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� Akadémiai Kiadó, Budapest, Hungary 2014

Abstract The aim of this study is to propose an alter-

native methodology to classify wood species using the

first (DTG), second (2DTG), and third (3DTG) derivatives

of the thermogravimetric curves (TG). Accordingly, the

main contribution of this new procedure consists on

classifying materials (wood) taking into account the mass

loss rate and acceleration with respect to temperature. In

our research, each TG curve is firstly smoothed using the

local polynomial regression estimator, and the first, sec-

ond, and third derivatives are estimated. The application

of the local polynomial regression estimator provides a

reliable way to obtain the TG derivatives, overcoming the

noise problem in the TG derivative estimation. Then,

using these estimated curves, the different wood classes

are discriminated employing a nonparametric functional

data analysis (NPFDA) technique, based on the Bayes

rule and the Nadaraya-Watson regression estimator, and

also novel functional generalized additive models (GAM).

The latter allows to classify materials using simulta-

neously more than one type of thermal curves. The results

are compared with those obtained using classical and

machine learning multivariate supervised classification

methods, such as Linear discriminant analysis, Quadratic

classification, Naı̈ve Bayes, Logistic regression, k Nearest

neighbors, Neural networks, and Support vector machines.

A regression model consisting of the mixture of the first

derivatives of four generalized logistic components, one

per principal wood constituent (water, hemicellulose,

cellulose, and lignin), is applied to fit the DTG curves.

The resulting 16 parameters from this fit characterize each

curve and are used as datasets to apply the multivariate

supervised classification methods. The use of the TG

derivatives jointly with the TG curves has proved to be an

optimal discriminating feature, when the new functional

GAM techniques are employed.

Keywords Wood � Supervised classification �
Nonparametric functional data analysis � Multivariate

analysis � Thermogravimetric analysis � Pyrolysis

Abbreviations

DTG First derivative of the thermogravimetric

curve

2DTG Second derivative of the thermogravimetric

curve

3DTG Third derivative of the thermogravimetric

curve

TG Thermogravimetric curve

NPFDA Nonparametric functional data analysis

GAM Generalized additive models

FTR Fourier transform Raman

NN Neural networks

k-NN k nearest neighbor
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SVM Support vectors machines

PDSC Pressure differential scanning calorimetry

LDA Linear discriminant analysis

NBC Naı̈ve Bayes classifier

FDA Functional data analysis

K-NPFDA Nonparametric functional data analysis based

on kernel methods

IRLS Iteratively reweighted least-squares

ASE Average squared error

MDS Multidimensional scaling

GLM Generalized linear model

Introduction

An important task in wood technology is the correct

identification of different wood species. This is considered

a difficult activity mainly because of the complex structure

of this material. In addition, this task is usually very costly

because it requires highly qualified personnel. Thus, the

application of automatic statistical models for recognition

of wood samples is useful and justified. There are some

papers addressing the problem of wood identification using

different databases obtained with image-based and spec-

trum-based processing systems, and applying pattern rec-

ognition techniques. Non-supervised classification was

developed using Fourier transform Raman (FTR) spec-

troscopy and Neural networks (NN) [1]. Yang et al. [2]

applied NN to FTR spectra to distinguish temperate woods

from tropical woods. Other supervised classification

methods, such as k nearest neighbor (k-NN), linear and

quadratic discrimination, and support vectors machines

(SVM), were employed to classify fluorescence spectra

corresponding to wood of different species [3]. The studies

of Mallik et al. [4], on the one hand, and Bremananth et al.

[5] and Wang et al. [6], on the other hand, represent

interesting alternatives based on image segmentation and

image textural analysis, respectively. Recently, Rojas et al.

[7] used the information provided by stress-wave sounds.

