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Abstract We present an analytical model for the lattice

thermal conductivity of semiconductor nanostructures,

based on solving the Boltzmann transport equation in the

relaxation time approximation. The improved model is

then used to predict the lattice thermal conductivity of

three samples of silicon nanowire (Si NW) with diameters

50, 98, and 115 nm. Derived formulas of the lattice thermal

conductivity and correction term are presented, which

differs from that of Callaway in that it considers the

acoustic phonon dispersion relation. Combining the scat-

tering relaxation rate for phonon–phonon, mass difference

and boundary was carried out in the analysis of the

experimental data and also considering the separate con-

tributions for transverse and longitudinal phonons. The

present theoretical model of lattice thermal conductivity

agrees well with the available experimental data of Si NW

over a wide range of temperature.

Keywords Nanostructure � Dispersion relation � Lattice

thermal conductivity � Silicon nanowire

List of symbols

K Lattice thermal conductivity

DK Correction term

gðxÞ Density of state

Cv Specific heat

x Dimensionless parameter

vs Phase velocity

v Group velocity

hD Debye temperature

sC Combined scattering relaxation rates

sN Relaxation rate of normal process

sU Relaxation rate of Umklapp process

NqðkÞ Displacement distribution function

No
q Equilibrium distribution function

rT Temperature gradient

s�1
B

Boundary scattering relaxation rate

s�1
M

Mass difference scattering relaxation rate

s�1
3ph

3-Phonon scattering relaxation rate

Introduction

One-dimensional (1D) materials such as various kinds of

nanowires and nanotubes have attracted considerable

attention due to their potential application in electronic and

energy conversion devices [1–3]. The study of lattice

thermal conductivity of semiconductor nanowires plays a

crucial role in the development of a new generation of

thermoelectric materials [4]. It is then very clear that the-

oretical prediction of the thermal conductivity of the

nanowires prior to their fabrication is a desirable goal, both

from the applied and basic research points of view. Ther-

mal transport, in semiconductor nanowires, is strongly

influenced by boundary scattering even at room tempera-

ture [5–7]. In rough silicon nanowires, the boundary scat-

tering leads to a decrease in thermal conductivity with

respect to bulk [5, 8], which has opened up possibilities of

using this structures as efficient thermoelectric materials

[9]. The reduction of nanowire thermal conductivity with

respect to bulk attributed to the change in the phonon

density of states and phonon boundary scattering [10]. It is

now widely accepted that the thermal management in

nanostructure devices becomes increasingly important as
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the size of the device reduces. Reducing the size of

nanostructures [11] and surface decoration [12] have also

been shown to promote boundary scattering and lead to a

thermal conductivity decrease. Donadio and Galli [11]

found that the computed thermal conductivity strongly

depends on the surface structure. It may be as high as that

of bulk Si for crystalline wires, while wires with amor-

phous surfaces have the smallest thermal conductivity,

about 100 times lower than the bulk. Li et al. [13] measured

the thermal conductivity of Si NW with diameters of 22,

37, 56, and 115 nm over a temperature range of 20–230 K.

For the smaller diameter wires, the deviation from Debye

T3 law can be clearly seen at low temperature. Their results

show that besides phonon boundary scattering, some other

effects could play important role. In the frame of Callaway

model, Mingo et al. [14, 15] attempted to calculate the Si

NW thermal conductivity by omitting the normal pro-

cesses, and considering, in addition to the resistive phonon

mechanisms arisen from Umklapp processes, crystal

imperfections scattering, and boundary scattering. The

approach of Mingo employs the full phonon dispersion

relation of material. Only bulk data are used as inputs for

the calculation. Measurements of the effect of defects on

lattice thermal conductance in the nanowire structure also

showed the decrease of thermal conductance at low tem-

perature [16]. Huang et al. [17] theoretically achieved a

direct measurement of lattice thermal conductivity of a

hollow Si NW under the relaxation time approximation.

Their results show that the thermal conductivity is

decreased markedly below the bulk value due to phonon

confinement and boundary scattering.

