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Abstract Oxy-steam combustion is a new oxy-fuel com-

bustion technology which involves fuels burn in pure

oxygen, and the high temperature is moderated using either

water or steam. In this study, FG and XS char samples were

prepared in a horizontal tube furnace at 1073 K under

argon atmosphere. The combustion characteristics and

kinetic parameters of FG and XS char in O2/H2O atmo-

sphere were studied using non-isothermal thermogravi-

metric analysis. The results indicated that replacing N2 by

H2O caused the improved in the combustion reactivity and

performance of FG and XS char with the identical oxygen

concentration. The ignition temperature, peak temperature

and burnout temperature in O2/H2O atmosphere were lower

than those in O2/N2 atmosphere with the identical oxygen

concentration. The activation energy values of FG and XS

determined by three mode-free methods decreased with the

increasing conversion level, and the activation energy of

FG char was less than that of XS char at the same con-

version. The kinetic mechanism function calculated result

based on the combination of the Popescu method and the

Coats–Redfern integral method showed the combustion of

FG char in O2/H2O atmosphere followed the first-order

chemical reaction kinetic.

Keywords Oxy-steam combustion � Thermogravimetric

analysis � Combustion characteristics � Kinetic analysis

Introduction

Global warming caused by the presence of greenhouse

gases in the atmosphere is a worldwide issue. Carbon

dioxide (CO2) is the primary greenhouse gas emitted from

the combustion of fossil fuels [1]. CO2 capture and storage

(CCS) is widely recognized as a feasible method to control

CO2 emissions, and there are three main CO2 capture

approaches: post-combustion, pre-combustion and oxy-fuel

combustion. Oxy-fuel combustion is considered as a

promising technology for CO2 capture, because it can

feasibly produce a high CO2 concentration in the exhaust

gas (greater than 90 % by volume) that is almost seques-

tration-ready and has a low technical risk [2]. So, oxy-fuel

combustion has attracted considerable attention in recent

years [3, 4].

In 2007, the Canadian Centre for Mineral and Energy

Technology (CANMET) proposed a new oxy-fuel system,

namely oxy-steam combustion [5]. In this combustion

mode, fuels burn in pure oxygen, and the high temperature

is moderated by either water or steam. CANMET has

recently developed a novel oxy-steam burner for zero

emission power plants. The computational fluid dynamics

(CFD) simulation and pilot-scale experimental results

indicated that oxy-steam combustion led to high CO2

concentrations (*90 %), low CO, moderate NOx and

typical SOx levels [6]. Seepana and Jayanti proposed a

power generating system based on oxy-steam combustion

called steam-moderated oxy-fuel combustion (SMOC) [7].

Those authors suggested that oxy-steam combustion had

many advantages over O2/CO2 recycle combustion, such as

a compact system, easy operation, small geometry size and

energy savings.

Many studies have focused on the O2/CO2 combustion

process, and the results indicated the physicochemical
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properties of dilute gas had a great influence on the com-

bustion characteristics of coal/char [8, 9]. The physical

properties of H2O are different from N2 and CO2, and the

chemical properties of H2O are more active, so the com-

bustion characteristics of coal/char under an oxy-steam

atmosphere are expected to be different from conventional

air combustion and O2/CO2 combustion.

Because of the special properties of H2O, the studies of

the effect of H2O on the combustion process have received

more and more attention. Many published works found

adding H2O had certain effects on the burning velocity and

flame temperature during the combustion process of gas-

eous fuels [10–15]. Besides, the oxy-coal combustion

process was also changed when substituting part CO2 with

H2O [16–19].

Although some works have focused on the effect of

adding steam on the combustion characteristics of gaseous

fuels in different atmospheres, the combustion character-

istics of coal/char in O2/H2O atmosphere have rarely been

studied. Recently, we have carried out related studies

about coal combustion in O2/H2O atmosphere. Thermo-

gravimetric analysis (TG) results found the coal burning

process in O2/H2O mixtures was delayed compared with

that in O2/N2 mixtures [20]. The research on the ignition

behaviors of pulverized coal particles in O2/N2 and O2/

H2O mixtures in a drop tube furnace using flame moni-

toring techniques indicated the ignition of pulverized coal

particles in O2/H2O mixtures was earlier than that in O2/

N2 mixtures at same oxygen concentration, and the

numerical simulation showed the ignition mechanism of

coal particles in O2/H2O atmosphere was homogeneous

[21, 22].