In the context of historical and archeological studies,

thermal analysis techniques and kinetic model applications

have been recently used to identify wood species from a

non-automatic point of view [8, 9]. Using automatic sta-

tistical methods, other alternative approaches to image and

spectrum processing systems, consisting on applying mul-

tivariate and functional statistical techniques to thermo-

gravimetric (TG) and pressure differential scanning

calorimetric (PDSC) curves, have been proposed to solve

the identification problem [10–12]. However, the possi-

bility of using the derivatives of the TG curves (previously

estimated using the local polynomial regression estimator)

as a source of data for statistical classification of wood

species has not been studied yet. Thermogravimetry

involves analysis of mass or mass percentage versus tem-

perature, and also analysis of mass loss rate versus tem-

perature (DTG). The observation of the DTG curves

usually enhances the resolution [13]. This means that DTG

curves are useful to distinguish overlapped mass loss

events, to identify trend and maximum rate of mass loss

processes, and also to identify small mass loss steps [14].

These features could make the DTG curves a successful

tool to classify materials such as wood, with degradation

processes of its main components (cellulose, hemicellu-

lose, and lignin) strongly overlapped [10, 11, 15–17].

However, the process of differentiation applied to obtain

the DTG curves normally produces an increase of noise.

Therefore, data are usually preprocessed (by smoothing or

fitting a parametric or a nonparametric model) to estimate

the corresponding derivative [13]. In the present research,

we tackle this problem, focusing not only on the first TG

derivative (DTG), but also on the second (2DTG) and third

(3DTG) ones. Specifically, the present work should give an

answer to the following questions: Is it possible to observe

differences among wood species in the mass loss rate of

wood samples? and Is it possible to classify woods from

the differences present in the TG curve derivatives?

Wood degradation in an inert atmosphere is dominated

by the degradation behavior of its three main components

[18]: cellulose, lignin, and hemicellulose [16, 18–24].

Cellulose represents about 40–60 % in the mass of dry

wood (being 23–33 % in the case of softwoods), about

23–33 % is lignin in softwoods, being 16–25 % in the case

of hardwoods, and finally 25–35 % is hemicellulose (more

in hardwoods than in softwoods) [1, 22, 25]. The TG or the

DTG curves, describing the pyrolysis of wood, nearly

coincide with the sum of its constituent degradation [19, 24].

Moreover, the proportion of each wood component varies,

to a greater or lesser extent, depending on the species

[16, 20, 22, 23]. Therefore, we can guess the potential of

these curves to classify different wood species. In this

framework, we can stress the work of Dai et al. [26], where

a procedure for the kinetic analysis on the decomposition

of lignocellulosic materials is proposed.

It is important to note that there are no studies about

wood supervised classification using the derivatives of the

TG curves (in many cases, more informative and useful

than the TG curves). In fact, thermal analysis techniques

are not usual in automatic classification tasks. One of the

most important reasons is the relative difficulty to deal with

the information given by a curve of infinite dimension. The

most common way to overcome this difficulty (present in

many problems, corresponding to diverse science fields) is

the reduction of the curve dimension. However, following

this approach, a new problem arises; What features are
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actually representative of each curve? In the present study

and regarding the DTG curves, a nonlinear regression

model, related to logistic mixture regression [10], is pro-

posed to explain the mass loss rate with respect to the

increasing temperature. It consists of four components,

derivatives of the generalized logistic function, one per

principal constituent of wood (hemicellulose, cellulose,

and lignin), and one corresponding to the water mass lost

rate of the sample. The obtained regression parameters

(four for each component, 16 altogether) are used as a

vector of features, summarizing properly the information

given by each curve. Using this procedure, it is possible to

apply multivariate supervised classification methods, such

as linear discriminant analysis (LDA), Logistic Regression,

Naı̈ve Bayes (NBC), k-NN, SVM, or NN.

