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Abstract Temperature, the central concept of thermal

physics, is one of the most frequently employed physical

quantities in common practice. Even though the operative

methods of the temperature measurement are described in

detail in various practical instructions and textbooks, the

rigorous treatment of this concept is almost lacking in the

current literature. As a result, the answer to a simple

question of ‘‘what the temperature is’’ is by no means

trivial and unambiguous. There is especially an appreciable

gap between the temperature as introduced in the frame of

statistical theory and the only experimentally observable

quantity related to this concept, phenomenological tem-

perature. Just the logical and epistemological analysis of

the present concept of phenomenological temperature is the

kernel of the contribution.
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Introduction

What does the temperature mean? It is a classically simple

question astonishingly lacking an appropriate answer. The

answers, namely, which can be found in the textbooks on

thermodynamics, are often hardly acceptable without se-

rious objections. For illustration, let us give a few typical

examples here, the reader can easily find others in the

current literature by himself. To the most hand waving

belong the statements such as ‘‘the temperature is known

from the basic courses of physics’’ or even ‘‘temperature is

known intuitively.’’ More frankly sounds the widely used

operative definition ‘‘the temperature is reading on the

scale of thermometer.’’ In contrast to it, rather philo-

sophical is the sentence ‘‘temperature is a physical property

of a system that underlies the common notions of hot and

cold,’’ which, nevertheless, rather specifies what the tem-

perature should be, giving no idea of what it actually is. To

high scientific standard pretends the definition ‘‘on the

macroscopic scale the temperature is the unique physical

property that determines the direction of heat flow between

two objects placed in thermal contact,’’ being in fact an

explanation ‘‘obscurum per obscurius’’ which transforms

the temperature problem to the problem of flow of some-

thing more uncertain. Real nightmare is then for students

statement ‘‘the absolute temperature is integrating divisor

converting heat (imperfect differential) into an exact

differential.’’

Of course, there is no doubt that the temperature is a

central concept of thermal physics and that is why a lot of

researchers were trying, in different ways, to bring the

temperature concept on the safer grounds. For example, the

authors preferring the axiomatic approach are, as a rule,

inclined to assume that the temperature is a primitive

concept which need not be, in principle, derived from other

presumable more primitive ideas. Unfortunately, the ex-

perimental determination of temperature in any particular

case requires performing of a lot of non-trivial operations

which should be substantiated by its definition. Thus, such a

shift from an operative physical definition to a metaphysical

one, very satisfactory for theoreticians, makes any actual

temperature measurement performed by experimentalists

an inexplicable obscure ritual. For researchers who consider

the thermal physics being nothing but an outgrowth of
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statistical mechanics, the statistical temperature T of a

system can be defined by a formula [1, 2]

1=T ¼ k ðd ln X=dEÞ; ð1Þ

where X is the number of equally likely configurations

(microstates) of the system; E, its energy; and

k = 1.38 9 10-23 J K-1, the Boltzmann constant. Since,

however, practical measurements of temperature are made

by macroscopic thermometers and not by means of eval-

uation of statistical data related to aggregates of particles

and excitations existing in a given body, it is apparent that

statistical definition of temperature cannot serve as a full

substitute for the phenomenological one. Moreover, the

experimental evidence for identification of both tem-

peratures, phenomenological and statistical, is till now in-

complete and even controversial.

In this contribution, we critically analyze the present

concept of phenomenological temperature putting empha-

sis on the relevant experimental aspects and anthropic

elements involved, partially following the historical de-

velopment of this fundamental physical entity.

Thermoscope

The first step toward the establishment of temperature con-

cept was very likely the rediscovery of correlation between

human sensations, represented by a series cold, cool, tepid,

warm, hot, and observable physical state of sometimes very

curious devices described in the first Latin translation of

Hero’s ‘‘Pneumatica’’(1575) [3]. Substitution of some de-

vice, ‘‘thermoscope,’’ for human body then started objecti-

fication process, resulting eventually in a definition of a new

physical quantity, temperature. It was clear very early that

the key for the quantification of thermal phenomena was just

the understanding to these devices. Skipping now the

otherwise interesting history [4] of experimentation with

various thermoscopes and thermometers, we turn our atten-

tion rather to their modern description.

Adequate for a systematic approach to the thermoscopic

devices is a theory of homogeneous two-parameter sys-

tems. Generally, the state of any homogeneous body is

described by a system of empirical constitutive relations

written in terms of suitably chosen parameters. The number

of parameters and constitutive relations can be, however,

according to so-called Fürth’s conjecture [5], stepwise re-

duced by keeping arbitrarily chosen parameters constant.

