
Designing an artificial neural network using radial basis function
(RBF-ANN) to model thermal conductivity of ethylene
glycol–water-based TiO2 nanofluids

Mohammad Hemmat Esfe1

Received: 1 April 2016 / Accepted: 15 July 2016 / Published online: 29 August 2016
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Abstract In this article, thermal conductivity of ethylene

glycol–water-based TiO2 nanofluids has been modeled by

artificial neural network. For this purpose, thermal con-

ductivity of nanofluids with volume fractions of 0.2–1 %

has been collected in temperatures of 30–70 �C. These data

were modeled by artificial neural networks. So two com-

mon types of neural networks were used, and the results

were compared with each other. One of these networks was

multilayer perceptron, and the other one was radial basis

approximation. Finally, an experimental relationship was

suggested for calculating thermal conductivity of this

nanofluid and the results were compared with the results of

radial basis neural network. This comparison shows that

neural networks are very powerful in modeling the

nanofluids experimental data and are able to follow the

patterns of these data with a high precision.

Keywords Thermal conductivity � Artificial neural

network � Temperature � Modeling

Introduction

Heat transfer in industrial equipment is a subject that has

been studied for several decades. It is significant since if

the produced heat is not removed by industrial equipment,

the device will stop operating and there will often be

serious damage to it. One way to increase heat transfer in

cooling systems is using fluids with high heat transfer rates.

Therefore, researchers are getting interested in the capacity

found in nanofluids. Nanofluids are fluids containing

nanoparticles of 1–100 nm. These particles can be oxide,

metal, carbon, and ceramic.

Various factors affecting nanofluids thermal conductivity

have been mentioned in different reports [1]. The effect of

different factors on heat transfer, mass, and nanofluids vis-

cosity has been investigated in different articles. The method

of nanofluids preparation is one of these factors. Some believe

that nanofluids preparation is the key step in using nanopar-

ticles for increasing fluids thermal conductivity [2].

Nanofluids preparation can occur in one or two steps. In the

one-step technique, nanoparticles are directly suspended in

base fluid. This technique is generally used for the preparation

of metal fluids, otherwise metal nanoparticles oxidize. The

disadvantage of this technique is nanofluids preparation in

small volume and very low densities [3, 4]. The second

technique for nanofluids preparation is the two-step technique

[5–13]. In this technique, powder nanoparticles are suspended

in base fluid by using surfactant and sonication [14–21].

Another parameter affecting nanofluids preparation and

their viscosity and thermal conductivity is using surfac-

tants. Almost all nanoparticles must be used with surfac-

tants or changes must be exercised in their surface through

functionalization so that they can be suspended in the fluid.

These surfactants may be cationic or anionic. In some

cases, the effect of surfactant on thermal conductivity and

viscosity cannot be ignored and their effects have been

mentioned in researches. Estelle et al. [22] in their study

investigated the effect of different surfactants on viscosity

and thermal conductivity of carbon nanotube nanofluids.

For this purpose, SDBS and Lignin surfactants have been

compared with each other. Lignin both gives non-Newto-

nian property of shear thinning and produces a higher

thermal conductivity in nanofluid compared to SDBS. Also,
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Xia et al. [23] have investigated the effect of PVP and

SDS surfactants on thermal conductivity of base fluid and

Al2O3-water nanofluids. They indicated that nanofluids con-

taining SDS have higher thermal conductivity. They have also

studied the effect of these surfactants volume fraction on

thermal conductivity of alumina-water nanofluids.

In addition to experimental researches, some researchers

are involved in numerical and statistical investigations of

nanofluids. Hemmat Esfe et al. [24–29] have reported using

different types of artificial neural networks in different

articles. It is concluded from all these articles that artificial

neural network is considered a proper tool for modeling

nanofluids behavior. It has also been conducted by some

other researchers. Hojjat et al. [30] have modeled three

types of non-Newtonian nanofluids by using neural net-

works and compared them with experimental data and

theoretical models.

One of the problems of different applications of nanofluids

is lack of reliable models with required thermophysical

properties to be used in technical and engineering designs.

The vast amount of experimental data, different methods of

data collecting, and a large number of considerations and

differences existing in the results of experimental researches

bring about confusion in using nanofluids. Researchers are

more involved in conducting experimental measurements and

reporting their results than in considering the collection and

presentation of models regarding nanofluids thermophysical

properties as a tool needed for engineers. The huge amount of

the experimental data presented in different resources has not

been collected and presented accurately.