Some statistical techniques designed to be applied to

functional data (named functional data analysis (FDA)

techniques) have been studied in the last years. They allow

to work with infinite dimensional data (curves or functions)

without having to reduce their dimension. The interest in

FDA methods has increased considerably, because the

technological progress allows collecting observations of

infinite dimensional objects. Some references describing

some of the most popular functional data analysis

approaches are [27–36]. In the present study, we compare

nonparametric functional data analysis (NPFDA), func-

tional generalized additive models (GAM), and classical

multivariate statistical approaches to classify wood sam-

ples from their TG derivatives (TG curves and their

derivatives up to order three). Considering the functional

nature of the curves used here and the generally good

performance of the statistical nonparametric and semi-

parametric methods in other fields, it is expected that

NPFDA and GAM procedures will provide good results in

this framework.

Accordingly, the objectives of this study are

1. Evaluating the potential of the first DTG curves,

second and third TG derivatives as a source of

information for wood classification tasks.

2. Introducing and applying a reliable smoothing method

to overcome the problem of noise in the TG derivative

estimation: the local polynomial regression estimator.

3. Implementing and evaluating the behavior of func-

tional classification techniques. Special attention is

paid to GAM models, because they represent a novel

alternative that enables the use of more than one type

of curves (e.g., TG and DTG curves simultaneously) to

preform wood classification.

4. Comparing the results obtained by NPFDA and GAM

supervised classification techniques with those

obtained using multivariate methods, when the TG

and the DTG curves are used. For this last purpose, a

parametric regression model to summarize a curve

information (infinite dimension) using 16 parameters

(finite dimension) was proposed.

5. Finding the temperature intervals where the highest

probability of correct classification is reached, when

using the NPFDA technique with the DTG curves and

their first and second derivatives. Relating these results

with the degradation temperature ranges corresponding

to the main wood constituents.

Experimental

Seven samples corresponding to seven different wood

species of industrial interest are tested: five hardwoods

(beech or Fagus sylvatica, chestnut or Castanea sativa,

european oak or Quercus robur, jatobá or Hymenaea

courbaril, and Eucalyptus globulus) and two softwoods

(Scots pine or Pinus sylvestris and insignis pine or Pinus

radiata). Seven samples per each species are selected.

They are obtained from wood in the inner part of the trunk

of different commercial planks. The sample mass tested is

between 6 and 8 mg. Although the sample size used in this

experiment is not very large, from our previous experience,

we can deduce that if the samples are obtained from inside

the trunk and are well dried (as it is the case here), the

results are very similar independently from other possible

factors. Therefore, we can assume that the samples con-

sidered in the present research represent quite well the

species. The aim of this sampling process is to obtain a

compromise between capturing the existing variability and

minimizing the time of experimentation. The thermo-

gravimetric tests were performed in a TA SDT 2960 TA

Instruments simultaneous analyzer. The experimental setup

consisted of a 20 �C min-1 linear heating from room

temperature to 600 �C. Open alumina crucibles were used,

and a 50 mL min-1 flow of nitrogen was kept along the

experiments. The nitrogen was purged for 10 min, before

starting the heating program for establishing an inert

environment. That high heating rate is implemented to

obtain a no time-consuming classification procedure, and

also to test the classification methodologies in the worst

conditions.

Statistical analysis: classification and regression

methods

Supervised classification can be defined as a procedure

assigning an instance (a finite dimension vector or a infinite

dimension curve) to a certain group out of several possible

alternatives. This is a process with multiple applications in
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industry, chemometrics, and materials science in general.

The proposed classification methods try to find a relation-

ship between the explanatory variables (multidimensional

vectors or functional data, if it is the case) and a class

indicator or group. The aim is to predict correctly the class

of a new sample. This paper addresses this problem from

two perspectives: functional and multivariate analysis (see

Fig. 1). The free statistical software R [37] was employed

to implement the multivariate and the nonparametric

functional methods used in the present paper.

