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Abstract Basic copper nitrate [Cu(NO3)2�3Cu(OH)2,

BCN] is a widely used oxidizer for gas-generating com-

pounds. The oxidizers that replace some BCN with am-

monium nitrate (NH4NO3, AN) have been investigated to

increase the performance of the gas-generating agents. The

purpose of this study was to understand the thermal be-

havior and stability of AN/BCN mixtures. To this end,

mixtures prepared by two kinds of methods, with and

without heat treatment, were analyzed by X-ray powder

diffraction to investigate composition of samples, and

differential scanning calorimetry and thermogravimetry–

differential thermal analysis with mass spectrometry (TG–

DTA–MS) to investigate the thermal behavior and evolved

gases. It was found that [Cu(NH3)2](NO3)2 was formed in

the sample with thermal treatment. The samples with and

without heating exhibited different decomposition pro-

cesses. It is considered that the residual AN and the amount

of [Cu(NH3)2](NO3)2 in the mixture affected the decom-

position behavior.

Keywords Ammonium nitrate � Basic copper nitrate �
Diamine copper nitrate � Gas-generating agents � Thermal

analysis � Evolved gas analysis

Introduction

The composition of BCN and guanidine nitrate (GN) has

been widely used for gas generation in automobile airbags

because it is a large gas-producing agent and reduces the

combustion temperature [1]. BCN is used as the oxidizer in

these compositions [2–5]. It is known that BCN is pro-

duced as an intermediate during the decomposition of hy-

drated copper nitrate [6–9]. BCN decomposes according to

the following reaction [10]:

Cu NO3ð Þ2�3Cu OHð Þ2! 4CuO þ 3H2O þ 2NO2 þ 1=2O2

ð1Þ

The theoretical mass loss according to Eq. (1) is

33.75 %. Gas-generating agents require a high ratio of

gasification per unit mass for the reduction in size and mass

of automobile airbag systems. To increase the ratio of

gasification per mass, some BCN is typically replaced with

other oxidizers that become gases after the reaction such as

ammonium dinitramide (ADN) [11–13] and ammonium

nitrate (AN) [14, 15]. ADN is a high energy oxidizer and a

promising oxidizer for solid propellants, so many studies

on its properties in terms of burning rate, stability, and

other important performance parameters have been per-

formed [16–24]. However, it has too low of a melting

temperature to function as the gas-generating agent in au-

tomobile airbag systems.

In contrast, AN is promising in propellants and gas

generators, due to its high oxygen balance (?20.0 %) and

cost-effectiveness. It is a halogen-free, smokeless oxidizer

and has been widely used as an oxidizer in energetic

compositions. However, the uses of AN in propellants and

gas generators are restricted due to its high hygroscopicity,

the solid-state-phase transitions at temperatures below

130 �C, and low combustion performance. Many combi-

nations of combustible contents and additives with AN

have thus been explored in an attempt to improve these

properties [25–39].
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This study focuses on oxidizers that replace some BCN

with AN to increase the gasification ratio of gas-generating

agents. Wada et al. [40] has studied the combustion

mechanism of mixtures of AN, BCN, and GN for devel-

oping AN as an oxidizer in gas-generating agents in au-

tomobile airbag systems. They found that combustion

conditions and mixing ratios of samples affected the type

of combustion residuals. However, thermal analyses of AN

and BCN were insufficient.

Understanding the thermal behavior and stability is

necessary for the performance of gas-generating agents. In

this study, to mix AN and BCN homogeneously, mixtures

of AN and BCN were prepared by powder mixing and melt

mixing. The samples were analyzed with X-ray powder

diffraction (XRD) to investigate compositions, and with

differential scanning calorimetry (DSC) and thermo-

gravimetry–differential thermal analysis with mass spec-

trometry (TG–DTA–MS) to investigate the thermal

behavior and evolved gases.

Experimental

Materials

Samples of AN (Wako Pure Chemical Industries, Ltd.) and

BCN (Nihon Kagaku Sangyo Co., Ltd.) were used for the

experiments. Samples were dried by silica gel in a glove

box in which the relative humidity was kept lower than

15 % at room temperature under an air atmosphere. Pure

AN and BCN were ground in a mortar (under 5.5 lm) and

mixed in a one to four mass ratio. Approximately 8 g of the

mixture was placed into a stainless container with an inner

diameter of 68 mm and height of 170 mm. The samples

were mixed at a rotation rate of 35 rpm for 1 h by a ro-

tating mixing system. One of the samples was loaded into a

test tube and heated in the electronic furnace and oven at

170 �C near the melting point of AN.

Composition analysis

To determine compositions of AN/BCN mixtures after

thermal treatment, X-ray diffraction patterns were mea-

sured using a powder X-ray diffractometer (XRD, Rigaku

RINT-2500). A 100-mg sample on a glass plate was

measured at room temperature. Diffraction patterns were

recorded in the angular range of 10�–90� 2h with a scan-

ning rate of 2� min-1.