As a result, the body is described completely by only two

parameters coupled by a single constitutive relation, pro-

vided that the external conditions remain constant. As can

be shown, it is, moreover, possible to choose the couple of

two remnant parameters, X, Y, in such a way that it satisfies

the following dimensional relation (square brackets mean

here the physical dimension of the quantity enclosed)

Energy½ � ¼ X½ � � Y½ � ð2Þ

in which one of the quantities, say X, is intensive while the

other one, Y, is extensive [6]. Such a couple of quantities

obeying relation (2) are then called a couple of conjugate

variables. For example, in mechanics the role of conjugate

variables play a generalized coordinate and a generalized

force, the product of which constitutes the term entering

the energy balance equation. The existence of the intensive

and extensive ‘‘aspects’’ of heat which was already rec-

ognized by Black [7] is thus in this context the discovery of

primary importance for the formalization of theory of heat

and its compatibility with other branches of physics. His

‘‘intensity of heat’’ and ‘‘matter of heat’’ can be, namely,

quite naturally assigned to a certain couple of conjugate

variables, tentatively called ‘‘temperature’’ and ‘‘heat.’’

The treatment of real systems in terms of conjugate

variables enables one to introduce fundamental concepts of

thermal physics without a priori reference to thermal phe-

nomena per se. A primary role plays here the procedure

used in practical thermometry for proving ‘‘thermal con-

tact,’’ so-called correlation test which provides simulta-

neously the basis for an operational definition of diathermic

and adiabatic partitions [8], viz: Let us have two systems

characterized by two couples of conjugate variables (X,

Y) and (X0, Y0), respectively, which are separated by a firm

partition. The partition is then called diathermic if the

changes of (X, Y) induce changes of (X0, Y0) and vice versa

(positive result of correlation test). In the case of a negative

result of the correlation test, the partition is called

adiabatic. These definitions enable one also to extend the

concept of equilibrium to the region of thermal phe-

nomena. Indeed, taking into account the standard formu-

lation for the equilibrium state of a two-parameter system:

‘‘Any state of a body in which conjugate variables remain

constant so long as the external conditions remain un-

changed is called equilibrium state’’ and adding then the

concept of diathermic partition, we obtain a definition

(i) If two bodies being separated by a diathermic

partition are both in equilibrium state, they are in

thermal equilibrium.

In the frame of the theory of two-parameter systems, a

thermoscope can be then formally introduced by the fol-

lowing definition (cf. [9]):

(ii) Thermoscope is any two-parameter system in which

one of the conjugate variables, say Y, is fixed (Y = Y0).

It is further assumed that the thermoscope can be

brought into diathermic contact with other bodies and

that it is sufficiently small in comparison with these
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bodies, in order not to disturb their thermal equilibrium.

The second conjugate parameter is then called a

thermoscopic variable.

Thermoscopic states

Notice that in definition (ii) we have in fact applied Fürth’s

parameter reduction to the two-parameter system. For re-

sulting single-parameter system at constant external con-

ditions, however, X should be constant. Any change of

thermoscopic variable X thus reveals a change of external

conditions vicinal to thermoscope. Since such a change is

not due to the change of parameters which are under our

control, it is assumed that it is a result of till now un-

specified thermal effects which can be observed just in this

way. These important facts are sometimes referred to as the

residual nature of thermal effects [10].

Thermoscopic variables are generally of quite a diverse

physical nature. Length, volume, resistance, voltage, fre-

quency, and many others may be chosen for variable X. (For

the sake of brevity, we are not distinguishing in this paper

symbols for physical quantity and its numerical value.) To

distinguish among various thermoscopic variables, different

thermoscopes and physical conditions under which they op-

erate small Latin indexes are used. According to this con-

vention, reading Xk(P) of k-th thermoscope which is in

diathermic contact with a body under investigation corre-

sponds to the thermoscopic state P of the body. The whole set

of the thermoscopic states which can be observed in this way is

then marked as Hk. Notice that the readings Xk are related to

the thermoscope, while the indicated thermoscopic state such

as P [ Hk already relates to the body. Obviously, the ther-

moscopic state P can be shared by other bodies in the Universe,

e.g., by those for which the reading on the k-th thermoscope,

being with them in diathermic contact, is just Xk(P).

