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Abstract This paper reports thermolysis of diaminogly-

oxime (DAG) as a ballistic modifier, and its effects on the

thermal behaviors, non-isothermal decomposition reaction

kinetics, and burning rates of the homogeneous double-base

propellant formulations. Thermal analysis studies were

performed by thermogravimetric analysis and differential

thermogravimetry (TG-DTG) and differential scanning

calorimetry techniques. According to the resulted data, it was

found that DAG could change the thermal decomposition

mechanism function, thermokinetic parameters and kinetic

equation of the propellants. Evaluation of DAG as a ballistic

modifier in double-base propellant formulations indicated that

it brings down the pressure index to 0.068 compared to 0.24 for

the control composition in the pressure range 5–7 Mpa. The

results showed that the main exothermal decomposition reac-

tion of the propellant sample in the absence of DAG has the

mechanism function of f ðaÞ ¼ 3
2

1 � að Þ4=3½ 1 � að Þ�1=3�1��1

and the kinetic equation of da=dt ¼ 1:60 � 1017 1 � að Þ4=3

½ 1 � að Þ�1=3�1��1
e�2:21�104=T, while modified propellant

with DAG has a different function mechanism and kinetic

equation as following: f ðaÞ ¼ 5
2

1 � að Þ �ln 1 � að Þ½ �3=5

and da=dt¼9:28�1040 1�að Þ �ln 1�að Þ½ �3=5
e�4:66�104=T,

respectively.

Keywords Diaminoglyoxime (DAG) � Thermal

behaviors � Non-isothermal kinetics � Burning rate �
Double-base propellant

Introduction

Diaminoglyoxime (DAG) is an explosophoric compound,

with the chemical structure illustrated in Scheme 1. The

compound is prepared by dehydration of dihydroglyoxime

(DHG) in the aqueous sodium hydroxide solution at high

temperatures [1–5]. This compound might be utilized as

additive in the rocket propellant formulations as coolant

[6].

Thermokinetic studies are crucial point in thermal

analysis, while the main purpose is definition of the

decomposition reaction mechanism and calculating the

Arrhenius equation parameters, i.e., activation energy and

frequency factor [5, 7–10]. The resulted thermoanalytical

data could provide valuable information about shelf-life

and safe conditions for storage of the materials [11, 12].

Prediction of these parameters for energetic materials is

especially meaningful in order to elucidate miscibil-

ity/compatibility and their effects on thermal stability of

the resulted composition [5, 13–16].

Until today, thermolysis of DAG and its utilization in

the composite double-base propellant have been investi-

gated [11] and the results revealed positive role of this
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compound in modification of double-base propellant.

Stoner and Brill [12, 17] observed that thermolysis of DAG

at the propellant burning surface leads to formation of a

thermally stable melamine. Performing the rapid thermol-

ysis experiments on decomposition reaction of DAG

exhibited that formation of highly thermal stable cyclic

azines accomplished by the evaluating low molecular

weight gases, i.e., NH3, HCN, CO2, and N2O. Meanwhile,

Williams et al. [17, 18] found that DAG forms a thermally

stable cyclic azine, which is stable up to 700 �C in the

superficial reaction layer at the burning surface of the

propellant. Formation of these thermal stable products due

to the decomposition of the propellant caused retarding the

heat transferring from the gas phase to the condensed

segment of propellant. In this paper, the influences of DAG

as a ballistic modifier on the thermal behaviors, decom-

position reaction kinetics and burning rate of the homo-

geneous double-base (DB) propellant were investigated

under the non-isothermal conditions. To the best of our

knowledge, there is no information on the decomposition

reaction kinetics of the double-base (DB) propellant con-

taining DAG as a ballistic modifier.

Experimental

Sample preparation

DAG as the ballistic modifier of the propellant was syn-

thesized and purified in the organic chemistry laboratory

(MUT, Tehran) as proposed previously [19], while the

fibrous NC used in the present investigation was of com-

mercial grade with about 12.0 % nitrogen content [20]. The

studied double-base propellant sample (control sample or

no. P1) was containing of 56 % (mass fraction) NC, 30 %

NG, 3 % centralite II, 7 % diethyl phthalate, 4 % other

assistant reagents. The propellant sample modified with

DAG (no. P2) was composed of similar components, while

2 % DAG was added and the NC content was reduced to

54 %. The details of the propellant formulations are pre-

sented in Table 1. The propellant samples were prepared

by a solvent-less double-base propellant extrusion

technique, including slurry mixing, rolling, and extruding

[9, 17, 21].