Thermal property and evolved gas

Thermal behaviors of non-thermal and thermal-treated

samples of AN and BCN mixtures, pure AN and pure BCN

were characterized using sealed cell differential scanning

calorimetry (SC-DSC, Mettler Toledo HP DSC827e). For

SC-DSC measurements, approximately 2 mg of sample

was loaded into a stainless steel container (SUS303), sealed

in air and then heated from 30 to 400 �C at a heating rate of

10 K min-1. The thermal characteristics and decomposi-

tion gases of the AN and BCN mixtures were also

evaluated using a thermogravimetry–differential thermal

analyzer (TG–DTA, Rigaku TG/DTA-8120) connected

with a mass spectrometer (MS, Shimadzu GC/MS-

QP2010). The samples (2 mg) were heated from room

temperature to 350 �C at a heating rate of 10 K min-1

under helium flow (200 mL min-1) in an open aluminum

cell. The mass spectrometer was operated in electron im-

pact ionization mode, with selected ion monitoring for

m/z = 17, 18, 28, 30, 44 and 46 (NH3, H2O, N2, N2O, NO2

and HNO3) from reaction (1) and Ref. [35].

Results and discussion

Composition analysis

The samples prepared by the two methods (a. without

heating, b. with heating at 170 �C for 1 h) are shown in

Fig. 1. Blue products were formed in the sample after

heating about 170 �C for 1 h.

The XRD patterns of the pure AN, pure BCN, and AN/

BCN mixtures recorded at room temperature are shown in

Fig. 2. Pure AN and BCN were detected in the XRD pat-

tern of the AN and BCN mixture without thermal treat-

ment. However, in the sample with thermal treatment at

170 �C for 1 h, diamine copper nitrate [Cu(NH3)2](NO3)2

was present in addition to AN and BCN. The peaks at about

15�, 19�, 22�, and 24� were identified as the peaks of

[Cu(NH3)2](NO3)2, which is likely the blue product formed

in the sample with thermal treatment (Fig. 1b), according

to reaction (2).

8NH4NO3 þ Cu NO3ð Þ2�3Cu OHð Þ2

! 4 Cu NH3ð Þ2

� �
NO3ð Þ2 þ 2HNO3 þ 6H2O ð2Þ

The theoretical mass ratio of the reaction between AN

and BCN according to reaction (2) is AN/BCN = 4/3. In

this study, it is suspected that all the AN reacted with BCN

to form the copper complex. In fact, AN was observed in

the mixture with thermal treatment because [Cu(NH3)2]

(NO3)2 hydrolyzed to form AN and BCN when allowed to

stand in air [41].

Thermal property and evolved gas

The DSC curves of the pure AN, pure BCN, and AN/BCN

mixtures at a heating rate of 10 K min-1 under sealed
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condition are shown in Fig. 3. In the sample without

thermal treatment, three endotherms were observed below

170 �C. The endotherms at 50 and 120 �C were due to a

solid-state-phase transition of AN. It is considered that

endotherm at 150 �C was due to melting of the AN and

BCN mixture from visual observe using open vessel. The

exothermal reaction was observed at 260 �C. The en-

dotherm at range of 310–360 �C was owing to the

decomposition of substance generated from reaction be-

tween AN and BCN. On the other hand, in the sample with

thermal treatment, the endotherm at 50 �C was not ob-

served. This means the [Cu(NH3)2](NO3)2 formed during

thermal treatment inhibited the solid-state-phase transition

of AN at 50 �C. The broad endotherm around 120 �C is

eutectic of AN, BCN, and [Cu(NH3)2](NO3)2. The

exothermal reaction of the sample with thermal treatment

also occurred at 260 �C. The endotherm at range of

310–360 �C was observed as well as the powder mixing

sample. Under the sealed condition, there was no sig-

nificant difference in thermal behavior above 260 �C be-

tween the mixtures prepared by powder mixing and melt

mixing.

The TG and DTA curves of the samples are shown in

Fig. 4. From the TG curves, mass loss of AN and BCN

mixtures was higher by about 10 % than that of pure BCN.

The DTA curves showed different behavior between the

samples with and without thermal treatment. The mixture

without thermal treatment lost mass in two stages at 125

and 200 �C. The TG curve of the mixture with thermal

treatment showed mass loss in three stages, at 120, 210,

and 230 �C. Comparison with the SC-DSC results, DTA

showed that thermal behavior above 200 �C was different

in terms of onset temperature. The difference seemed to

result from the open condition.