It is well known that when the size of a bulk material

reduces to the range of nanoscale. Investigation on the

effects of nanoscale size dependent parameters on lattice

thermal conductivity are predicted using the Debye–Call-

away model including transverse and longitudinal modes for

Si NW [18]. Recently Kazan et al. [19] presented a rigorous

analysis of the thermal conductivity of bulk and nanowire

silicon which takes into account the exact physical nature of

the various acoustic and optical phonon mechanisms. They

derived formalism for the lattice thermal conductivity that

takes into account the phonon incidence angles. Thermal

conductivity of thin Si NWs as a function of decreasing

nanowire diameter shows an expected decrease due to

increased surface scattering effects. The thermal conduc-

tivity data at very small diameter (\1.5 nm) shows an

increasing nature, which is attributed to the phonon con-

finement effect [20]. Alan et al. [21] proposed a high tem-

perature analytical model for the size dependence of thin

film and nanowire thermal conductivity that requires no

fitting parameter. They compared the predictions and

experimental measurements on silicon structures.

Previously, an approximate method was developed by

Callaway [22] to obtain an expression for the lattice ther-

mal conductivity at low temperatures. Several approxima-

tions have been assumed to get this formula, which can be

summarized as follows: (1) The Debye model has been

used, which represents a simple linear dispersion relation

for each branch of the phonon spectrum (this is the limiting

form for small wave vector in real crystals). Consequently,

he has employed the group velocity to be equal to the phase

velocity. (2) It is assumed that the deviation from equi-

librium is small, so he has replaced the phonon distribution

function by equilibrium one. (3) Making no distinction

between the contributions due to transverse and longitu-

dinal phonons. Ever since, it has been widely used for the

interpretation and analysis of thermal conductivity data in

different classes of materials [14, 18, 21, 23–26]. A great

deal of effort has been devoted to modifying Callaway

model [27–29].

Here, we propose a theoretical model for calculating the

lattice thermal conductivity and the correction term in

nanostructure materials. They are based on the solution of

phonon Boltzmann transport equation, which takes into

account the role of the dispersion relation. To test the

applicability of the expressions proposed, the lattice ther-

mal conductivity of Si NWs with diameters of 50, 98, and

115 nm are calculated between temperatures of 2 and

350 K, and comparing them with that of the experimental

data, with detailed exposition to the role of the physical

parameters. Conclusions are reported in the last section. In

addition to the three-phonon scattering, we consider other

phonon scattering such as boundary and point defect.

Theory

Theoretical background

It is well known that the lattice thermal conductivity is

represented by

K ¼ 1

3

X

q~

Cti
ðxq~Þsiðq~Þt2

i : ð1Þ

The average energy of a mode in thermal equilibrium is

found by summing all possible energy value each weighted

by the probability of its occurrence, and the total vibration

energy for a solid at temperature T is summed over all

normal modes. Since all solids have large number of nor-

mal modes, the spectrum can be treated as continuous, so

the total energy is

ET ¼
X

i

�hx

ðe�hx=KBT � 1Þ gðxÞdx ð2Þ
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and the specific heat per normal mode for frequency x is

Cti
ðxÞ ¼ �h2

KBT2

Zxm

0

HðxÞgðxÞdx: ð3Þ

Then Eq. (1) has the form

K ¼ �h2

3KBT2

X

i

Zxm

0

sðq~; iÞt2ðq~; iÞx2HðxÞgðxÞdx; ð4Þ

where

HðxÞ ¼ eð�hx=KBTðe�hx=KBT � 1Þ�2 ð5Þ

and gðxÞdx represents the density of phonon states,

gðxÞdx ¼ NV

2p2
q2dq: ð6Þ

Here, N and V are number and volume of the primitive cell,

respectively.

Model development

Lattice thermal conductivity

Consider a one-dimensional monatomic lattice with a lat-

tice constant a in which forces are assumed to act between

one atom and its first nearest neighbors. The possible

angular frequencies of the modes in which all atoms vibrate

with the same frequency vary with wave vector according

to the relation [30].