Instruments and experimental conditions

Infrared spectrum was obtained with a FT-IR spectropho-

tometer (Perkin-Elmer 1600) using KBR pellets. Analyses

for C, H, and N determination were carried out on a Carlo

Erba 1108 Elemental Vario EL analyzer. Thermal behav-

iors of propellant samples were analyzed by differential

scanning calorimeter (DSC) and thermogravimetric analy-

sis (TG). The thermal analyses were carried out on a

Mettler TA4000 thermal analyzer and a DSC 1 (Mettler

Toledo Co., Switzerland), respectively. The operating

conditions of TG analyses were as follows: about 3 mg as

the sample mass; purging of N2 gas with the flowing rate of

80 mL min-1; heating rates (b) of 10 �C min-1 in a tem-

perature range of 50–600 �C using an a-Al2O3 crucible.

The operating conditions of DSC analyses were included:

about 1.5 mg as the sample mass; 50 mL min-1 as flowing

rate of N2 purging in a temperature range of 50–500 �C
using an a-Al2O3 crucible; heating rates of 3, 5, 7, and

9 �C min-1. The burning rates of propellant samples under

different pressures were determined in an indigenously

fabricated Crawford Bomb strand-burner equipment

[15, 17].

Results and discussion

Characterization of DAG

As seen in Fig. 1, the room temperature FTIR spectrum of

pure DAG in KBr matrix shows absorption bands corre-

sponding to N–O bond of oxime (951.78 cm-1), –NH2

group (3368.79, 3470.35 and 1680.8 cm-1), and –OH

group (2800–3300 and 1447.74 cm-1), while the absorp-

tion band observed at 1652.41 cm-1 may be attributed to

C=N bond. The resulted data from IR analysis of DAG are

O

O H
HO

N

N

OH
H2N

H2N

OH

OH

N

N

DAGDHG

H

Scheme 1 Synthesis of DAG achieved in two steps from commer-

cially available glyoxanal

Table 1 Percentage composition of various propellant ingredients in

samples

Ingredients Percentage

P1 P2

Nitrocellulose (NC) 56 54

Nitroglycerine (NG) 30 30

Diethyl phthalate (DEP) 7 7

Centralite II (C2) 3 3

Diaminoglyoxime (DAG) – 2

other assistant reagents 4 4
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listed in Table 2. Elemental analysis (%), calcd. for

C2H6N4O2 (%): C, 20.34; H, 5.12; N, 47.44. Found (%):

C, 20.54; H, 5.20; N, 47.36.

Thermal properties of DAG

The DSC curve of pure DAG is given in Fig. 2. According to

the DSC data, an endothermic peak was observed around

200 �C corresponding to the melting point of DAG. How-

ever, DAG was decomposed exothermally at 205.5 �C, after

it is melting at the temperature of 200 �C [5].

Thermal behavior of the propellant in the presence

of DAG

The TG-DTG curves of the control propellant (sample P1)

and the DAG modified propellant (sample P2) at the

heating rate of 10 �C min-1 are shown in Fig. 3. Also, the

DSC curves at the heating rates of 3, 5, 7 and 9 �C min-1

for both samples are presented in Figs. 4 and 5. As seen in

Fig. 3, there are two mass loss stages in the TG curve of the

propellant samples. Meantime, two exothermic peaks were

observed in the corresponded DTG curves. TG curves of
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Fig. 1 FT-IR analysis of the synthesized DAG

Table 2 IR pattern analysis of the synthesized DAG

Functional group Wavenumber/cm-1 Intensitya

N–H2 3368.79, 3470.35, 1680.8 vs, B

O–H 2800–3300, 1447.74 m, B

C=N 1652.41 S

N–O 951.78 S

a The IR broad band intensity expression: vs very strong, s strong,

m middle, B broad
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Fig. 2 DSC curve for pure DAG
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Fig. 3 TG-DTG curve for the control propellant (sample P1) and

DAG modified propellant (sample P2) sample mass about 3 mg;

heating rate 10 �C min-1; N2 atmosphere
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both samples, at b = 10 �C min-1, exhibited that the first

stage begins at about 50 �C and stops at about 230 �C,

while the peak in the DTG curve was appeared at

199–201 �C accompanying about 84–86 % mass loss,

which is close to the total mass of the ester content (NC/

NG) of the propellant and hence it likely attributes to the

volatilization and decomposition of the NC/NG mixed

ester. The second stage begins at about 410 �C and stops at

about 550 �C, with the peak in the DTG curve at

508–535 �C, accompanied by 12–13 % mass loss, and it

attributes to the reaction of remaining auxiliaries. How-

ever, a few remains were observed at the end of the second

decomposition stage. In fact, both samples undergo a main

exothermic decomposition reaction during their first stage,

this results is confirmed by the exothermic peaks observed

in the DSC curves of the samples in Figs. 4 and 5. On the

other hand, decomposition temperature of the DAG is

about 200 �C and this temperature is comparable with the

decomposition temperature of the sample at the first stage.

