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Abstract Starting from the relationship between Gibbs

free energy and equilibrium constant of a chemical reaction

(ECCR) and taking into account its temperature depen-

dence according to Kirchhoff, Eq. (12), we arrive at the

three-parametric Eq. (26). In going this way, we employ

the relationship between the ECCR and the degree of

conversion of the solid phase using Eqs. (20) and (21). We

find that there is a compensating effect between the coef-

ficients of the equation (i.e., a1; a2) in the form of a linear

equation, which has been attributed to the enthalpy–en-

tropy compensation. According to current state of knowl-

edge, this result applies both to the chemical reactions

resulting in individual chemical bond formation as well as

in thermal decomposition. When the heat capacity of such

chemical reactions decreases linearly along with tempera-

ture, it can adopt the value of the (arithmetic mean) aver-

age, and the negative sign determines the elements of the

functional equations valid for theoretical (Eq. 26) and

experimentally fit (Eq. 32) states. For calcite, several

possibilities arising from equilibrium changes in the con-

version rate vs. temperature are compared by taking into

account the CDV L’vov theory.

Keywords Thermodynamics � Equilibrium state � Thermal

dissociation � Mechanism � L’vov CDV mechanism �
Three-parametric equation � Enthalpy–entropy

compensation (EEC) � Calcite

List of symbols

a; b; m Stoichiometric coefficients

A;B;R Symbols of chemical compounds

Cp or Dcp Heat capacity, J mol-1 K-1

K Equilibrium constant

P Pressure, Pa

r2 Linear coefficient of determination,

0� r2 � 1

R Universal gas constant, 8314 J mol-1 K-1

T Temperature, K

q Heating rate, K s-1

a Conversion of the solid phase, 0� a� 1

dQ Inexact differential heat

DG;DH;DS Thermodynamic functions, J mol-1

s Coefficient considering the condensation

energy transfer to reactant acc. L’vov

u Combination of coefficients acc. (22)

Superscripts

o Standard reference condition
- Arithmetic average in Eq. (14) and backward in

Eq. (17)

Subscripts

c Condensation

eq Equilibrium

f Formation

g Gas

i i-th component

l Liquid

p Pressure activity (fugacity)

r Reaction in the L’vov sense

R Reaction in the classic sense

s Solid
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T Isothermal conditions

v Vaporization

Introduction

Thermal dissociation is conventionally understood to be a

breakdown of chemical bonds in molecules resulting in

production of smaller molecules or atoms under the influ-

ence of temperature. At this stage we do not consider any

quantitative relationship between the substrate and prod-

ucts or their phase transformation. The weaker the chem-

ical bond in a molecule, the lower is the temperature at

which thermal dissociation occurs.

For chemical compounds, the following two types of

thermal dissociation reactions are typical:

(a) with solid phase and gas phase products being

formed

ðe:g:; CaCO3 sð Þ $ CaO sð Þ þ CO2 gð ÞÞ ð1Þ

(b) with only gas phase products being formed from a

solid phase substrate

ðe:g:; 4NH4ClO4 sð Þ ! 4HCl þ 2N2 þ 5O2 þ 6H2OÞ
ð2Þ

Reactions resulting in the thermal dissociation reactions

are endothermic. Meanwhile, thermal dissociation occurs

reversibly and/or might be irreversible depending on the

chemical properties of substances.

Typical reactions involving chemical dissociation pro-

cesses involving the formation of both solid and gas phases

from a single solid phase. In practice the latter algorithm

seems to be a definite general rule, although extending this

standpoint to all the pyrolysis processes might be prob-

lematic because sometimes liquid products appear at

ambient temperature as well.

The second basic law of technical and chemical ther-

modynamics inextricably involves the concept of entropy.

According to the postulate by Clausius, the entropy change

during an elementary reversible reaction in an isolated

system is equal to the ratio between the amount of heat

exchange system/its surroundings and the temperature at

which this exchange takes place (dS ¼ dQ=T). By com-

bining the first and the second basic laws of thermody-

namics, Gibbs free enthalpy can be defined as follows:

DGo
T ¼ DHo

T � TDSoT ð3Þ

where all the three terms are functions of the absolute

(thermodynamic) temperature T, being taken at some

P = const.