Char combustion is a most important process during coal

combustion, and the study of combustion characteristics of

coal chars under O2/H2O environment is essential to the

development of large-scale test platforms. Thermogravi-

metric analysis is a simple and practicable approach, and it

has been widely used to investigate the pyrolysis, combus-

tion and kinetic characteristics of various fuels [23–27].

The aim of the present work is to study the oxy-steam

combustion characteristics and kinetic behaviors of two

coal chars obtained in argon atmosphere. In this study, the

non-isothermal thermogravimetric analysis method was

used to investigate the combustion characteristics of char.

The activation energy values of the char samples were

calculated using three model-free methods, Flynn–Wall–

Ozawa (FWO), Starink and Kissinger–Akahira–Sunose

(KAS), and the combustion mechanism function was

ascertained by the combination of the Popescu method and

the Coats–Redfern integral method.

Experimental

Char preparation

Two parent coals of a bituminous coal (FG) and a meager

coal (XS) were used to prepare the char samples. The

parent coals were crushed, ground with a ball mill and

sieved to a particle size fraction of 45–75 lm. The char

samples were prepared in a horizontal tube furnace at

1073 K in an argon atmosphere. The char samples were

produced by the procedures as follows: Firstly, approxi-

mately 1 g of each coal sample was placed on a ceramic

boat, and the ceramic boat was placed into the heating zone

of the tube furnace. Then, the reactor was heated at a

constant rate from room temperature to 1073 K, and the

coal sample was kept in the reactor for 30 min at 1073 K

under argon atmosphere. The argon was provided from a

gas cylinder. Finally, heating was stopped, and the char

sample was cooled to room temperature under argon

atmosphere. The proximate and ultimate analyses of parent

coals and char samples are presented in Table 1.

Oxy-steam combustion tests of coal chars

The char combustion tests were performed in a Netzsch

STA449F3 thermobalance with a water vapor generator.

The water control precision of the steam generator was

0.02 g h-1. Approximately 5 mg of char sample was used

for each experiment. The char samples were heated from

room temperature to 1273 K in the mixtures of O2/H2O or

O2/N2 with various oxygen concentrations (21, 30 and

Table 1 Proximate analysis and ultimate analysis of the coal and

char samples

FG coal XS coal FG char XS char

Proximate analysisa/mass%

Moisture 4.25 3.06 0.57 0.36

Volatile matter 32.80 18.85 2.71 1.88

Ash 4.42 12.75 10.67 18.38

Fixed carbon 58.53 65.34 78.45 79.73

Ultimate analysisa/mass%

C 74.15 72.03 81.55 75.23

H 5.46 3.42 1.44 0.84

Ob 10.33 5.37 4.52 2.21

N 1.12 1.06 1.04 0.95

S 0.27 2.31 0.21 2.03

a Air-dried basis
b By difference
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40 %) at a heating rate of 20 K min-1. In order to inves-

tigate the oxy-steam combustion kinetic, the non-isother-

mal thermogravimetric experiments were also conducted at

different heating rates (10, 15, 20 and 25 K min-1) in

21 % O2/79 % H2O mixtures. The total gas flow rate was

100 mL min-1.

Determination of combustion characteristic

parameters

The combustion characteristic parameters can be deter-

mined from the combustion profile, including ignition

temperature (Ti), peak temperature (Tmax), burnout tem-

perature (Th), maximum rate of mass loss (dW/dt)max and

average of mass loss (dW/dt)mean. Ti is determined by using

TG–DTG extrapolation method, and the Th is defined as the

temperature at which the rate of mass loss diminishes to 1

mass% min-1. Tmax is the temperature which maximum

rate of mass loss occurs. The coal reactivity index R is used

to evaluate the combustion performance of char sample,

defined as [23]:

R ¼ 1

W0

dW

dt
ð1Þ

where W0 is the initial dry mass of the char sample and

dW=dt is the mass lose rate of char due to combustion. The

greater its value, higher the combustion reactivity.