On the other hand, the propellant in the presence of DAG

decomposes during a single step and the observed

exothermic peak in the temperature range of 400–500 �C
was not observed. In other word, the presence of the DAG

in the formulation has a main influence on the thermal

pattern of the propellant and all the ingredients decompose

simultaneously during a single peak at a temperature about

200 �C (Fig. 5).

The basic data for the main exothermic decomposition

processes of the propellants P1 and P2 are listed in Table 3.

Calculation of non-isothermal reaction kinetics

Thermal decomposition kinetic, Arrhenius parameters, i.e.,

the activation energy (Ea) and the pre-exponential constant

(A) and the most probable kinetic model function corre-

sponding to the studied propellant samples was explored.

The DSC curves resulted from the samples at the heating

rates of 3, 5, 7, and 9 �C min-1 were employed to examine

their compatibility with two well-known integral methods

(i.e., Coats Redfern and Flynn–Wall–Ozawa) (Eqs. (1–2)

in Table 4] and also two differential methods (i.e., Kis-

singer and Starink) [Eqs. (3–4) in Table 4] [21–31]. The

values of Ea were predicted by the Ozawa method using the

isoconversional DSC curves at different heating rates,

while the relations between Ea and a for both propellant

samples are given in Fig. 6. As seen in this figure, the

values of activation energy change slightly in the range of

0.35–0.475 (a) for the control sample (P1), and 0.225–

0.425 (a) for the DAG modified propellant sample (P2).

These ranges were chosen to calculate the non-isothermal

reaction kinetics of the samples. Forty-one types of the

proposed kinetic model functions in Refs. [32–40] were

examined, while the original DSC data were utilized as
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Fig. 5 DSC curves of the DAG modified propellant (sample P2) at

different heating rates (�C min-1): (a) 3; (b) 5; (c) 7; (d) 9

Table 3 DSC peak temperature data for the main exothermic

decomposition process of the propellant samples

b/�C min-1 Te/�C Tp/�C

P1 3 172.41 184.3

5 177.08 190.83

7 185.45 192.38

9 185.91 193.1

P2 3 172.58 183.45

5 177.18 185.25

7 181.4 186.26

9 188.74 187.7

Te is the onset temperature for the main exothermal decomposition

reaction in DSC curve, and Tp is the peak temperature
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input of the integral and differential equations. The values

of Ea, log A, and the linear correlation coefficient (r) for

both propellant samples were calculated and listed in

Table 5. The most probable mechanism function could be

selected using the better values resulted for r. The data in

Table 5 exhibit that the values of Ea and log A computed

from the non-isothermal DSC data have good agreement

with the calculated values via Flynn–Wall–Ozawa and

Kissinger and Starink methods. Therefore, the mechanism

function (listed in Table 6) might be determined by sub-

stituting the values of Ea/(kJ mol-1) and A/s-1 into Eq. (1):

da
dt

¼ Af að Þe� E
RT ð1Þ

where f ðaÞ represents the differential model function,

t symbolizes time, and R is the universal gas constant. The

corresponding kinetic equation to the decomposition reac-

tion of the propellant samples was determined and pre-

sented in Table 6. As seen in this table, the addition of

DAG to the propellant formulation could change the

decomposition reaction mechanism function in comparing

with the control propellant.

Thermal safety studies

Self-accelerating decomposition temperature (TSADT)

The self-accelerating decomposition temperature (SADT)

is defined as the lowest ambient temperature at which an

organic substance or self-reactive compound undergoes the

self-accelerating decomposition. Determining of this

parameter is essential for the safe packaging or trans-

portation purposes in various materials especially in ener-

getics [41]. In this study, the values of the onset

temperature (Te) corresponding to b ? 0 or Te0 were

obtained by Eq. (2), and then, the self-accelerating

Table 4 Kinetic analysis methods utilized for the studied propellant samples

Method Equation Method no

Coats Redfern ln
G að Þ
T2 ¼ ln AR

bEa
1 � 2RTexp

Ea

� �h i� �
� Ea

RT
(1)

Flynn–Wall–Ozawa lnb ¼ lg AEa= RG að Þ½ �f g � 2:315 � 0:4567Ea=RT (2)

Kissinger Ln b
T2

m
¼ ln AR

Ea
� E

RTm

(3)

Starink ln b=T1:92
m

� �
þ 1:0008Ea=RTm ¼ C (4)
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Table 5 Kinetic parameters of the main exothermic decomposition process of the propellant samples

Method b/�C min-1 P1 P2

Ea/kJ mol-1 log/A/s-1 r Q Ea/kJ mol-1 log/A/s-1 r Q

Coats Redfern 3 129.95 10.73 0.9969 0.0208 298.85 30.73 0.9934 0.0714

5 178.05 16.5 0.9998 0.0055 289.98 29.47 0.9930 0.0726

7 219.52 21.12 0.9986 0.0141 472.9 50.32 0.9950 0.0709

9 208.88 19.8 0.9982 0.0189 488.47 51.77 0.9968 0.0620

Mean 184.1 17.03 – – 387.55 40.57 – –

Kissinger 192.5 19.7 0.9517 0.1721 454.36 50.11 0.9930 0.0674

Starink 192.65 19.72 0.9519 0.1721 454.31 50.10 0.9930 0.0674

Flynn–Wall–Ozawa 190.28 – 0.9552 0.1722 439.15 – 0.9932 0.0674

Q standard mean square deviation
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decomposition temperature (TSADT) for the propellant

samples was computed by Eq. (3) [36–40].