Taking now into account some requirements on the

mathematical structure of thermoscopic variables Xk, im-

portant properties of sets Hk may be found. For example, it

can be assumed that thermoscopic variables are commen-

surable quantities (Cf. Mareš JJ. invited lecture: Mathe-

matical Structure of Physical Quantities, Fourth IC-FQMT

Prague 2013), in contrast to our previous work [11], where

thermoscopic variables were considered to be real, i.e., that

Xk [ Ik, for every index k, where Ik means a certain seg-

ment of rational numbers (Ik , Q, Xk [ Q). If then for

every couple of thermoscopic states P, Q [ Hk

P 6¼ Q; , Xk Pð Þ 6¼ Xk Qð Þ; ð3Þ

the set Hk can be ordered (�, �) in accordance with an

intrinsic order already existing in the rational segment Ik,

(\, [) respecting the following equivalences:

P � Q, Xk Pð Þ\Xk Qð Þ
P � Q, Xk Pð Þ[ Xk Qð Þ
P ¼ Q, Xk Pð Þ ¼ Xk Qð Þ

ð4Þ

Of course, we have here a liberty to choose the ‘‘arrow’’

of ordering, substituting the symbols \, [ for [, \. Rela-

tion (4) ensures simultaneously that the topological fea-

tures of rational segment Ik are preserved also in the set Hk,

namely, that Hk must be countable and dense in itself [12].

There is another, quite a natural physical requirement

which guarantees the consistency of the concept of ther-

moscopic states known as a principle of indifference [10]:

(iii) Different thermoscopes operating in the common

range of thermoscopic states should distinguish any two

different states P = Q, P, Q [ (Hk \ Hj), regardless of

their constructions, thermometric substances, and ther-

moscopic variables used.

The validity of this principle can be in any particular

case tested experimentally constructing the so-called Du-

long–Petit plot for two thermoscopes k and j [13]. It is a

locus of readings Xk versus Xj if both thermoscopes are

kept in diathermic contact with the same thermal bath.

Obviously, if such a plot is in a certain range monotonic,

the thermoscopes satisfy there the principle of indifference.

A thermoscope using as thermometric fluid pure water may

serve as a good example of application of the principle of

indifference. The Dulong-Petit plot with respect to practi-

cally all other thermometers reveals there, due to the well-

known water anomaly [14], in the neighborhood of *4 �C

non-monotonic behavior. However, in the ranges between

say 1 and 4 �C and between 4 and 100 �C, the principle of

indifference is valid so that the water dilatometer can be in

these ranges used as a regular thermoscopic device.

Fixed points, Mach’s postulates

A serious obstacle for the development of thermometry

was an appreciable irreproducibility of early thermoscopes.

The attempts to solve this problem by making exact copies

of a standard instrument were only partially successful

[15]. An important qualitative step toward the scientific

thermometry was therefore the discovery and general use

of fixed thermometric points (shortly fixed points) serving

as a fiducial points for thermoscopes of any kind [16]. (As

examples of fixed points may serve melting or boiling

points of water, boiling point of helium, melting point of

platinum, etc., all at normal atmospheric pressure). Indeed,

the use of various fixed points, the common properties of

which are specified bellow, increased the reproducibility of

readings of thermometric devices appreciably.
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(iv) There exist in definite way prepared bodies called

fixed (thermometric) points, which unambiguously de-

fine certain thermoscopic states, i.e., enable their iden-

tification or reestablishment. The fixed points constitute

a set of fixed points [F.

As was recognized just before the end of nineteenth

century, the significance of fixed points is not confined only

to a calibration of thermoscopes, but that it has a primary

importance also for the theory of thermometry. We have to

mention here especially two facts neglected for a long time,

namely, that it is always possible to find in an operation

range of any thermoscope a sufficient number of fixed

points enabling its calibration and that it is always possible

to find out fixed points outside of any interval of thermo-

scopic states. Apparently, there are no principal but only

technical limits on preparation of new fixed points. Gen-

eralization of these empirical observations by means of

incomplete induction is due to E. Mach formulated the

following Mach’s postulates [13]:

(v) (1) Fixed points can be ordered (�, �)

(2) To every fixed point can be ever found a fixed

point which is lower (�) or higher (�)

(3) An inter-lying fixed point can be ever constructed

In terms of mathematical set theory [12], these three

Mach’s postulates can be put into a more condensed form:

(vi) The set of fixed points F is an infinite countable

ordered dense set having no first and no last point.