In this article, the experimental data of thermal con-

ductivity of TiO2 nanofluids have been modeled by using

artificial neural networks in radial basis approximation

method and the results of this modeling have been com-

pared with experimental data and theoretical model sug-

gested by Hashin and Shtrikman.

The experimental data of thermal conductivity [31] of

ethylene glycol–water-based TiO2 nanofluid have been mod-

eled by using neural network in radial basis approximation

method. A review of previous researches shows despite vari-

ous applications of this nanofluid, a coherent study has not

been conducted on modeling thermal conductivity of this

nanofluid so far. Also, these data have been given as inputs to

two separate neural networks and modeled by these two net-

works and the suggested models have been compared in terms

of precision and extent.

Experimental data

Thermal conductivity data are obtained from [31] which

measured using apparatus supplied by P.A. Hilton, UK.

The apparatus is capable of measuring the thermal

conductivity of nanofluids. The apparatus has built-in

control unit to regulate heat supplied to the test samples.

Artificial neural network

The sciences related to artificial neural networks are pro-

gressing rapidly and are employed in different fields.

Artificial neural networks have been modeled from human

brain networks. That is why they possess the unique fea-

tures of brain processing. Increase in speed and high sen-

sitivity to errors can be mentioned as two of their features.

When the inputs to software programs change, one does

not expect to receive a response from them, while the brain

may present a suitable response in a new situation despite

lack of a specific experience.

It is evident that neural network obtains its computational

power first from its extensive parallel structure and then from

the ability of learning and generalization. Generalization

means that neural network creates acceptable outputs for the

inputs with which they have not encountered during training.

These two abilities of information processing make it possible

for the neural network to respond to complicated and large-

scale issues that could not be investigated. Nevertheless,

neural networks alone cannot solve all problems. The

stable system must be combined with an engineering method.

For this purpose, different types of neural network structures

are tested and employed and the best network in terms of

precision and error value is selected. By using neural net-

works, the complicated behaviors of different types of phe-

nomena can be modeled and used for predicting the results of

similar phenomena.

In this article, two structures of neural networks have

been used for modeling the thermal conductivity data of

ethylene glycol–water-based TiO2 nanofluids. The first

structure of neural network shown in Fig. 1 has two hidden

layers, each of which includes five neurons. The transfer

function of the first layer is radial basis function, and the

transfer function of the second layer is tangent sigmoid.

After investigating different structures with different

numbers of neurons, this structure turned out to have the

best performance. Regression coefficient and mean-

squared error (MSE) for these structures have been pre-

sented in Table 1. In order to train the neural network, two

train functions have been used. Trainlm transfers input data

to neural network pattern with a higher speed, and trainbr

(Bayesian regulation train function) does this process with

a higher precision. As observed in Table 1, the regression

coefficient of the network trained by trainbr function is

greater and becomes convergent sooner.

The regression coefficient of the selected structure is

0.9999. A value higher than this is not expected. Therefore,

at this point testing, different structures have stopped.
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Along with neural network training, MSE values for

training and test data in terms of iterations are recorded.

These values are shown in Fig. 2. Due to using learning

algorithm of Bayesian regulation back propagation, no data

are devoted to validation, so the data are divided into two

groups of train and test data. Another advantage of using
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Fig. 1 First structure of neural network

Table 1 Regression parameters of different ANN structures

Neurons Train function R MSE Train performance Test performance

[1 1] Trainlm 0.9416 2.5432e-5 2.9031e-5 1.6568e-5

Trainbr 0.9367 2.6970e-5 2.6056e-5 3.1540e-5

[2 2] Trainlm 0.9979 9.2129e-7 9.2436e-7 7.7166e-7

Trainbr 0.9983 7.6153e-7 7.2137e-7 9.6234e-7

[3 3] Trainlm 0.9987 6.0705e-7 3.7271e-7 1.5742e-6

Trainbr 0.0.9995 2.1370e-7 2.0639e-7 2.5026e-7

[4 4] Trainlm 0.9984 8.3121e-7 1.8002e-7 2.8984e-6

Trainbr 0.9998 4.9596e-8 9.2449e-9 2.5135e-7

[5 5] Trainlm 0.9936 3.1608e-6 4.0388e-7 9.2125e-6

Trainbr 0.9999 4.8063e-8 9.8657e-9 2.3905e-7
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Fig. 2 Performance of neural network for train and test data
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Fig. 3 Regression of neural network modeling
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trainbr transfer function is that an acceptable goal is

determined for MSE value and the network continues

iterations to achieve the goal and the operation of iteration

stops as soon as the goal is achieved. The goal specified for

the performance is 10-8 that has been achieved.