Te ¼ Te0 þ bbi þ cb2
i ; i ¼ 1 � 4 ð2Þ

While, b and c are coefficients.

Te0 ¼ TSADT ð3Þ

The resulted values for the studied propellant samples are

given in Table 7.

Critical temperatures of thermal explosion

Critical temperature of thermal explosion (Tb) is defined

as the lowest temperature to which a specific charge

might be heated without undergoing any thermal runaway

[30]. This vital parameter for energetic materials usually

is predicted to insure safe processing and storage. Tb

could be calculated by considering the ignition theory and

corresponding thermo-kinetic parameters, namely the pre-

exponential factor, activation energy, and heat of

decomposition reaction. The critical temperatures of

thermal explosion for both propellant samples were

obtained from Eq. (4) [33, 38] and given in Table 7.

Tbp ¼ E0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

0 � 4E0RTp0

p
2R

ð4Þ

The presented data in Table 7 show that the value of Tbp

for the DAG modified double-base propellant in com-

parison with the control sample is high, which confirms

the difficulty in happening of transition from thermal

decomposition to a thermal explosion in the modified

propellant [38].

Burning rate measurement for the studied

propellant samples

In order to investigate the possible utilizing of DAG in

propellants as the ballistic modifier, the burning rates [u/

(mm s-1)] of the both control propellant (P1) and the DAG

modified propellant (P2) were measured and compared at

different pressures (P/MPa). The resulted burning rates are

listed in Table 8. As seen in this table, the addition of

about 2 % DAG to the propellant sample has no significant

effect on its burning rate, however brought down the n

value. The brought down of the n value from 0.24, for theT
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P1 P2

(Te0 or TSADT)/K 470.89 430.46

Tp0/K 429.20 449.75

Tbp/K 437.56 453.64
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control sample, to 0.068 for the DAG modified sample in

the pressure region of 5–7 MPa was observed. In order to

evaluate the effects of DAG as the ballistic modifier on the

burning rate of the studied double-base propellant, the

pressure exponent (n) of the burning rate (u) was com-

puted. Then, the average values of the catalysis efficiency

(�Z) were compared before and after addition of the ballistic

modifier into the propellant formulation. To achieve this

aim, the values of n and �Z were obtained by Eqs. (5) and

(6) [17, 21, 37, 38]:

ui ¼ aPn
i ; i ¼ 1 � 11 ð5Þ

�Z ¼
Xk
i¼1

uII;i
�
uI;i

� �
=k ð6Þ

where a is the coefficient (mm s-1 MPa-1).

For the DAG modified propellant: at 5–8 MPa,

u = 4.97P0.26, �Z = 0.9; at 8–12 MPa, u = 8.47P0.155,
�Z = 1.17; at 12–15 MPa, u = 15.7P0.024, �Z = 0.99.

As seen, addition 2 % DAG as a ballistic modifier to the

propellant formulation has no considerable effect on the

burning rate, but reduces efficiently the pressure exponent

of the double-base propellant.

Conclusions

The ability of DAG as a ballistic modifier for the appli-

cation in the homogeneous double-base propellant was

investigated. Thermo-kinetic results showed that DAG

could enhance the enthalpy of decomposition, apparent

activation energy, and change the decomposition reaction

mechanism function of the double-base propellant. The

mechanisms of the chemical reactions corresponding to the

main exothermal decomposition reactions of the control

sample and DAG modified propellant are classified,

respectively, as f ðaÞ ¼ 3
2

1 � að Þ4=3½ 1 � að Þ�1=3�1��1
and

f ðaÞ ¼ 5
2

1 � að Þ �ln 1 � að Þ½ �3=5
, while their kinetic equa-

tions are: da=dt ¼ 1:60 � 1017 1 � að Þ4=3½ 1 � að Þ�1=3�1��1

e�2:21�104=T and da=dt ¼ 9:28 � 1040 1 � að Þ �ln 1 � að Þ½ �3=5

e�4:66�104=T. Evaluating thermal safety of the propellants

samples showed that the DAG modified propellant has a

higher resistance to heat and higher thermal safety than the

control propellant. Furthermore, DAG could reduce effi-

ciently the pressure exponent of the homogeneous double-

base propellant to 0.068 at the pressure of 5–7 MPa.
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