x ¼ xm sinð�qa=2Þ: ð7Þ

Thus gðxÞdx can be expressed as

gðxÞdx ¼
4V0 sin�1ðx=xmÞ
� �2

dx

p2a3xm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=xmÞ2

q : ð8Þ

Thus, the phase and group velocities can be written as

ts ¼
ax

2 sin�1ðx=xmÞ
ð9Þ

t ¼ axm

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=xmÞ2

q
: ð10Þ

The lattice thermal conductivity per unit volume reduces

to

Ki ¼ chi

Zhi=t

0

sc;ix
2QiðxÞFiðxÞM2

i ðxÞdx; ð11Þ

where

c ¼ ðK3
BT=3p2a�h2Þ ; ð12Þ

hi ¼ �hxim=KB ; ð13Þ

QiðxÞ ¼ exðex � 1Þ�2; ð14Þ
x ¼ �hx=KBT ; ð15Þ

FiðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðTx=hiÞ2

q
; ð16Þ

and

MiðxÞ ¼ sin�1ðTx=hiÞ
� �

ð17Þ

where the h ’s are the temperature relating to the Brillouin

zone boundary in the ith branch and sc;i are the combined

scattering relaxation time. Taking into account the three

types of polarization modes, the lattice thermal conduc-

tivity is then given by

K ¼ 2KT þ KL ð18Þ

Correction term DK

All phonon scattering processes have a direct effect on

thermal conductivity by restoring a non-equilibrium dis-

tribution to equilibrium situation. The normal processes

play a special role in the estimation of thermal conduc-

tivity, since they are the only Momentum-conserving

scattering processes, which are not tend to restore the

equilibrium phonon distribution, and they cannot cause

thermal resistance by themselves. On the other hand, due to

the fact that they exchange energy between modes, normal

processes influence the other scattering processes.

Callaway [22] assumed that normal processes restore an

arbitrary phonon distribution (representing a heat flow) to

the displaced distribution function, which in turn corre-

sponds to the same heat flow but is no longer changed by

normal processes. The relaxation time for such processes is

sN and the relaxation time for processes which restore the

equilibrium distribution function is sU. The total rate of

change of NðqÞ is then expressed as

oNq

ot

� �

scatt:

¼ Nqð�kÞ � Nq

sN

þ
N0

q � Nq

sU

; ð19Þ

where �k is an arbitrary constant vector in the direction of

temperature gradient and Nqð�kÞ, displaced distribution

function, is given by

Nqðk~Þ ¼ exp
�hx� q~:k~

KBT

 !
� 1

 !�1

: ð20Þ

To first order in k~, when �hq~:k~=KBT is small, Nqðk~Þ can

be written as

Nqðk~Þ � N0
q þ

k~:q~
KBT

HðxÞ: ð21Þ

When a steady state has been established using Eqs. (19)

and (21), so the Boltzmann transport equation
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k~:q~
sN

� �hx
T

t~:r~T

 !
QðxÞ
KBT

� nq

sc

¼ 0: ð22Þ

Here, and n = N–N0 and the combined relaxation time sc is

s�1
c ¼ s�1

N þ s�1
U : ð23Þ

Callaway [22] defines a total relaxation time s by writing

nq as

nq ¼ �st~:r~T
�hx

KBT2
QðxÞ: ð24Þ

Now it is desired to determine s (the total relaxation

time) in terms of sc and sN. After substituting Eqs. (23) and

(24) into (22), we get

s
sc

� 1

� �
�hx

KBT
t~:r~T þ k~:q~

sN

¼ 0: ð25Þ

In an isotropic medium, k~/ rT so it is convenient to

introduce another parameter b which has the dimension of

a relaxation time by defining

k~¼ ��hbtstrT=T : ð26Þ

On using

q~¼ t~sx=t
2
s ð27Þ

k~:q~¼ � �hx
ts

btt~s:ðr~T=TÞ: ð28Þ

Accordingly, Eq. (25) simplified to

s ¼ scð1þ ðbt=tssNÞÞ: ð29Þ

The constant b is determined by recalling that the nor-

mal processes conserve momentum. This condition is
Z

oNq

ot

� �

N

q d3q ¼
Z

Nðk~Þ � N

sN

q d3q ¼ 0: ð30Þ

Using the value of Nðk~Þ [Eq. (21)], we can then write

Eq. (30)
Z �n

sN

þ k~:q~
sNKBT

QðxÞ
" #

q d3q ¼ 0: ð31Þ

Following the substitution of Eqs. (24) and (28), the

integral has the form

Z
QðxÞ x

T
t~:r~T s� tb

ts

� �� �
q

sN

d3q ¼ 0: ð32Þ

The value of q d3q can be determined from the disper-

sion relation [Eq. (30)] in terms of the variables x and h, as

q d3q ¼ 64pT

a4h
M3ðxÞ
FðxÞ dx: ð33Þ

Hence, with the help of Eqs. (10) and (33), Eq. (32)