It should be stressed here that veracity of Mach’s postulates

was never disproved by experiment. Speaking for a while in

terms of Kelvin’s temperature, the temperatures observed

range from *10-10 K (Low Temperature Lab, Helsinki

University of Technology) up to *109 K (supernova explo-

sion) without any traces that the ultimate limits were actually

reached. Speculative upper limit provides only the so-called

Planck temperature TP ¼
pð�hc=GÞ � c2=kð Þ � 1:417�

1032 K, hypothetically corresponding to the first instant of the

Big Bang and depending on the assumption that the constants

c, G, and k involved (speed of light, gravitational constant, and

Boltzmann’s constant) are really universal. Therefore, the

conjectures involved in Mach’s postulates, i.e., that the set

F and consequently hotness series H (see below) has no

highest and no lowest point, is obviously operating at least for

all thermal phenomena already known.

Hotness series, empirical temperature scale

Since, as we have seen above, for any fixed point P [ F,

there exists a point P [ Hk, which means that the set F can

be ordered by means of essentially the same relation (�, �)

as Hk, (first Mach’s postulate). Giving to these statements a

physical meaning, we can say that the calibration of ther-

moscopes using fixed points can be interpreted as an

ordering of set F. On the other hand, fixed points are very

useful for sewing up together overlapping sets of thermo-

scopic states, Hk. In order to cover much larger range of

thermoscopic states, it is, namely, necessary to combine the

thermoscopes of different construction, very often working

with different thermoscopic variables. Operational method

for sewing up together overlapping sets of thermoscopic

states can be described as follows (cf. [17]).

Let us assume that two sets of thermoscopic states

overlap, i.e., that Hk \ Hk?1 = [. In order to realize this

fact in experiment, one has to find a fixed point P [ F for

which the corresponding thermoscopic state P belongs to

both sets Hk and Hk?1, i.e., P [ Hk, Hk?1. Without loss of

generality, we can further construct the subsets H0k , Hk

and H0k?1 , Hk?1 in such a way that Q � P for every Q [
H0k and R � P for every R [ H0k?1. Obviously, ordering of

thermoscopic states in sets H0k [ H0k?1 = Hk [ Hk?1 will

correspond below P to the ordering in Hk and above P to

that in Hk?1. Applying repeatedly the procedure just de-

scribed and simultaneously looking for new fixed points

and for new physical effects enabling the construction of

new kinds of thermoscopic devices, we can built a chain of

Hk’s more and more extending the region of accessible

thermoscopic range. Sharing then the belief of professor

Mach that such a procedure is limited only by our skills, we

can assume that it is possible to construct the set involving

all thinkable thermoscopic states,

H ¼ [kHk; ð5Þ

which is called hotness series and the elements of which are

called hotness levels (renamed thermoscopic states). As for

topological properties, the hotness series, being a countable

union of countable sets Hk (notice, the number of thermo-

scopes is countable), is also countable. Moreover, because

the cardinality of both sets H and F is the same, these sets

are equivalent (F () H) and due to the fact that the order

in F is induced by the order in H (�, �), one-to-one order-

preserving mapping can be established between F and H.

Putting now all these facts together, we are in position to

define empirical temperature scale, which is a projection of

an abstract set, hotness series H, representing in a philo-

sophical sense something as a ‘‘platonic idea of tem-

perature,’’ on the set of numbers.

(vii) Empirical temperature scale h is any order-

preserving one-to-one mapping of hotness series H on

a segment of rational numbers (h [ Q).

An empirical temperature scale h just defined enables

one to reestablish hotness levels [H and even perform

some scientific measurements; however, it does not
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represent actual physical quantity which is necessary for

