of materials. Thus, in

case of melt mixing all materials have Tg values at ca.

57–58 �C, apart from the composite with smallest content

of calcium carbonate nanofiller (60.5 �C). In neat PLA

prepared by this method crystallization occurred while

added fillers hindered crystallization process in composites.

By solution mixing all samples displayed the Tg increase,

with the exception of composite with smallest content of

calcium carbonate nanofiller that had Tg close to pure PLA.

Additionally, the extent of crystallization was negligible

both in pure PLA and in its composites. Obviously, this

method does not favor crystallization.

Results from the TG analysis showed improvement of

thermal stability that is especially pronounced regarding

decomposition temperature (5 mass% loss). Interestingly,

PLA and composites with microfillers prepared by melt

mixing mainly displayed higher decomposition tempera-

ture in comparison with their counterparts prepared by

solution mixing. However, composites with calcium car-

bonate nanofiller from melt mixing displayed the lower

decomposition temperature. It should be noted that con-

tribution of the filler concentration depends on the type of

filler. It is established that in case of calcium carbonate and

barium sulfate small share of 0.1 mass% resulted with

maximal thermal stability increase while in case of mica

the increasing share of filler caused the increase of thermal

stability. The results indicate how it is necessary to

examine each system, i.e., filler in this case, in order to be

able to size its influence on materials’ properties.

References
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structure of annealed polylactic acid and its relation to process-

ing. eXPRESS Polym Lett. 2010;4:659–68.

57. Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P. Poly-

lactide/montmorillonite nanocomposites and microcomposites

prepared by melt blending: structure and some physical proper-

ties. J Appl Polym Sci. 2002;86:1497–506.

58. Alexandre M, Beyer G, Henrist C, Cloots R, Rulmont A, Jérôme
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59. Degée P, Dubois P, Jérôme R. Bulk polymerization of lactides

initiated by aluminium isopropoxide, 3. Thermal stability and

viscoelastic properties. Macromol. Chem Phys. 1997;198:

1985–95.

60. Mica Material Safety Data Sheet. http://www.erzkontor.com/cms/

upload/documents/Material%20Safety%20Data%20Sheet%20M

ica.pdf. Accessed 30 Jun 2015.

380 E. Vidović et al.
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