The combustion characteristic is also evaluated by a

comprehensive combustion index S, which is defined as

follows [24]:

S ¼ dW=dtð Þmax dW=dtð Þmean

T2
i Th

ð2Þ

The higher the S, the better the combustion performance

of the char.

Kinetic analysis method

The procedure to determine the kinetic parameters is

summarized as:

1. The activation energy is obtained through the FWO,

Starink and KAS methods;

2. The most suitable kinetic mechanism function G(a) is

deduced based on the Popescu method;

3. According to the most suitable kinetic mechanism

function G(a), the activation energy E is determined by

Coats–Redfern integral method;

4. By comparing the activation energies obtained through

the Coats–Redfern integral method with those obtained

through the FWO, Starink and KAS methods, the

combustion kinetic mechanism function is determined.

Determination of the activation energy

For non-isothermal thermogravimetric experiments

with constant heating rate, the reaction rate can be

expressed as:

da
dT

¼ A

b
exp � E

RT

� �
f að Þ ð3Þ

where a is the degree of conversion, a = (W0 - Wt)/

(W0 - W?) (W0 and W? are the mass at the beginning and

at the end of reaction, respectively, and Wt is the mass at

temperature T). b is the heating rate, A is the pre-expo-

nential factor, E is the activation energy, R is the universal

gas constant and f(a) represents the reaction mechanism

function. The integration of Eq. (3) yields:

G að Þ ¼
Za

0

da
f að Þ ¼

A

b

ZT

0

exp � E

RT

� �
dT ¼ AE

bR
P uð Þ ð4Þ

where u = E/(RT) and P(u) is the temperature integral:

P uð Þ ¼
Z1

u

exp �uð Þ
u2

du ð5Þ

Actually, the model-free methods differ depending on

the approximation of temperature integral P(u).

Flynn–Wall–Ozawa (FWO) method

FWO equation relies on Doyle’s approximation which

gives [28–30]:

P uð Þ ffi exp �1:0518u� 5:3308ð Þ ð6Þ

This approximation leads to

ln b ¼ �1:0518
E

RT
þ C1 ð7Þ

Thus, for a constant conversion ratio a, ln b versus

1/T obtained at several heating rates yields a straight line,

and the activation energy E can be determined from the

slope.

Starink method

In this method, the approximation of P(u) can be written as

[31–33]:

P uð Þ ffi exp �1:0008u� 0:312ð Þ
u1:92

ð8Þ

Equations (4) and (8) lead to:

ln
b

T1:92
¼ �1:0008

E

RT
þ C2 ð9Þ
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The activation energy E is determined from the slope of

plots of ln(b/T1.92) versus 1/T.

Kissinger–Akahira–Sunose (KAS) method

The expression of P(u) is expressed using Murray and

White approximation [34]:

P uð Þ ffi exp �uð Þ
u2

ð10Þ

Based on this approximation, we obtain KAS equation:

ln
b
T2

¼ � E

RT
þ C3 ð11Þ

For the same conversion ratio at different heating rates

from plots of ln(b/T2) versus 1/T, the activation energy

E can be determined by the slope.

Determination of the kinetic mechanism function

Popescu method The Popescu method [35] is used to

determine the kinetic mechanism function of char com-

bustion. This method can be expressed as:

G að Þmn ¼
Zan

am

da
f að Þ ¼

1

b

ZTn

Tm

k Tð ÞdT ¼ 1

b
I Tð Þmn

¼ A

b
H Tð Þmn ð12Þ

I Tð Þmn ¼
ZTn

Tm

k Tð ÞdT ð13Þ

H Tð Þmn ¼ Tn � Tmð Þ exp � E

RTn

� �
ð14Þ
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Tn ¼
Tm þ Tn

2
ð15Þ

where Xm and Xn are two different degrees of the conver-

sion ratio at temperatures Tm and Tn, respectively. If the

experimental data and G(a) are selected properly, a plot of

G(a) versus 1/b yields a straight line with an intercept of

zero. This G(a) is then a proper mechanism that describes

the true chemical reaction process.