For practical purposes, Eq. (3) might very often be

replaced by an approximate linear relationship:

DGo
T ¼ A� BT ; where A; B are constant ð4Þ

In the both above cases, the equilibrium temperature Teq

is determined when:

DGo
T ¼ 0 ð5Þ

On a numerical scale, the values of DHo
T (or A) to DSoT

(or B) have a ratio of 103:1, but the concept of entropy

gives a giant sense of, you might want to quote for Starikov

its importance for anthropomorphic nature and agonizing

related [1].

Basic CDV L’vov theory

In his 2007 book entitled ‘‘Thermal Decomposition of

Solids and Melts’’, Boris V. L’vov [2] presents a pertur-

bation theory that challenges one to return to classical

knowledge.

The relevant work of L’vov began in 1990, while the

acronym CDV for his Congruent Dissociative Vaporization

(CDV) theory had been introduced in 2007 (see Ref. [6]),

and of particular relevance would be his works [3–7].

Meanwhile, since 2007, a number of works has been

published in the field, whereas that was Galwey who had

methodically analyzed the essence of CDV theory [8, 9]

and then published positive reviews on the topic [10, 11].

Remarkably, the Ref. [9] might even be considered an

invitation to contribute to the general discussion.

Formally, the process described by the CDV theory can

be viewed as a reaction involving the heat of dissociation to

yield solid and gas phase products [9]:

Rðs=lÞ $ aA gð Þ þ bB gð Þ ! aA sð Þ þ bB gð Þ ð6Þ

or in the short form:

Rðs=lÞ $ aA sð Þ þ bB gð Þ ð7Þ

where a, b stand for stoichiometric coefficients acc.

L’vov.

Notably, the CDV theory does not consider kinetic

models in the classical sense, but assumes that the reactions

might proceed in an isothermal and dynamic manner.

Thermodynamic considerations can be made for different

equilibrium conditions (e.g., equimolar, isobaric, vacuum,

etc.), and the conventional concept of reaction rate has

been substituted by an overall rate of evaporation J,

according to the Hertz–Langmuir equation and using the

dimensions (mol m-2 s-1) [7].

According to L’vov, the second basic law of chemical

thermodynamics is to be understood as Gibbs free energy

(Eq. 3) in conjunction with the balance of chemical reac-

tions by writing [2]:
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DrH
o
T ¼ T DrS

o
T � RlnKp

� �
; T ¼ const; P ¼ const ð8Þ

and it is useful to recast the latter in the following way:

RlnKp ¼ �DrH
o
T

T
þ DrS

o
T ð9Þ

The components of Eq. (9), in accordance with the

original symbols [2], have been tabulated and the reaction

enthalpy is equal to (assuming the polyisothermal

conditions):

DrH
o
T ¼ aDfH

o
T Að Þ þ bDfH

o
T Bð Þ � DfH

o
T Rð Þ þ saDcH

o
T Að Þ
ð10Þ

which might be re-written by combining A, B and R as:

DrH
o
T ¼ DvH

o
T þ saDcH

o
T Að Þ ð11Þ

Let us recall that DvH
o
T indicates the product and applies

to the calculation of the gaseous phase. In contrast, s is the

coefficient that considers the condensation energy transfer

DcH
o
T Að Þ of the product A to educt R. This value varies

slightly, but it is recommended to accept its value as being

equal to s ¼ 1=2. This is a new element in CDV theory in

relation to conventional standpoint. In the similar way, we

might calculate the entropy of reaction, as shown in

Eq. (10). The value of the constant Kp is determined

experimentally by observing the vapor pressure under the

controlled conditions. L’vov has focused most of his work

on the experimental studies that confirmed the presence of

the solid phase of product A in the gas phase.

Significance of heat capacity for the reaction
process

Using Kirchhoff’s laws, the validity of Eq. (9) might be

extended to the region of higher temperatures as follows

(with omission of the reference symbol to the standard state
o where possible):

RlnKp ¼ �
DHi þ r

T
Ti
DcpdT

T
þ DSi þ

ZT

Ti

DcpdT

T
ð12Þ

A novel approach used by Clarke and Glew to solve this

problem [12] expresses the dependence of Dcp, on temper-

ature as a Taylor series expansion relative to the temperature

difference up to the highest power of ðT � TiÞ3
. On the one

hand, the advantage of this approach is its capability of

expressing thermodynamic functions, including Dcp, at any

temperature Ti (e.g., Ti ¼ 298 K). On the other hand, how-

ever, the right-hand side of Eq. (12) is comprised of many

terms and converges only when T\2Ti (see Eq. 7 in [12]).

The Clarke–Glew equation has been used in various

works for many other types of processes, for example,

research on solubility [13] and phase balances [14, 15].