Figure 3 shows the regression of the modeled data. In

this diagram, neural network outputs have been drawn in

terms of experimental data. The adjustment of neural net-

work outputs with the bisector shows the success of neural

network in modeling the data and the network high

precision.

Radial basis approximation

The second section of modeling has been conducted by

radial basis approximation. Figure 4 shows the diagram of

radial basis function.

This modeling, without being required to test different

networks with different structures, starts learning

automatically in order to determine the desired goal for

MSE. For this purpose, different structures are tested and if

an acceptable result is not obtained, it adds one neuron to

the structure and restarts the modeling. The final structure

of modeling the data is shown in Fig. 5.

The goal specified for MSE is 10-8 like the first struc-

ture to check with how many neurons the network can

obtain a performance equal to the first network. This goal

has been achieved with 25 neurons. In Table 2, the number

of neurons in the hidden layer and the performance of

system for each structure are observed.

Figure 6 shows a comparison between the results of

neural network modeling and experimental data. As is
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Table 2 Values obtained for MSE for each structure in neural

network

Neurons MSE Neurons MSE

1 0.000217382 14 1.85585e-05

2 0.000173363 13 2.78837e-05

3 0.000163203 15 6.13974e-06

4 0.00015606 16 4.57595e-06

5 6.72265e-05 17 3.08116e-06

6 6.41487e-05 18 1.94295e-06

7 5.63928e-05 19 8.3355e-07

8 5.22111e-05 20 7.80983e-07

9 4.69021e-05 21 4.14174e-07

10 4.06106e-05 22 3.74929e-07

11 3.59518e-05 23 3.21945e-07

12 2.96372e-05 24 3.19438e-07

25 2.66731e-08
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Fig. 6 Comparison between ANN model and experimental data
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seen, neural network can well estimate the experimental

data with a high precision by training hidden layers (two

hidden layers with five neurons in each layer) and adjusting

the weights and biases. Figure 6 shows that the pattern

selected for neural network modeling has been chosen well.

In this section, a comparison between experimental data

and the theoretical model suggested by Hashin and

Shtrikman [1] has been conducted. This model includes

two boundaries: upper and lower. Its lower boundary has

been equal to Hamilton–Crosser model. For its upper

boundary, a relationship in terms of volume fraction and

thermal conductivity of base fluid and nanoparticles has

been suggested:

kp þ 2kbf þ 2u kp � kbf

� �

kp þ 2kbf � u kp � kbf

� � � keff

kbf

�
3kbf þ 2u kp � kbf

� �
kp

3kp � u kp � kbf

� �
kbf

ð1Þ

Figure 7a–d shows a comparison between experimental

data, neural network modeling results, and upper and lower

boundaries of Hashin and Shtrikman model.

From these figures, it is evident that experimental data

are between upper and lower boundaries of Hashin and

Shtrikman model. Neural network modeling can model and

estimate the experimental data with a high precision.

These diagrams have been drawn for temperatures of 30,

40, 50, and 70 �C versus volume fraction.
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Fig. 7 Thermal conductivity versus volume concentration for a 30 �C, b 40 �C, c 50 �C, d 70 �C
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Presentation of the correlation based on experimental

data.

In order to compare with neural network and also estimate

thermal conductivity of nanofluids in terms of temperature

and nanoparticles volume fraction, an experimental correla-

tion has been presented based on experimental data.

knf ¼409 þ 0:00053T þ 412u� 409 exp uð Þ � 0:023T0:3

þ 0:000021

u
þ 0:006T � sin uð Þ ð2Þ

The regression parameters of this correlation have been

presented in Table 3.

In order to have a better understanding of precision of

MLP neural network and the suggested correlation and the

value of their error, the value of error has been drawn (Fig. 8).

The greatest value for neural network is\10-3 and that of the

correlation is \3 9 10-3, which shows the great power of

neural network in modeling nanofluid thermal conductivity.

Conclusions

In this article, the experimental data of thermal conduc-

tivity of TiO2–EG/water (50–50) were used. Then, post-

processing operations were conducted on the data and the

following results were obtained:

1. There are various artificial neural networks, each of

which can be modeled from natural phenomena and

predict the values that do not exist in experimental

data.

2. The performance of all neural networks is not identical

in simulation and modeling the data.

3. According to this research and the other researchers

conducted, neural networks generally present a more

precise estimation of nanofluids thermal conductivity

compared to experimental correlation.

4. Neural networks are considered a very good tool for

collecting experimental data and coming to a general

conclusion regarding nanofluids.
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