Coats–Redfern integral method

According to Eq. (4), the Coats–Redfern integral method

can be written as:

ln
G að Þ
T2

� �
¼ ln

AR

bE
1 � 2RT

E

� �� �
� E

RT
ð16Þ

At certain temperatures, the plots of ln [G(a)/T2] versus

1/T obtained from the thermogravimetric data should be a

straight line, and the activation energy E can be determined

by the slope of the line.

Results and discussion

Combustion characteristics of coal char in O2/H2O

atmosphere

Figure 1 shows the TG and DTG curves of FG and XS char

combustion under different atmospheres. From the com-

bustion profiles, it can be found that the char combustion

process in the O2/H2O atmosphere is obviously different

from that in O2/N2 atmosphere with the identical oxygen

concentration. Replacing N2 by H2O has a significant

influence on the char combustion under the conditions of

the experiments. The combustion process of FG and XS

char in O2/H2O atmosphere takes place sooner than that in
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O2/N2 atmosphere with the identical oxygen concentration,

and the combustion performance is improved by increasing

oxygen concentration. The DTG curves shift to lower-

temperature zone along with oxygen concentration

increasing.

Figures 2 and 3 show the comparison of char reactivity

R and peak reactivity Rmax of FG and XS char under dif-

ferent atmospheres. Figure 2 indicates the substitution of

H2O for N2 in the bulk gas has apparent effect on the char

reactivity. The char reactivity in O2/H2O atmosphere is

higher than that in O2/N2 atmosphere with the identical

oxygen concentration for both FG and XS char. Figure 3

also shows the Rmax of FG char is higher than that of XS

char. The effect of oxygen concentration on the char

reactivity in both atmospheres is also clear. The char

reactivity increases with increasing oxygen concentration

in both O2/H2O and O2/N2 mixtures, and it is found to be

proportional to the oxygen concentration.

Figure 4 shows the combustion characteristic tempera-

tures and the comprehensive combustibility index S of FG

and XS char in different atmospheres with various oxygen

concentrations (21, 30, 40 %). Figure 4 shows that the

ignition temperature, peak temperature and burnout tem-

perature in O2/H2O atmosphere are lower than those in O2/

N2 atmosphere with the identical oxygen concentration,

which indicates the combustion rate of char in O2/H2O

atmosphere is faster compared with that in O2/N2 atmo-

sphere. Figure 4 also shows that the comprehensive com-

bustibility indexes in O2/H2O atmosphere are higher than

those in O2/N2 atmosphere under the same oxygen con-

centration. The combustion performance of FG and XS

char is improved when the diluent gas is changed from N2

to H2O.

The higher char reactivity and combustibility index in

O2/H2O atmosphere may be due to the high reactivity and

diffusivity of steam. The mole fractions of some active

radicals, such as O and OH, in O2/H2O atmosphere are

larger than those in O2/N2 atmosphere with the identical O2

concentration due to high reactivity of H2O [36]. These

active radicals can be conducive to the oxidation of char. In
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addition, as the char combustion reaction progresses, the

influence of diffusion on the char combustion becomes

more pronounced [37]. The diffusion coefficient of O2 in

H2O is 8.6E-5 m2 s-1 (773 K, 0.1 MPa) and almost 25 %

higher than that of O2 in N2 (6.4E-5 m2 s-1, 773 K,

0.1 MPa). Consequently, the probability of collision of O2

to the surface of char in O2/H2O atmosphere is much higher

than that in O2/N2 atmosphere, and it also contributes to the

acceleration of the char combustion rate.