modified to

Zh=T

0

xQðxÞM3ðxÞ ðs� tb=tsÞ
sN

dx ¼ 0: ð34Þ

From Eqs. (9) and (10) we denote to the ratio t=ts as,

t
ts

¼ h
Tx

FðxÞMðxÞ: ð35Þ

On using Eq. (29) for s, Eq. (35) for t=ts and the inte-

gral of Eq. (34), we have

b ¼ I1=
h
T

I2; ð36Þ

where

I1 ¼
Zh=T

0

sc

sN

xQðxÞM3ðxÞdx: ð37Þ

I2 ¼
Zh=T

0

1

sN

1� sc

sN

� �
QðxÞFðxÞM4ðxÞ

� �
dx: ð38Þ

Substitute Eq. (35) in Eq. (29), we can write s as

s ¼ sc 1þ bh
sNTx

FðxÞMðxÞ
� �

: ð39Þ

Recall the value of b from Eq. (37), the lattice thermal

conductivity (Eq. 7) can be rewritten as

Ki ¼ chiI3 þ DK½ �; ð40Þ
DK ¼ chiI1I4=I2; ð41Þ

I3 ¼
Zhi=T

0

scx2QðxÞFðxÞM2ðxÞ
	 


dx; and ð42Þ

I4 ¼
Zhi=T

0

sc

sN

xQðxÞF2ðxÞM3ðxÞ
� �

dx; ð43Þ

where DK is known as the correction term due to the three-

phonon normal processes.

Phonon relaxation rates

In our model, we consider acoustic phonon relaxation in

resistive processes, such as three-phonon normal and

Umklapp scattering, mass difference scattering (isotopes

and impurity), and boundary scattering. The combined

scattering relaxation rates can be obtained by the summa-

tion of the inverse relaxation time for these scattering

processes and in our case it is given as
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s�1
c;i ¼ s�1

3ph;i þ s�1
M;i þ s�1

B;i : ð44Þ

The Normal processes (N) for longitudinal (L) and

transverse phonons (T) are fixed as [31]

s�1
N;T ¼ BN;TxT4 ð45Þ

s�1
N;L ¼ BN;Lx2T3; ð46Þ

While Klemens [32] has suggested the form of Umklapp

(U) processes as

gathereds�1
U;T ¼ BU;TxT3 e�hD;T=aT gathered ð47Þ

s�1
U;L ¼ BU;Lx2T3 e�hD;L=aT : ð48Þ

Impurity scattering process contributes greatly to the

lattice thermal conductivity at low temperatures. The

relaxation rate for mass difference scattering is calculated

using a simple model by Klemens [32]:

s�1
M ¼ Ax4; ð49Þ

where A is the scattering strength parameter.

The important scattering process at low temperature is

that due to the boundary of the solid. The consequence of

this were seen by Casimir [33] who treated the flow of the

phonons as analogous to the flow of the radiation down a

tube having diffusive scattering walls (Theory of black

body radiation). It is also pointed out that the important

phonon wavelength, even at the lowest temperatures,

would be small compared with the roughness of the sur-

face. As a result the boundary scattering relaxation rate is

given by the ratio of the velocity to the characteristic length

of the specimen which is called Casimir length. Thus, the

inverse relaxation time due to boundary scattering of

phonon is

s�1
B ¼ t=d; ð50Þ

where d is the effective diameter of the sample. The scat-

tering strengths BN;i, BU;i, Ai, and s�1
B;i are treated as

adjustable parameters.

Results and discussion

The theoretical KðTÞ curves for three samples of Si NW

obtained with our model are measured in the temperature

range 2–350 K, and plotted in Fig. 1 using solid lines. The

Hochbaum et al. [6] experimental data of Si NWs with

diameters of 50, 98, and 115 nm at a temperature range of

20–320 K have also been shown by comparison. The val-

ues of hD;i and vi are obtained from Kazan et al. [19]. By

adjustment of the scattering strengths (Table 1), the total

thermal conductivity of Si NW has been calculated with

the help of Eqs. (40) and (44). The percentage deviation

in the thermal conductivity is given as % Deviation ¼

KExp: � KTheo:

� �
=KExp:

	 
�� ��� 100 %. The temperature vari-

ation of % Deviation for the three samples is compared in

Fig. 2.

