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Abstract High-energy mill (HEM) has a wide applica-

tion in material preparation, activation and synthesis. In the

present study, fly ash was selected to be milled by HEM

under the speed of 700 rpm and the ball-to-powder ratio of

10:1 by weight, but varied periods of milling time. The

changes in physical and morphology properties of the

milled fly ash were determined using BET analysis and

scanning electron microscope, those of chemical properties

were determined using X-ray diffraction, mercury intrusion

porosimetry and Fourier transform infrared, and their

thermal properties were determined using thermogravi-

metric analysis (TG). The obtained data implied that the

ball-milling treatment leads to reductions in both particle

size and crystallite size of the milled fly ash, and also

changes of their microstructural and functional groups, and

loss of crystallinity. The milling time was found an

important factor to impact extent of those changes. The

large particles of the original fly ash regularly in an average

of 5 lm were significantly broken down to much smaller

particles (average diameter 300 nm), and the pore size

distribution was also greatly changed by the ball-milling

treatment and shown a close relevant to the milling time.

Both patterns from FTIR and TG indicated the decrease in

intensity of –OH stretching vibration peak and increase in

peak widths of the ball-milled fly ash with the increase in

the ball-milling time, implying along ball-milling time

leading the ball-milled fly ash toward more amorphousness

and likely the higher reactivity.
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Introduction

Nanomaterials have drawn much attention due to their

enhanced physical and chemical properties that are not

shown in conventional materials. A large variety of

methods have been developed to produce nanomaterials,

which include the plasma arcing, the chemical vapor

depositions, the electrodepositions, the sol–gel synthesis

and the ball milling. In the majority of these approaches,

the ball mill, with the benefits of time saving, process

simplicity, cost reduction and solvent-free reaction condi-

tion [1, 2], can be easily scaled up to commercial levels of

application. High-energy mill (HEM) has been specially

attention to a wide application in material preparation,

activation and synthesis [3, 4].

Fly ash is produced about 780 billion [5] tons every year

worldwide from the huge amount of coal consumption. It

has been considered to be the sixth most abandoned min-

eral in the USA and the world’s fifth largest raw material

resource [6–8]. Worldwide, most of the fly ash is land

filled, leading to land occupation and potential environ-

mental problems. Currently only small proportion

(15–20 %) is reused as cheap construction materials, such

as construction bricks, road fillers, and soil amendments

[9–13]. Fly ash is heterogeneous power main including

glassy and amorphous structure derived from inorganic,
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incombustible matter present in coal. The chemical and

physical characteristics of coal fly ash vary considerably

with different combustion conditions, such as the coal

properties, originalities of ash in coal, the boiler designs

and combustion parameters. For this reason, the application

of fly ash is more complicated [14–18]. It has been studied

that the milled fly ash can cause an increase in the surface

area and improve the pozzolanic activity, which can be

used as adsorbent, cement, immobilization, etc. [19, 20].

In this work, an attempt has been made to modify coal

fly ash by a high-energy ball milling at the speed of

700 rpm under varied periods of milling time. The milled

ash samples were characterized by their physical and

chemical properties using BET analysis, X-ray diffraction

(XRD), thermogravimetric analysis (TG), scanning elec-

tron microscopy (SEM), Fourier transform infrared spec-

troscopy (FTIR) and mercury intrusion porosimetry (MIP).

Experimental methods

Fly ash samples used in this study were produced from a

thermal coal power plant. Mechanochemical experiment of

raw fly ash was carried out by a high-energy pulverization

ball milling (Premium line, FRISCH, Germany) in an air

atmosphere with a rotation speed of 700 rpm. The balls and

grinding bowl used in the experiments were made of agate

and stainless steel. The ball mill was loaded with 10:1

(mass ratio) for the ball (10 mm /) and the sample. To

avoid the generation of high temperature from high-speed

ball mill, the milling time was set to 2-min working with

7-min breaks. To determine the effect of the ball-milling

time, the total duration of milling process varies from 100

to 4000 min.