Activation energy of char combustion in 21 % O2/

79 % H2O atmosphere

Activation energy is the most important kinetic parameter

of char combustion and can be calculated from the

experimental data of non-isothermal thermogravimetric

tests. Model-fitting and model-free methods are two com-

monly used methods to calculate the activation energy. The

advantages and limitations of the two methods have been

discussed in numerous reports [29, 38]. Model-free meth-

ods are regarded as the most reliable methods for the

determination of activation energy. Hence, three model-

free methods are used in this study to determine the acti-

vation energies of char combustion.

In the model-free methods, a set of conversion values at

different heating rates should be chosen from the thermo-

gravimetric experimental data to determine the activation

energy. Because most solid-state reactions are not stable at

the beginning and the end of the reaction, which result in

the deviation of experimental values from the theoretical

data [39, 40], the range of conversion from 0.1 to 0.9 is

chosen in our study.

According to Eqs. (7), (9) and (11), the plots of (1) ln b
versus 1/T; (2) ln(b/T1.92) versus 1/T; (3) ln(b/T2) versus 1/

T at each chosen a and the corresponding linear fitting by

the least-squares method are shown in Fig. 5. The kinetic

Table 2 Kinetic parameters and correlation coefficients of FG char calculated by different methods

Conversion/methods FWO Starink KAS

a E/kJ mol-1 R2 E/kJ mol-1 R2 E/kJ mol-1 R2

0.1 127.56 0.985 109.04 0.981 108.44 0.981

0.2 121.17 0.985 102.87 0.982 102.27 0.981

0.3 115.18 0.988 97.09 0.984 96.49 0.984

0.4 108.71 0.988 90.86 0.985 90.26 0.985

0.5 105.36 0.989 87.59 0.986 86.99 0.985

0.6 101.81 0.991 84.14 0.987 83.54 0.987

0.7 97.58 0.99 80.02 0.987 79.43 0.986

0.8 94.89 0.989 77.38 0.985 76.78 0.985

0.9 91.04 0.988 73.61 0.983 73 0.983

Table 3 Kinetic parameters and correlation coefficients of XS char calculated by different methods

Conversion/methods FWO Starink KAS

a E/kJ mol-1 R2 E/kJ mol-1 R2 E/kJ mol-1 R2

0.1 136.03 0.991 116.42 0.988 115.79 0.988

0.2 126.46 0.993 107.21 0.991 106.57 0.991

0.3 120.53 0.995 101.45 0.993 100.82 0.993

0.4 114.79 0.995 95.88 0.993 95.25 0.993

0.5 111.43 0.996 92.56 0.995 91.93 0.995

0.6 106.32 0.996 87.59 0.995 86.95 0.995

0.7 100.82 0.996 82.21 0.994 81.58 0.994

0.8 93.53 0.996 75.11 0.994 74.47 0.994

0.9 84.11 0.992 65.91 0.988 65.27 0.988

Table 4 BET surface area and average pore size of FG and XS char

Sample BET surface area/m2 g-1 Average pore size/nm

FG char 25.13 7.38

XS char 12.61 15.01
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parameters and the correlation coefficients of linear fitting

for each method are listed in Tables 2 and 3.

Tables 2 and 3 show that the correlation coefficients are

all higher than 0.98, which indicates that the linear corre-

lation is quite good. In Tables 2 and 3, the activation

energies calculated from FWO, Starink and KAS decrease

with the increase in the conversion level. The reasons for

this behavior may be associated with the combustion

control mechanism [37, 41]. The char combustion is under

kinetic control at low temperatures (low conversion level).

As the reaction proceeds, the reaction rate of the char

increases, and the amount of ash accumulating at the par-

ticle surfaces increases, resulting in the inhibition of O2

diffusion to the surface of the char particle. Consequently,

the control mechanism is changed from kinetic control at

low temperatures to the combined control of the kinetics

and diffusion at high temperatures. Moreover, the catalysis

of minerals and the change in the pore structure may result

in the increase in the char reactivity [42–45]. Liu [37] and

Wang et al. [46] also reached similar conclusions in their

experiments on char combustion in oxy-fuel atmospheres.

In Tables 2 and 3, at a given conversion ratio, the

activation energy of FG char is less than that of XS char.