In our work, we consider that equilibrium occurs during

the course of a chemical reaction from the temperature at

which the reaction equilibrium constant is infinitely small,

but that Kp [ 0.

Usually, for thermal dissociation reactions Dcp\0, the

latter can be expressed as a polynomial with sufficient

precision:

Dcp ¼ �c0 � c1T þ c2

T2
ð13Þ

where the coefficients c0; c1; c2 are tabulated for a wide

range of compounds and are hence well known. In sub-

stituting specific empirical dependencies, like Eq. (13),

into Eq. (12), following integration, gives a large number

of components of varying importance in terms of their

numerical value.

Analysis of Eq. (12) for thermal dissociation
reactions

The full Clarke–Glew equation [12] is rather complex. To

maximize its simplification, we assume that the tempera-

ture Ti in Eq. (12) might be chosen in a way to render the

relationship in Eq. (13) linear in temperature (i.e., c2 ¼ 0).

Bearing this in mind, for the sake of transparency, we

accept that the heat capacity of the reaction in the tem-

perature ranges under consideration boils down to the

arithmetic average Dcp ¼ Cp ¼ const. This way we replace

the strict form of Eq. (12) with an approximate form

embodying all these considerations:

RlnKp ¼ �DHi � CpTi

T
þ CplnT þ DSi � Cp 1 þ lnTið Þ;

whereCp ¼ Dcp ¼ const

ð14Þ

Further, in regard to Eqs. (3), (14) can be converted into

the analogous equation reported in Ref. [12], and here we

follow this way to demonstrate that all the resulting

expressions are dimensionally coherent.

RlnKp ¼ �DGi

Ti

þ DHi

1

Ti

� 1

T

� �
þ Cp

Ti

T
� 1 þ ln

T

Ti

� �

ð15Þ

Now Eq. (15) can be analyzed for the case of some

thermal decomposition reaction in relation to the product

distribution. In following this way, we can first of all

introduce the following reversibility identity:
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Kp � 1
.
K�

p
ð16Þ

where the term K�
p denotes the reverse reaction (back-

ward ? forward). Substituting Eq. (16) into Eq. (15)

gives, after inversion:

RlnK�
p ¼ þDGi

Ti

� DHi

1

Ti

� 1

T

� �
� Cp

Ti

T
� 1 þ ln

T

Ti

� �

ð17Þ

Note the terms in Eqs. (15) and (17), for they will be

used in later sections. Additionally, Eqs. (14) and (15)

indicate the possibility of internal consistency of their

respective terms. Next, we wish to introduce an auxiliary

size with the proposed name: heat of the reference state i:

H ¼ �CpTi [ 0 ð18Þ

where Eq. (15) now takes the form:

lnKp ¼ �DHi þ H

RT
� H

RTi

lnT þ DSi

R
þ H

RTi

1 þ lnTið Þ

ð19Þ

As already mentioned above, the distribution of the

simplex (T=Ti
) may lead to some confusion, so it is nec-

essary to place the temperature onto the [K] scale, which

stands for a dimensionless logarithmic expression. It is then

possible to express the equilibrium constant chemical bal-

ance by an equilibrium that gives the degree of transfor-

mation as [16–18]:

lnKp ¼ mln aeq

� �
; for a single gas product ð20Þ

and

lnKp ¼ lnuþ
X

mi

� �
ln aeq

� �
;

for a number of gas products
ð21Þ

where

lnu ¼
X

miln
miP
mi

� �
ð22Þ

In regard to Eqs. (20), (19) mht might be recast as

follows:

ln aeq

� �
¼ �DHi þ H

mRT
� H

mRTi

lnT þ l
mR

ð23Þ

and, similarly, in regard to Eq. (22):

ln aeq

� �
¼ � DHi þ H

P
mið ÞRT � H

P
mið ÞRTi

lnT þ l� Rlnu
P

mið ÞR ð24Þ

where

l ¼ DSi þ
H

Ti

1 þ lnTið Þ ð25Þ

Given that m ¼ m or m ¼
P

mi, then Eqs. (23) and (24)

give the three-parametric equation:

ln aeq

� �
¼ � a1

T
� a2lnT þ a0: ð26Þ

where the coefficients for the terms ought to be equal to:

a1 ¼ DHi þ H

mR
ð27Þ

a2 ¼ H

mRTi

ð28Þ

Hence, Eq. (27) can be generalized as follows:

a1 ¼ DRH

mR
ð29Þ

Taking into account that the expression DHi þ H ¼
DRH defines the average reaction enthalpy, the sense of the

parameters a1; a2 becomes clear, while the parameter a0

ought then to determine the sign of Cp.