Thermogravimetric evaluations of all the samples were

performed by TA100 under an inert nitrogen (99.99 %

purity) atmosphere at a flow rate of 15 mL min-1, and the

balance gas was 85 mL min-1 nitrogen (99.99 % purity).

The sample were isolated for 30 min to purge the air and

keep the apparatus stable and then heated from the room

temperature to 1000 �C with the heating rate of

10 �C min-1. The temperature will held constant for

30 min once reached 1000 �C. To obtain the good resolu-

tion scanning electron microscope (SEM) figure, the sam-

ple was sputter-coated with a thin layer of gold–palladium

after mounted on an aluminum stub. XRD (ARL X’TRA,

Thermo Scientific, Cu Ka radiation) was used to identify

minerals and crystallinity. In this study, the XRD data were

obtained at an accelerating voltage of 20 kV and a current

of 20 mA in the range from 3 to 70� (2-theta) with a scan

speed of 0.5� min-1. All the results were analyzed by Jade

software. The FT-IR study of functional groups presents in

samples was carried out with FT-IR spectrophotometer

(Spectroscopy 100, Perkin-Elmer) by mixing the sample

with spectroscopic grade KBr in 1:20 mass ratio. The

spectrum was recorded in the wave number region from

400–4000 cm-1 with a resolution of 4 cm-1, and each

sample was scan for four times. Mercury intrusion

porosimetry is a simple, fast and less costly method for

porosity characterization of solid materials. The pore size

distribution of fly ash was determined by mercury intrusion

porosity (Micrometric Autopore 9500) after the samples

were dried at 105 �C for 24 h. The pressure applied in this

study was from 0 to 414 Mpa (60,000 psi). Repetition of

the tests was done, and the results show good reliability.

Results and discussion

Chemical composition of initial fly ash

The chemical composition of fly ash was first studied by

Davis and Carlson in 1937 [21]. The major chemical

compositions of fly ash were generally analyzed using

X-ray fluorescence (XRF) according to the standard

method GB/T 14506.28-2010. In this study, the major

compositions of selected ash were analyzed by XRF, and

the result is listed in Table 1. The primary components are

silica (SiO2), alumina (Al2O3) and iron oxides (Fe2O3),

with generally lesser content of calcium (CaO), magnesium

(MgO), potassium (K2O) and sodium (Na2O). According to

the classification by ASTM C618, the used fly ash can be

designated as class F as the sum content of SiO2 and Al2O3,

Fe2O3 is greater than 70 %, and the content of CaO is less

than 5 %; this kind of fly ash exhibited lower CaO content

has been widely explored to be a replacement of Portland

cement in mortar [22]; meanwhile, the expansion of con-

crete will be decreased due to the reduction in alkali ions

on the pore solution [23, 24].

Microstructural analysis

Figure 1a, the SEM image of fresh fly ash, shows that most

fresh fly ash particles are spherical in shape after the high-

temperature combustion process. Its average size was about

Table 1 Chemical composition of coal fly ash (wt%)

Fly ash

Fe2O3 MnO2 TiO2 CaO K2O SO3 R

17.28 0.0471 0.933 3.002 2.53 3.423 87.17

P2O5 SiO2 Al2O3 Na2O MgO LOI

0.113 46.31 10.7 2.48 0.36 8
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5 lm, which agree well with the previous report [17]. On

the surface of the regular spherical ash particle, there were

some smaller irregular fly ash particles, which were likely

derived from the high content of iron oxide [25]. The

image of the ball-milled fly ash is shown in Fig. 1b. The fly

ash particles were clearly crushed, and their shapes were

irregular. The sizes of ball-milled fly ash were greatly

reduced to about 300 nm, indicating the breakdown of the

original spherical-shape fly ash.