This difference may be attributed to the different compo-

sitions of char sample and the evolution of the pore

structure during devolatilization. The char reactivity

decreases with increasing ash content due to the presence

of ash on the surface [45]. As given in Table 1, the ash

content of the FG char sample is lower than that of the XS

char sample, resulting in the lower activation energy of the

FG char sample compared with the XS char sample.

Table 4 shows the pore parameters of the FG and XS char

samples. The Brunauer–Emmett–Teller (BET) surface area

of FG char (25.13 m2 g-1) is higher than that of XS char

(12.61 m2 g-1). Because the higher specific surface area of

the char results in a higher reactivity [47], the combustion

reactivity of FG char is higher than that of XS char.

Kinetic mechanism function of char combustion

in 21 % O2/79 % H2O atmosphere

According to the Popescu method, 41 typical mechanisms

are analyzed [48]. The calculated values of correlation

coefficients R2 and standard deviations SD are used as

criteria for all candidate reaction models (R2[ 0.996 and

SD\ 0.02). The seven reaction mechanism models meet-

ing the criteria are listed in Table 5 for FG char. Based on

the mechanism functions listed in Table 5, the Coats–

Redfern integral method is used to determine the active

activation energy.

Table 6 shows the kinetic parameters of FG char

obtained by the Coats–Redfern integral method at

25 K min-1. The kinetic parameters are found to strongly

depend on the reaction model. According to R2 and SD, the

No. 16 chemical reaction (first-order) model is the most

suitable for FG char and the corresponding activation

energy is 122.08 kJ mol-1. The activation energy of FG

char is in the range of activation energy values

(91.04–127.56 kJ mol-1) obtained by the FWO method.

Consequently, the combustion mechanism function of FG

char in O2/H2O is -ln(1 - a). This result demonstrates

that the combustion of FG char in O2/H2O atmosphere

follows the first-order chemical reaction kinetic.

Conclusions

The combustion and kinetic behaviors of two coal char

samples (FG and XS) in O2/H2O atmosphere were inves-

tigated using non-isothermal thermogravimetric analysis.

According to the TG–DTG curves, replacing N2 by H2O

Table 5 Correlation coefficients (R2) and standard deviations (SD) of the possible reaction models determined by the Popescu method

No. Model Symbol Reaction mechanism G/a FG char

R2 SD

2 Diffuse D2 Two-dimensional, Valensi equation a ? (1 - a) ln(1 - a) 0.998 0.014

4 Diffuse 2D Two-dimensional, Jander equation, n = 2 [1 - (1 - a)1/2]2 0.998 0.009

6 Diffuse D3 Three-dimensional, Jander equation [1 - (1 - a)1/3]2 0.996 0.008

7 Diffuse D4 Three-dimensional, Ginstring–Brounshtein equation 1 � 2
3
a� 1 � að Þ2=3 0.999 0.003

16 Chemical reaction F1 First-order reaction -ln(1 - a) 0.996 0.012

Table 6 Results from the application of the Coats–Redfern integral

method for the possible kinetic models

No. E/kJ mol-1 A/s-1 R2 SD

2 196.72 1.9E?18 0.972 0.328

4 210.52 2.6E?19 0.978 0.307

6 223.86 2.7E?20 0.983 0.288

7 205.65 3.6E?18 0.976 0.315

16 122.08 4.4E?11 0.989 0.123
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had a significant influence on the char combustion under

the conditions of the experiment. The combustion reac-

tivity and performance of FG and XS char were improved

in O2/H2O atmosphere compared with O2/N2 atmosphere

with the identical oxygen concentration due to the high

reactivity and diffusivity of H2O. Meanwhile, the ignition

temperature, peak temperature and burnout temperature in

O2/H2O atmosphere were lower than those in O2/N2

atmosphere with the identical oxygen concentration. The

activation energies of FG and XS char obtained by the

FWO, Starink and KAS methods decreased with the

increasing conversion level because of the change in the

combustion control mechanism, and the activation energy

of FG char was less than that of XS char. The combustion

of FG char in O2/H2O atmosphere was found to follow the

first-order chemical reaction kinetic.
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