The importance of the heat of the reference state

Version 1. The elimination of H

It should be noted that the coefficients a1; a2 include the

common factor (H=mR) and are this way inherently inter-

related. Clearly, an increase (or decrease) of the value of H

implies an associated increase (or decrease) of the factors

listed in Eqs. (27) and (28). Thus, eliminating (H) requires

one to arrive at the functional dependence between the

coefficients a1; a2:

a1 ¼ DHi

mR
þ a2Ti ð30Þ

For a2 ¼ 0, a1 ¼ DHi=mR, it is necessary to rationalize

the change of entropy from the starting temperature Ti. In

this sense, we can account for the isokinetic temperature.

However, these considerations were with the notion that

the temperature has a linear dependence on the tempera-

ture for the heat capacity/response process. Under equi-

librium conditions Eq. (30) ought to serve as the

expression for some compensating effect, which is indeed

known in the literature—either as the EEC (enthalpy–

entropy compensation) in the literal sense ðDH vs:DSÞ
[1, 19, 20]—or as ‘isolines’ for DGo

T ¼ const according to

Eq. (3) [21–23]. Equation (30) in the EEC model corre-

sponds to the concepts of de Marco and Linert [20], as

interpreted by Starikov [24], as well as the concept of an

iso-equilibrium relationship [25, p. 781]. Meanwhile,

according to the work in this field [19–22], the depen-

dency of Eq. (30) might also include an individual
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chemical compound. Note also that the compatible terms

in Eq. (26) for the both coefficients ought to bear the

negative and positive signs. Finally, the terms diverge

when we perform an inversion procedure, like we have

done this for Eqs. (15) and (17).

Version 2. Assumption that H ¼ 0

In Eq. (24) we assume that H ¼ 0, and according to

Eq. (28), immediately arrive at that a2 ¼ 0. Equation (26)

might then be recast as:

ln aeq

� �
¼ � a1

T
þ a0 ð31Þ

In fact, the resulting expression describes a modified

van’t Hoff isobar for the equilibrium temperature, when

ln aeq

� �
¼ 0; then Teq ¼ a1=a0

.

Further, we bear in mind that the chemical reactions

dealing with the thermal dissociation processes ought to be

endothermic and accompanied by an increase in the tem-

perature of the surface. Because H[ 0, the value of the

coefficient in Eq. (29) increases from the starting temper-

ature of Ti, which is contrary to the known observations of

these phenomena. However, an analysis of the theory of

CDV by L’vov [2–11], we note that the reaction enthalpy

for a thermal dissociation process ought to increase with

temperature [25]. Thus, the average response intensity for

such processes can increase in a classical way. A conse-

quence of this effect is the expression of the EEC effect in

Eq. (30).

Experimental dependencies

The three-parametric equation acc. [27] and its linear form

for relative reaction rates [28], which were published in

2000–2001, have been used previously [18], and the rules

and characteristics of these dependencies have been par-

tially discussed [26] in relation to the analysis of L’vov’s

theory, hereafter referred to as CDV. Two of the mentioned

equations have the form [27, 28]:

lna ¼ a0 �
a1

T
� a2lnT ð32Þ

r ¼ a1 � a2T ; where r ¼ � dlna

d 1=T

� � ð33Þ

One striking feature of these equations is the compen-

satory effect of the coefficients a1 on the thermodynamics

and a2 on very complex properties, because it applies to

both the thermodynamics (Eqs. 27 and 29) and thermoki-

netics (Eq. 28)—and gives rise to an entropic effect. The

linear form of Eq. (34) is similar to Eq. (30):

a1 ¼ DRH

mR
þ a2Tiso ð34Þ

Meanwhile, the following comment on this thought is

now in order.

1. The DRH=m

� �
ratio depends on its interpretation:

according to the L’vov theory, a classic m applies only

to products, without the participation of the solid phase

as the sum of all the stoichiometric coefficients, or to a

gas, when the enthalpy of reaction/process is approx-

imately two times greater than the set for each classic

m.

2. According to this work, Eq. (34) identifies the tem-

perature of the isokinetic sampling ðTisoÞ under exper-

imental conditions, which does not necessarily create a

coordinate that intersects all the data (see Eq. (33) and

compare Figs. 4 and 8 in [29]).