Pore structure of coal fly ash

The results of the total intrusion volume, average pore

diameter and specific surface area of fly ash samples,

shown in Fig. 2, presented the great changes of those

parameters with the ball-mill time. The total intrusion

volume and average pore diameter decreased sharply as the

milling time was increased and exhibited small peak when

the ball mill time is around 700 min, which means strong

mechanical crushing has been happened during this stage.

For the specific surface area, it should be noted that the

pore area increased with the milling time and reach highest

value at 700 min.

The pore size distribution of samples is shown in Fig. 2,

while the raw fly ash has big pores with the diameter lager

than 25 nm and can be classified as macropores according

to the International Union of Pure and Applied Chemistry

(IUPAC) system [26]. It can be seen that as the milling

time increases, the milled fly ash significantly increased the

specific surface area comparing with the raw fly ash, and

the highest value is present at 700 min. At the first stage of

short time milling, the cumulative mercury intrusion curve

shifted toward smaller pores and lies on the finer side,

indicating the formation of small pore. As for the longtime

milling, the curve shifted to a lager pores, presenting bigger

pores, this may be due to the aggregation effect of long

milling time.

FT-IR analysis

Fourier transform infrared (FTIR) was used to obtain the

qualitative information about the functional groups of fly

ash samples, and the spectra are shown in Fig. 3. The most

intense peak of all the tested samples in the spectra occurs

around 1000 cm-1, corresponding to Si–O–T (T: Si or Al)

stretch vibrations [27], mainly corresponding to silica

oxide and aluminum oxide. This result was consistent to

that of the XRF analysis of same fly ash sample. Typical

bands that appear between 3500 and 3400 cm-1 are

assigned to the Si–OH bending and stretching of absorbed

water on the surface of fly ash samples. A small peak at

1640 cm-1 in the spectra is attributed to the bending mode

of (dO–H) water molecule [28]. The band at 2322 cm-1

was observed due to the sorption of carbon dioxide from

the air, according to the study of Algoufi and Hameed [29].

The presence of carbonated phase as evidenced by the peak

at 1440 cm-1 [30]. The small band that presents around

797 cm-1 is attributed to the stretching of AlO4 (con-

densed), SiO4 (rings) and amorphous aluminosilicate con-

taining ring structures according to the previous studies

[31–33].

The FTIR spectra also clearly show differences of the fly

ash samples before and after the ball-mill treatment. Band

around 3500 and 3400 cm-1 of the ball-milled fly ash

indicated an increasing intensity of OH– stretching vibra-

tion, contrasting to no appearance of such peak in raw fly

ash sample. The formation and presence of Si–OH was an

evidence for the breaking down of the silica structure

according to the study of Paul et al. [34]. Khalil [35]

repeatedly found the appearance of Si–OH in oil palm ash

after high-energy ball milling for 30 h, and Patil and

Anandhan [36] similarly reported an increase in the peak

intensity of Si–OH groups in the ball-milled fly ash for

60 h. Other study indicated that the increased amorphous

silica and surface exposure would result in the intense band

Fig. 1 SEM image of coal fly ash (a raw fly ash. b ball-mill-treated fly ash)
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in this range [37]. However, this peak disappeared when

the ball milling time was more than 2000 min. This pre-

sented major changes of chemical properties of the ball-

milled before the ball-milling time at 2000 min for the

selected fly ash sample.

The intensity of FTIR peak at a range of

1300–900 cm-1 increased as the ball milling time

increased, and this can be interpreted by the increased

amorphous silica in the fly ash samples. The peak of Si–O–

Si appeared at 1000 cm-1 shifted to lower frequencies after

ball mill and varied from 1007 to 975 cm-1. This can be

interpreted by the Al penetration into the (SiO4)4-.

Thermogravimetric characteristics of fly ash

Thermogravimetric analysis (TG) was used to determine

the thermal stability of the sample by measure the mass

loss on heating [38, 39]. The thermogravimetric analysis

curves of fly ash under N2 atmosphere are shown in Fig. 3.