Real-time analysis of the evolved gases was carried out

using TG–MS. Figures 5 and 6 show the total ion current

(TIC) curves for the AN/BCN mixtures in addition to the

MS curves for mass-to-charge (m/z) ratios of 17, 18, 28, 30,

44 and 46. The peaks are assigned to NH3 (m/z = 16, 17),

H2O (m/z = 17, 18), N2 (m/z = 28), NO (m/z = 30), N2O

Fig. 1 Pictures of the prepared samples. a Without heating. b With

heating at 170 �C for 1 h
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(m/z = 30, 44), NO2 (m/z = 30, 46) and HNO3 (m/z = 30,

44, 46). These gases were detected after the decomposition

of AN, BCN, and [Cu(NH3)2](NO3)2 [10, 33, 41]. The TIC

curve for AN/BCN without thermal treatment displayed a

broad peak (130–170 �C) and a sharp peak (200–250 �C).

The broad peak from gas generation of m/z = 18 and 46

began at the same time as the melt endotherm of the mixture

(Fig. 4). This indicates that H2O and HNO3 were generated

due to the reaction between BCN and molten AN [reaction

(2)]. The sharp peak (200–250 �C) corresponded to the

endotherm (200–220 �C) and the exotherm (220–250 �C)

of the DTA curve (Fig. 4). The m/z = 18, 28, 30 and 46

derived from H2O, N2 and NO2 in the range of 200–220 �C
were observed. This indicates that the endotherm was de-

composition of AN and BCN. Gases such as NH3, N2 and

N2O generated from decomposition of [Cu(NH3)2](NO3)2

[40], and [Cu(NH3)2](NO3)2 decomposed with an exotherm

at 240 �C [35, 42]. Therefore, the exotherm (220–250 �C)

resulted from decomposition of [Cu(NH3)2](NO3)2. On the

other hand, the TIC curve of the sample with thermal

treatment exhibited one broad peak and two sharp peaks. In

the range of 110–120 �C, m/z = 18 and 46 began at the

same time as the eutectic endotherm of the mixture (Fig. 4).

AN and BCN formed by hydrolysis of [Cu(NH3)2](NO3)2

reacted with [Cu(NH3)2](NO3)2 again to generate H2O and

HNO3. The m/z = 18, 30, and 46 were detected in the peak

(210–230 �C). The endotherm (210–230 �C) of the ther-

mal-treated mixture was due to decomposition of BCN

without generating N2 [reaction (2)]. The TIC peak

(230–250 �C) was considered the decomposition of

[Cu(NH3)2](NO3)2 as in the sample without thermal treat-

ment. It is likely that BCN and [Cu(NH3)2](NO3)2 of the

thermal-treated mixture decomposed without interacting,

considering the separate TIC curves (200–250 �C). In

contrast, components of the mixture without thermal
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treatment decomposed with interaction. The amounts of AN

and [Cu(NH3)2](NO3)2 were different between the powder

mixed sample and the thermal-treated sample because AN

changed to [Cu(NH3)2](NO3)2 during heating at 170 �C for

1 h. The difference in decomposition was caused by the

residual AN and [Cu(NH3)2](NO3)2 in the mixture. From

the results of DSC and TG–DTA–MS, the difference in

thermal behavior above 200 �C was deemed to be derived

from the vaporization and decomposition of each sample.

Conclusions

AN/BCN mixtures prepared by powder mixing and melt

mixing were analyzed by X-ray powder diffraction (XRD)

to investigate compositions, and with differential scanning

calorimetry (DSC) and thermogravimetry–differential ther-

mal analysis with mass spectrometry (TG–DTA–MS) to

determine thermal behavior and evolved gases. From the

XRD results, it was shown that [Cu(NH3)2](NO3)2 was

formed from the reaction between molten AN and BCN.

[Cu(NH3)2](NO3)2 formed during thermal treatment inhib-

ited the solid-state-phase transition of AN at 50 �C. Thermal

analysis indicated the measurement conditions affected the

decomposition process of the mixtures. Under the sealed

condition, the gases vaporized and decomposition occurred

in the reactions with solid or liquid AN, BCN, and

[Cu(NH3)2](NO3)2. It is considered that the same reaction

occurred in the samples with and without thermal treatment.

From the results of TG–DTA–MS, the gasification ratio of

the mixtures was higher than in pure BCN. In the case of the

sample without heating, H2O and HNO3 were generated due

to the reaction between BCN and molten AN [reaction (2)]

at 130 �C. The endotherm in the range of 200–220 �C was

due to decomposition of AN and BCN. In the range of

220–250 �C, [Cu(NH3)2](NO3)2 decomposed with an exo-

therm generating gases such as NH3, N2 and N2O. On the

other hand, with the sample with thermal treatment, reaction

(1) occurred from AN and BCN formed by hydrolysis of

[Cu(NH3)2](NO3)2 at 110 �C. BCN decomposed in the

range of 210–230 �C, and [Cu(NH3)2](NO3)2 decomposed

with an exotherm in the range of 230–250 �C. It is consid-

ered that the amount of AN and [Cu(NH3)2](NO3)2 affected

the decomposition process of mixtures under the measure-

ment conditions of this study.
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