3. A formal record of the EEC by [20, 24] (also [25]) is in

the form of DH ¼ TisoDSþ DHiso, and it has the

interpretation that it is the enthalpy change of an iso-

entropic reaction when DS ¼ 0 [24]. In this context,

Eq. (34) presents an attractive form.

As a proper example, we would like to highlight the

thermal dissociation of calcite according to [18] and pre-

sented in [26] (Fig. 1 in [26]). This example sets the fol-

lowing average enthalpy response to a2 ¼ 0. Employing

the concept of L’vov, in Eqs. (10) and (11) we use s ¼ 1=2
and m ¼ sþ 1 ¼ 1; 5 : 465 kJ mol�1 (according to [2,

Table 8.2]), 495–544 kJ mol-1 in the temperature range

T = 900–1200 K, according to [5] 508.1–498.2 kJ mol-1

in the temperature range T = 900–1200 K (in the CO2

atmosphere); accordingly, 191.4 kJ mol-1 and the value

from a classical approach is 174.9 kJ mol-1 [29].

Thus, the average reaction enthalpy/process is strongly

dependent on the conditions of the test and the stoichio-

metric ratio (m).

This illustration highlights the appropriate dependencies

for calcite, which is commonly used as a test case for these

purposes. To this end, we used the following equation:

(a) the relationship acc. to Eq. (4), Fig. 1

(b) dependence of the degree of equilibrium transfor-

mation, ln aeq

� �
, vs. the absolute temperature, Fig. 2

Figure 1 depicts our first attempt to make use of the

analytical expressions thus obtained to interpret experi-

mental data from all the available sources.

1. DG = 170.0–0.145T, 800 B T B 1200 K, according

to [30], Teq = 1168.6 K

2. DG = 173.6–0.150T, with Hess’s law (in the environ-

ment HCl), according to [31], Teq = 1154.1 K
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3. DG = 141.0–0.130T, from a theoretical decomposition

CaC2O4 9 H2O, according to [32], Teq = 1084.3 K

4. DG = 248.0–0.152T, 800 B T B 1200 K, from the

data according to [2, Table 16.47], Teq = 1631.6 K

As Fig. 1 shows, if we use the graph 1 as a point of

reference, then graph trial 2 deviates insignificantly from

our assumptions. The graph 3 is the result of calculations

using quantum chemistry and statistical thermodynamics

[32] and noticeably lies below the graphs 1 and 2 which

have been obtained using relatively more simple

approach. The starting point for receipt of calcium car-

bonate is calcium oxalate, dehydration and decarboxyla-

tion, as a result of the emergence of what can be

explained by differences of different structures of calcite

and consecutive reactions over a wide temperature range:

298 K � T � 1273 K.

Meanwhile, a complete separation occurs for the

graph 4, which results from L’vov’s theory [2] and is

presented using the results for the relevant data

(Table 16.47 in [2]).

To this end, we used Eq. (3) in the form of thermody-

namic functions as suggested by L’vov. According to de

Donder, the leveling changes determine how to define the

response progress:

DG ¼ DrH

m
� T

DrS

m
ð35Þ

Here, in effect, the expressionDrH could be substituted by

Eq. (9) for s ¼ 1=2; a ¼ b ¼ 1; corresponding to m ¼ 2,

one obtains the dependence of DG vs: T , which is

nothing more than the linearized form of Eq. (4).

Then, bearing in mind Eq. (2) allows us to characterize

the process under study in form of the reaction equilibrium

0
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Fig. 1 The dependence of the

free energy upon the absolute

temperature according to

Eq. (2), DG in kJ mol-1
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constant’s temperature dependence employing the funda-

mental equation:

DGo ¼ �RT lnKp ð36Þ

Instead of equilibrium constant in the form of lnKp, we

use either Eq. (18) for the classical theory or Eqs. (21) and

(22) according to the L’vov theory. Figure 2 shows these

differences in the form of ln aeq

� �
vs: T

1:1. ln(aeq) = 17.44 - 20447:44
T

� �
, acc. to a straight 1 on

Fig. 1

1:2. ln(aeq) = 18.10 - 21039:57
T

� �
, acc. [29]

2. ln(aeq) = 30.633 - 22035:6
T

� �
- 1.682lnT, acc. [21]

for Cp = 13.99 J mol-1 K-1

3. ln(aeq) = 26.4 - 22015:0
T

� �
- 0.983lnT - 0.547*10-3

T ? 0:343 � 105

T2

� �
, acc. [10, 18] for Ti = 400 K and

Dcp ¼ �8:173 � 9:098 � 10�3T þ 5:70384 � 105

T2

� �

when 298 B T B 1200 K,

4. ln(aeq) = 9.834 - 14914:6
T

� �
, acc. to a straight 4 on

Fig. 1, and acc. [19] for m = 2.