A gradual mass loss of 1.3 % occurs form 50 to 200 �C,

which may be the result of moisture in the sample. From

400 to 600 �C, small mass loss was recorded indicating

volatile matter released in this zone, and for the high

temperature of 850–100 �C, the mass loss may due to the

presence of the unburn carbon and CaSO4 in fly ash

[40–42].

TG of the fly ashes with different ball-milling time is

shown in Fig. 4; obviously, the curves for treated fly ashes

with short milling time were located below the raw fly ash,

indicating a bigger mass loss compared to the raw fly ash

sample, and the main different was occur in the first heat

stage. Furthermore, the mass loss is proportional to the

ball-milling time and reaches maximum value of 12 %,

when the ball-milling time was 700 min, and this may be

attributed to the following reaction [43, 44]:

Si�OH ¼ Si�O�T T: Si or Alð Þ þ H2O ð1Þ

The amount of Si–OH was increased with the ball-mil-

ling time, and more H2O was released when the tempera-

ture increased; study of Ul Haq [43] also shows the similar

result when the fly ash heated at 65 �C for 72 h, and the Si–

OH bonds will transformed to Si–O–T (T: Si or Al) form,
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thus leading to a higher connectivity, strength and stability.

However, as the billing increased to more than 1000 min,

the ashes show less mass loss and high thermal stability.

XRD analysis

The XRD patterns of select ball-milled fly ash samples,

including the raw fly ash, are shown in Fig. 5. In the raw fly

ash sample, there were a number of crystalline peaks and

also an hump of amorphous peak in the diffraction pattern

approximately from 15� to 35� (2h), suggesting the pres-

ence of relatively amount amorphous glassy materials. The

major crystalline phases of all fly ash samples were iden-

tified as quartz, hematite and magnetite in majority, and

calcite and mullite in minor. This was well consistent with

the results of the XRF analysis. After the ball milling,
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similar XRD pattern can be observed, but the peak inten-

sities of most original crystallinites significantly dimin-

ished and peaks were also broaden. This can be interpreted

by the smaller particle size and less extent of crystallinity.

The further extension of the ball-milling time from 2000 to

4000 min did not lead any big changes of peak intensities

and widths (Fig. 6).

The average crystallite size of the samples was calcu-

lated based on the full width at half maximum (FWHM) of

the XRD peak according to Scherrer’s equation [45].
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d ¼ Kk
B cos h

ð2Þ

where d is the average grain size, K is the crystallite shape

constant (0.89 was used in this study), k represents the

wavelength of Cu Ka radiation (k = 0.1542 nm), B is the

half width of the diffraction peak (FWHM) and h is the

incident angle (25.367�) of X-ray surface [46].

The estimated size of the raw fly ash was 46 nm. After

the ball-milling process, the crystallite size decreased to

20 nm, and this change indicated the enhanced amorphous

content in fly ash that will be better compatibility [34]. At

the first stage of ball milling, dispersion is the main process

and results in the sharp decrease in crystallite size, while

when the ball-mill time is higher than *2500 min, the size

increased due to the effect of aggregation [47].

Conclusions

In the present study, we observed the several major physical

and chemical changes of milled fly ash during the high-en-

ergy ball-milling process. Significantly, large particles of the

original fly ash, regularly in an average of 5 lm, were broke

down into much smaller particles, in an average particle size

of about 300 nm. The pore structure was also greatly chan-

ged by the ball-milling treatment, most big pores disappear,

and smaller pores created, showing a close relevant to the

milling time. The intensity of –OH stretching vibration peak

in FTIR pattern of the ball-milled fly ash had a clear increase

with the ball-milling time, but diminished as the milling time

was further increased. This was also evidenced by TG

results. A long ball-milling time lead the decrease in peak

intensity of crystalline phases of the milled fly ash, but the

increase in the half width of crystalline peaks, implying more

amorphousness and likely a higher reactivity of the ball-

milled fly ash toward more applicable utilization.
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