theoretical treatment of effects observed. Moreover, em-

pirical temperature scales, being only order invariant,

provide an enormous room for anthropic constructions. To

convert such arbitrary empirical scales into the scales

defining a regular physical quantity, temperature, it is

necessary to take into account some reasonably chosen

auxiliary criteria. There are essentially four types of scales

assigning the numbers to entities enabling their quantifi-

cation in this way. These scales are classified according to

their invariance with respect to various mathematical op-

erations [18]. One can thus distinguish nominal, order,

interval, and ratio scales, which are invariant to permuta-

tion, order-preserving, linear, and similarity group of

transformations, respectively. In physics, in contrast to,

e.g., psychology, we are as a rule satisfied only with the

most perfect type of the scale, ratio scale, which is the only

one generating physical quantity. The auxiliary condition

we are looking for thus should select from the whole class

of empirical scales its subclass, which would be invariant

with respect to similarity transformations, i.e.,

h ¼ ah0: ð6Þ

In other words, all the alternative temperature scales

defining the temperature being a physical quantity can

therefore differ only by a constant similarity factor a. In-

herent property of this group satisfying condition (6) is the

existence of common limit for h ? 0. This common limit

performs not a common value, but it is a common greatest

lower bound for values of all h’s. Indeed, according to

second Mach’s postulate, F and consequently H have no

lowest points, i.e., there cannot be such a hotness level P [
H for which h(P) = 0. Accepting thus Mach’s postulates

and the requirement that the temperature is a regular

physical quantity, the law of unattainability of absolute

zero temperature [19] must be satisfied automatically,

without problematic ‘‘proofs’’ which can be currently

found in the literature [20].

Carnot’s principle and Kelvin’s proposition

Among various auxiliary criteria applicable to the conver-

sion of empirical scales into ratio scales broke through two

idealized anthropic models of reality, namely, ideal heat

engine and ideal (perfect) gas. The first idealization took its

origin in early experiments on the development of me-

chanical work by means of heat engines. In spite of the fact

that these experiments were rather primitive and of doubtful

accuracy, their analysis enabled S. Carnot to introduce some

important theoretical concepts, such as the cyclic process for

periodically working engine and reversible process for the

case where the heat engine works without wastes and gen-

eration of heat. For heat engines utilizing then the cyclic

reversible process (so-called ideal heat engines), Carnot was

able to formulate the following theorem (‘‘principle’’) which

in its original version reads [21]

(viii) The motive power of heat is independent of the

agents set at work to realize it; its quantity is fixed solely

by the temperatures of the bodies between which, in final

result, the transfer of the caloric occurs.

Regardless of its archaic form and of the use of different

terms for the apparently same thing (heat, caloric) the

principle can be mathematically formulated as

L ¼ 1Fðh1; h2Þ; ð7Þ

where L is the motive power or work done, 1 is the non-

specified extensive quantity representing reversibly trans-

ferred heat, and h1 and h2 are the empirical temperatures of

heater and cooler, respectively. Formula (7) may be

rewritten also in the form emphasizing the role of differ-

ence of empirical temperatures

L ¼ 1F0ðh1Þ ðh1 � h2Þ; ð8Þ

where the correction function F0(h) is called Carnot’s

function [22]. Using for the cooler of heat engine, e.g., a

bath with melting ice or with boiling liquid helium, this

bath can serve simultaneously as a fixed point keeping the

temperature h2 and as a mean for measuring the trans-

ferred heat 1. (Heat is then measured by an amount of

melted ice or of evaporated helium). Changing the heater

temperature, Carnot’s function can be determined ex-

perimentally from relation (8) as a function of h1. At this

stage, a revolutionary step toward the definition of tem-

perature scale independent of particular type of ther-

mometer and thermometric substance was made by Lord

Kelvin [23]. He proposed to treat Carnot’s theorem not as

a heuristic statement deduced from experiments of rather

a limited accuracy, but as a fundamental principle of

absolute validity (Kelvin’s proposition). Since accord-

ingly, Carnot’s function must be the same for all sub-

stances; it can depend only on the empirical temperature

scale h used. Mutatis mutandis, prescribing then a con-

venient analytical form to Carnot’s function instead of

determining it experimentally, an ‘‘absolute’’ (substance

and device independent) temperature scale will be

unambiguously defined. Giving to Carnot’s function the

simplest permissible analytical form

F0ðh1Þ ¼ 1; ð9Þ

we obtain from (8) a relation defining Kelvin’s temperature

scale (h1 and h2 are renamed here to T1 and T2,

respectively)

Do we know what the temperature is? 227

123



L=1 ¼ b T1 � T2ð Þ; ð10Þ

where the numerical factor b depends only on the system

of units chosen for the measurement of work and heat.