The separate percentage contributions of the transverse

and longitudinal phonons to the total lattice thermal con-

ductivity can be studied with the help of Fig. 3. Figures 4

and 5 show the variation with temperature of DK and %DK

ðDK=K � 100Þ to the total lattice thermal conductivity,

respectively. The percentage contributions of the three-

phonon normal and Umklapp processes to s�1
3ph have also

been studied for both modes of phonons and are illustrated

in Figs. 6 and 7.

As we mentioned earlier, Callaway [22] obtained the

integral expression through various assumptions and

approximations, which appears to be a reasonable first step

in obtaining qualitative fit to thermal conductivity data only

at low temperature [27]. This is undoubtedly attributed to

the fact that Callaway’s form was expressed in terms of

Debye approximation, which is far from reality. It is
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Fig. 1 Temperature dependence of lattice thermal conductivity for Si

NW. Lines are the present theoretical results and symbols are the

experimental data

Table 1 Values of parameters used in the present calculation

Parameter Sample L/nm

50 98 115

s�1
B;Tðs�1Þ1012 4.8 2.3 0.7

s�1
B;Lðs�1Þ1012 1.5 1.5 1.5

s�1
M;Tðs3Þ10�38 30 5.5 4.7

s�1
M;Lðs3Þ10�38 10 4.5 4.5

s�1
N;TðK�4Þ10�10 5.0 2.5 2.0

s�1
U;T ðK�3Þ10�6 6.9 4.85 2.83

s�1
N;Lðs:K�3Þ10�18 6.0 6.0 6.0

s�1
U;Lðs:K�3Þ10�16 7.5 6.5 5.5
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interesting to note that the Debye picture is a good repre-

sentation up to approximately 60 % of the full acoustic

phonon spectrum [34]. We feel that the importance of this

work lies in obtaining a form that is a characteristic of the

crystal. The new feature that we added to the expression of

the lattice thermal conductivity are using the exactly

acoustic phonon dispersion, which are the basic approxi-

mations suggested by Callaway. Thus, a formulation of the

type presented here would eliminate these assumptions and

approximations in the analysis of the lattice thermal

conductivity.

Figures 1 and 2 clearly demonstrate a fairly good

quantitative agreement between the predicted and observed

lattice thermal conductivity of the sample. This agreement

adds support to the wide scope and applicability of the

model proposed, and one can conclude that the new

proposed expressions are successfully employed to explain

the temperature dependence of the lattice thermal con-

ductivity of Si NW. A very slight departure of the calcu-

lated values from the experimental one is observed.

With the help of Fig. 3, it can be concluded that most of

the heat transport by the transverse phonons alone is rele-

vant to the earlier findings [35–38]; it can be confirmed that

the percentage contribution of transverse phonon increases

with temperature, meanwhile the opposite is true for the

longitudinal phonons.

By examining the curves in Figs. 4 and 5, it can be

confirmed that the maximum values of the correction term

ranged from 4.39 10-5 to 1.13 10-3, which reflects that the

maximum values for %dK change from %0.17 for 50 nm

to %1.33 for the 115 nm wire diameter. As shown in these

figures, the correction term is very small compared to the

lattice thermal conductivity of Si NW. The lower values of

the correction term can be explained by the fact that at low
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temperatures, the contribution of s�1
3ph;N is less than the

other scattering relaxation rates. It is worth noting that in

our calculations, we have used the full lattice thermal

conductivity expression (Eq. 40).

Close inspection of Figs. 6 and 7 clearly indicates that at

low temperatures, s�1
N dominates over s�1

U below certain

temperature (which varies according to the diameter), and

the opposite is true above that temperature. In other words,

s�1
N decreases with increasing temperature, an opposite

trend is shown for s�1
U . Meanwhile, one can conclude that

at low temperatures, the most of the heat is transported by

phonons, which conserve momentum, while at high tem-

peratures, the role of those phonon processes, which do not

conserve momentum in the lattice thermal conductivity,

becomes predominant. Previous workers [35, 38–40] find

similar results.