As could be seen in Fig. 2, the most accurate dataset

refers to the process graphed according to Eq. (5), with

some slight deviations for the rest of graphs, except for

Eq. (4) resulting from L’vov’s theory. This is why we

conclude that the approximation according to the average

heat capacity of reaction 2 is acceptable. In accordance

with Eq. (26), Fig. 2 shows the correspondence between

the signs of the coefficients—namely, where a1; a2 are

possessed of negative signs the intercept (a0) ought to

have the positive sign. It should also be noted that under

the equilibrium conditions the coefficient a2 has a suffi-

ciently small value, which can be omitted. Indeed, in this

case, its value is almost identical to that reported previ-

ously [27]. Furthermore, both the Figs. 1 and 2 show the

equilibrium temperature (inversion) Teq to differ consid-

erably from graph to graph. The relevant data involves

curve 4 on Fig. 2 concerning the L’vov theory. It should

be stressed that the use of Eq. (3) in the form of Eq. (35)

ought to be somewhat speculative. Analysis of the data on

the average enthalpy of calcite dissociation cited in Ref.

[2] reveals a noticeable effect (increase in almost twice

the initial value), and the details in the form of different

balances are discussed in the Ref. [26]. However, in

comparison with the classical theory, we have used the

concept of sharing values of thermodynamic functions for

the generated products. Our considerations suggest that

the mechanism of CDV becomes more pronounced for

very large heating rates. In contrast, the experimentally

determined coefficients of the three-parametric Eq. (31),

or in the form of Eq. (32) suggest that the enthalpy of

reaction is correspondent to the classical data tables (see,

for example, [30])—in particular for large values of a2.

According to Šesták’s information [33], L’vov theory

does not seem to be sufficiently widespread. So that,

Eq. (35) ought to be one step forward in developing this

theory.

Conclusions

1. Thermal dissociation might be described on the basis

of the second basic law of chemical thermodynamics

by the Gibbs free enthalpy (Eq. 3) and its relationship

to the degree of transformation of the thermodynamic

constant for the solid phase (given by Eqs. 21 and 22)

to the three-parametric equation (Eq. 26). A small

factor of a2 6¼ 0 may persist, even under equilibrium

conditions. One characteristic feature of this work is

underlining the correlation between the coefficient

signs for each function, that is, when a1; a2 possessed

the negative signs (a0) adopts the positive sign and

vice versa, which may also be present for other pro-

cesses that are not addressed herein (e.g., the sugges-

tion in [27] also according to Ref. [13] in Table 2 for

acetonitrile).

2. The relationships of the signs referred to in the above

point ought to be a consequence of using Eq. (12) to

establish the constancy of the average heat capacity for

the process in question, that is, Cp ¼ const in fact, for

the thermal dissociation processes/reactions (and many

others), Cp\0.

3. Experimentally, e.g., using thermogravimetry, a com-

pensatory effect even for individual chemical com-

pounds is described by Eq. (35), with the theoretical

basis delivered via Eqs. (27)–(29). This effect includes

the EES (enthalpy–entropy compensation) reflecting

the mechanistic basis of the process under study. Here,

it is noteworthy to recall the interpretation by Starikov:

‘‘that entropy’s anthropomorphicity in no way pre-

cludes us from inventing some probably seminal

interpretational opportunities’’ [1]. Indeed, it appears

that the coefficient a2 arising from entropy changes

increases/decreases along with increases/reductions of

the reaction/process enthalpy.

4. In accordance with the established L’vov CDV stated

in [26], it is possible to use the thermodynamic data for

calcite given in [2], Table 16.47, for expressions

(Eq. 32), being simpler than the three-parametric

Thermal dissociation in terms of the second law of chemical thermodynamics 869
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equation (Eq. 27). It must be assumed that the form of

the expressions suggested by L’vov can be taken to be

similar to the thermodynamic changes in the reaction

progress according to de Donder. Given the absolute

values of the thermodynamic functions, it is possible to

consider the effects of thermal dissociation even for

infinitely fast heating q ! 1ð Þ.
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