Remarkably, the definition proposed is based on the

caloric theory of heat and on the acceptance of prescrip-

tion (9) called sometimes ‘‘caloric gauge’’ [24]. Accord-

ing to this theory, the temperature (intensive aspect of

heat) plays the role of potential [25] of substance-like

entity called caloric (extensive aspect of heat) and the

corresponding quantities T and 1 make up a couple of

conjugate variables obeying dimensional equation quite

analogous to (2), i.e.,

Energy½ � ¼ T½ � � 1½ �: ð11Þ

Similar approach to the definition of temperature in the

frame of dynamical theory of heat, thermodynamics, is

rather difficult. According to Joule’s ‘‘principle of

equivalence of energy and heat’’ [26, 27], namely,

L=1 ¼ J; ð12Þ

where the dimensionless constant J is known as a me-

chanical equivalent of heat (J = 4.18 J cal-1). Identifi-

cation of heat with a special form of energy makes the

term F0(h1)(h1 - h2) in (8) constant, what effectively

separates temperature from heat. Moreover, temperature

and heat are no more conjugate variables (Joule =

Kelvin 9 Joule) and the ‘‘thermal term’’ in the energy

balance equation must be written using a somewhat arti-

ficial quantity, entropy [28], of not very clear phe-

nomenological meaning. As a result, in thermodynamics,

we have for extensive aspect of heat instead of one, two

extensive quantities, heat (=form of energy) and entropy

[29]. Joule’s arbitrary postulate, ‘‘the principle of

equivalence,’’ sometimes proclaimed to be one of the

‘‘greatest achievements of experimental science’’ [30],

which it is not, thus enormously complicates not only the

introduction of temperature but also the conceptual basis

of thermal physics as a whole [31]. The author is con-

vinced that just this fact is responsible for rather a poor

understanding of the concept of temperature as has been

mentioned in the introduction.

Ideal gas scale

An alternative approach to the construction of temperature

scale (T�) is based on the hypothetical substance known as

an ideal (perfect) gas. This idealization generalizes the

most salient common features of real rarified gases where

the long-range interaction between gas molecules is re-

duced. The constitutive relation controlling the behavior of

the ideal gas thus reads

T	 ¼ pV=nR; ð13Þ

where p and V are, respectively, the pressure and the vol-

ume of n moles of ideal gas closed in the thermometer bulb

and R is the gas constant (R = 8.3145 J K-1 mol-1).

Formula (13) reveals remarkable symmetry with respect to

quantities p and V so that we can exploit anyone of these

two quantities as a thermoscopic variable keeping the other

constant. Comparing these two cases, inevitably:

T	p ¼ T	V ¼ T	; ð14Þ

where T	p and T	V are temperatures determined by means of

constant pressure and constant volume method, respec-

tively. The exact realization of condition (14) in ex-

periments with real gases and with prescribed high

accuracy (typically of order 0.1 %) is a very difficult task.

However, Berthelot [32] devised a simple graphical

method which enabled one to extrapolate experimental data

obtained in real gases at finite pressures to the case cor-

responding to the ideal gas and finally determined also the

value of T� satisfying conditions (14).

Let us now compare the properties of empirical scale

(13) with Kelvin’s scale as defined by relation (10). For this

purpose, we will make a thought experiment with gas

thermometer filled with an ideal gas and treated as an ideal

heat engine. Let us realize a reversible cycle C consisting

of two isothermic processes at temperatures T	1 and T	2
completed by two isochoric processes at volumes V1 and

V2, respectively. The work done will be according to

Eq. (13)

L ¼C

Z
pdV ¼ ðT	1 � T	2 ÞnR ln V2=V1ð Þ: ð15Þ

Identifying the heat 1 transferred during the cycle via the

ideal gas from heater to cooler with the second term on the

right side of Eq. (15), i.e.,

1 ¼ nR ln V2=V1ð Þ; ð16Þ

we can rewrite Eq. (15) in the form

L=1 ¼ ðT	1 � T	2 Þ: ð17Þ

Evidently, this formula is fully congruent with Eq. (10)

defining Kelvin’s temperature scale. Moreover, by a proper

choice of constant factors involved, it is possible to

transform linear relations (10) and (17) into the same ratio

scale, T� = T. Such a reduction in number of arbitrary

parameters may be effectively achieved by calibration. For

properly calibrated scales T� and T, the following theorem

can be then formulated:

(ix) Measurement of temperatures by means of ideal gas

thermometer is equivalent to the measurement of

temperatures by means of ideal heat engine.
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This theorem is of primary importance in thermal phy-

sics, both experimental and theoretical. While Kelvin’s

scale based on reversible cycle of ideal heat engine enables

one to perform thought experiments in energy representa-

tion, the ideal gas scale imitating in fact the behavior of

real gases is closer to the experiment and to the molecular

model of matter. Theorem thus serves as a bridge inter-

connecting epistemologically different concepts of thermal

physics.