The important scattering process at low temperature is

that due to the boundary of the solid, including crystallite

boundaries for polycrystalline materials. The consequence

of this were seen by Casimir [33] who calculated the

equivalent mean free path as L ¼ D for a cylindrical

specimen with diameter D and L ¼ 1:12b for a square

shape specimen with edge length b. However, it is also

pointed out that the important phonon wavelength, even at

the lowest temperatures, would be small compared with the

roughness of the surface. As a result, the boundary scat-

tering relaxation rate is given by the ratio of the velocity to

the characteristic length of the specimen which is called

Casimir length (L) (s�1
B ¼ t=FL). F (Correction factor)

related to the phonon specularity and should be equal to

one for completely diffused scattering and large than unity

if part of the phonons are specularly reflected. Whenever

partial specular reflection occurs, F takes values between

zero and one. One of the reasons for F � 1 could be the

finite length of the sample and/or the existence of the

internal boundaries due to the microscope fluctuations in

the composition of the compound [41]. Thus, F is related to

the degree of specularity of the boundary scattering. The

boundary scattering rate is the only one that directly

depends on the diameter of the wire s�1
B ¼ t=FD. The

phonon mean free path approaches � FD if the boundary

scattering dominates over other mechanisms. For above

reason, we will show our results in term of d ¼ FD, rather

than D. For the transverse branch, the effective Si NW

diameters are 1.14, 2.42, and 8.22 nm, and 5.23, 5.414, and

5.48 for longitudinal branch, corresponding to the experi-

mental one 50, 98, and 115 nm, implying F � 0.022,

0.024, and 0.07, respectively, while for longitudinal branch

F � 0.104, 0.055, and 0.047, respectively. The decrease in

lattice thermal conductivity for rough Si NWs reported by

Hochbaum et al. [6] clearly indicates that the boundary

scattering in the Si nanowire initially measured by Li et al.

[13] and modeled by Mingo et al. [14, 15] was far from

completely diffusive and the corresponding F value should

be below one.

Conclusions

In summary, this paper presents the resolution of Boltzmann

transport equation to establish formalism for the lattice

thermal conductivity of nanostructure materials that takes

into account the role of phonons dispersion relation. A

model of the type presented here would eliminate Callaway

assumptions and approximations in the analysis of the lat-

tice thermal conductivity. The analysis presented here has

the advantage that it is, in principle, a simple extension of

the existing theories and that it is physically quite plausible.

Phonon dispersion relation modification leads to significant

10 100
0

20

40

60

80

100

Longitudinal phonons

%
 3

–P
ho

no
n 

sc
at

te
rin

g 
re

la
xa

tio
n 

ra
te

Umklapp processes

50 nm

98 nm

Temperature/K

115 nm

Normal processes

Fig. 7 The percentage contributions of the s�1
3ph;N and s�1

3ph;U processes

toward the s�1
3ph for longitudinal phonons of Si NWs

10 100

0

20

40

60

80

100

Transverse phonons

%
 3

 –
P

ho
no

n 
sc

at
te

rin
g 

 r
el

ax
at

io
n 

ra
te

Umklapp processes
50 nm

98 nm

B
B
B
B
B
B

Temperature/K

115 nm

Normal processes

Fig. 6 The percentage contributions of the s�1
3ph;N and s�1

3ph;U processes

toward the s�1
3ph for transverse phonons of Si NWs

Modeling nanostructure lattice thermal conductivity 1465

123



effects on the lattice thermal conductivity formula. The

temperature dependence of lattice thermal conductivity for

the Si NW diameters 50, 98, and 115 nm indicates that the

model used in the present calculation is perfectly applicable

in the full temperature range (2–350 K). We have measured

the correction term, the effective diameters, and the degree

of specularity of the boundary scattering. The surface

specularity of the samples studied appears to be rather low,

suggesting that partial specular reflection occurs. The con-

tribution of the correction term toward the total lattice

thermal conductivity is found to be small and can be ignored

in the calculation of the lattice thermal conductivity of the

samples under consideration. The present calculation fur-

ther establishes that transverse phonons make a major

contribution toward the lattice thermal conductivity of Si

nanowire. The dependence of the three-phonon scattering

on the normal processes becomes more pronounced as the

temperature decreases, while the Umklapp processes do so

as the temperature increases.
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