Calibration of Kelvin’s scale

In order to finish establishment of temperature ratio scale

defining the physical quantity, temperature, it is thus nec-

essary to perform a calibration procedure.

For calibration of thermometers and definition of em-

pirical temperature scales, two alternative methods were

traditionally used. The first one, independently proposed by

Boyle, Hooke, and Huygens in second half of the seventeenth

century [15, 33], each mark on the scale of thermoscope

corresponded to an expansion or contraction about 1/1,000 of

the volume of the thermometric fluid at an ice point (fixed

point, where the water just begins to freeze at normal pres-

sure). According to the second method, widely used by, e.g.,

Roemer, Fahrenheit, Réaumur, and Celsius [34], the scale of

thermometer is calibrated by dividing the interval between

marks corresponding to two fixed points into equal parts. The

main disadvantage of both these methods, i.e., the depen-

dence on the properties of thermometric substance and de-

vice used, was, as we saw above, successfully eliminated by

Kelvin’s construction. For establishment of Kelvin’s ratio

scale represented by one of the straight lines of group (6), it is

thus sufficient to choose only one fixed point (the second one

is the common ‘‘unattainable’’ zero), while no reference to

thermometric substance is required. At present, it is instead

of ice point as a fiducial fixed point used the triple point of

water [35, 36] which was recognized to be the most accurate

temperature standard available, independent of external

conditions [37, 38]. The triple point of water is realized by a

quartz cell containing pure air-free water with well-defined

isotopic composition (corresponding to the Viena Standard

Mean Ocean Water), enabling coexistence of all three phases

of water, i.e., of ice, liquid water, and water vapor. The

nominal value of this fixed point being 273.16 K exactly has

precision (reproducibility) better then \0.1 mK and drift

\0.01 mK year-1 [35].

Conclusions

Summarizing, in this paper we have shown that the present

central concept of thermal physics is based on two

experimentally accessible entities, a set of fixed points

F and a hotness series H, which are mathematically

ordered countable sets dense in themselves. Any empirical

temperature scale is then defined by otherwise arbitrary

one-to-one order-preserving mapping on some rational

segment. From the whole system of possible empirical

temperature scales, a subset of temperature scales for

which the empirical temperature has properties of a regular

physical quantity is selected by means of two idealized

anthropic models, namely, ideal heat engine and ideal gas.

Besides the epistemological aspects of our analysis of the

concept of temperature, the knowledge of logical structure

of the introduction of this important physical quantity,

which is only partially discussed in the current literature,

may have also a practical impact. It enables one, e.g., to

extend considerations on essentially non-equilibrium

situations [39, 40] and to suggest the solutions of some

difficult problems in relativistic thermodynamics [41] or in

solid-state physics [42].
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4. Mareš JJ. On the development of the temperature concept.

J Therm Anal Calor. 2000;60:1081–91.

5. Fürth R. Algemeine Grundlagen der Physik, Prinzipien der

Statistik. In: Thirring H, editor. Handbuch der Physik Bd. IV.

Berlin: Springer; 1929.

6. Palacios J. Dimensional analysis. London: Macmillan & Co;

1964.

7. Black J. Lectures on the elements of chemistry. Edinburgh: W.

Creech; 1803, German translation: Vorlesungen über die Grun-

dlehren der Chemie. Hamburg: Crell; 1804.
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13. Mach E. Die Principien der Wärmelehre. Leipzig: Verlag von J.

A. Barth; 1896.

14. Epstein PS. Textbook of thermodynamics. New York: Wiley;

1954.

15. Boyer CB. Early principles in the calibration of thermometers.

Am J Phys. 1942;10:176–80.

Do we know what the temperature is? 229

123



16. Hoppe E. Geschichte der Physik. Braunschweig: Vieweg und

Sohn, a. G.; 1926. p. 170.

17. Serrin J, ed. The concepts of thermodynamics. In: Contemporary

developments in continuum mechanics. Amsterdam: North-Hol-

land Publ. Co.; 1978. pp. 411–451.

18. Stevens SS. On the theory of scales of measurement. Science.

1946;103:677–80.

19. Nernst W. The new heat theorem. Reprint: New York: Dover

Publications, Inc.; 1969.

20. Boas ML. A point of logic. Am J Phys. 1960;28:675.
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