NPFDA classification methods

A nonparametric functional technique based on kernel

methods (K-NPFDA) is applied to construct a classification

rule to discriminate between the different wood species

[32]. A sample of 49 thermal analysis curves, including the

TG curves and, in general, their derivatives up to order 3

are used for this task. Using this approach, a curve is

classified as belonging to the species or the group to which

the highest posterior probability is obtained. The functional

Nadaraya-Watson kernel nonparametric method, shown in

(1), is applied. Given a new curve, x ¼ xðtÞ, obtained from

a material (wood, in this case) to classify, the estimator of

the posterior probability of belonging to a class g, with

g 2 f0; 1; . . .;Gg, is given by

r̂
g
hðxÞ ¼

Pn
i¼1 I Yi¼gf gK

x�Xik k
h

� �

Pn
i¼1 K

x�Xik k
h

� � ; ð1Þ

where the observed curves, Xi ¼ XiðtÞ, are a sample of

explanatory variables, while the response sample consists of

the observations Yi of a discrete random variable taking values

in the set {0, 1, ..., G}, the different classes. Note that in the

present study, the sample Xi; i ¼ 1; . . .; n, can represent the

TG curves or their first (DTG), second, or third derivatives.

In our research, the Gaussian kernel, K, is used. On the

other hand, the smoothing parameter, h, is chosen as the

value that minimizes the probability of misclassifying a

future observation, and it is selected according to the cross-

validation method. This method consists in minimizing the

cross-validation function:

CVðhÞ ¼ n�1
Xn

i¼1

I Yi 6¼ d�i
h
ðXiÞf g;

where d�i
h is the classification rule built up without the i-th

observation:

dhðxÞ ¼ argmax0� j�G r̂
ðjÞ
h

n o

As pointed out previously, several scripts using the free

statistical software R were written implementing these

nonparametric approaches. Additionally, some functions

belonging to fda.usc and fda R libraries [37, 38] were

also used.

Functional GAM classification method

This classification is one of the most recent classification

methods developed in the FDA field. Thus, this is the first

time that it is applied to materials science and thermal

analysis.

The categorical response variable y is estimated through

a sum of k smooth functions of the covariates X and a g

link function [39].

EðyÞ ¼ l ¼ g�1 b0 þ
Xk

j¼1

fjðXjÞ
 !

;

with Xj the columns of X and E
�
fjðXjÞ

�
¼ 0 The estimation

of the model parameters is performed using the IRLS

algorithm with backfitting steps [40]. The b parameters and

functions of the covariates, fjðXjÞ, are expressed using b-

splines basis. For more information, consult the work of

Febrero-Bande and González-Manteiga [39].

In the present case, the y-variable represents the wood

species, and the Xj-covariates can be the TG, DTG, 2DTG,

and 3DTG curves. More than one covariate or type of

curves can be used simultaneously in the model to estimate

the wood class.

As in the case of the K-NPFDA method, we have written

some code in R to implement this procedure, also using

functions of the fda.usc R library.

Wood species

TG,DtG, 2DTG and

K – NPFDA 

Funcitional
GAM

LDA

Logistic

Parameters
resulted from the

DTG fitting using a
logistic mixture

regression model

Regression

Bayes
Naïve

k – NN

SVM

NN

3DTG curves

classification

Fig. 1 Classification methods and datasets
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Multivariate classification techniques

An alternative approach to the functional method described

in the previous section consisted in discretizing the curves,

selecting some features of them, and applying a multivar-

iate classification technique. Following these lines, classi-

cal multivariate methods and machine learning approaches

were used to classify the wood samples. To perform this

analysis, we focused on the DTG curves. A new technique

for DTG curve discretization was considered. This dis-

cretization was done using the parameters resulting from

the fit of a nonlinear parametric model to the DTG curves.

The model proposed to fit the experimental data consisted

of a four term mixture of the first derivative of a general-

ized logistic function. These terms are related to the main

wood components: cellulose, hemicellulose, lignin, and

water:

xðtÞ ¼
Xn

i¼1

ci � bi � exp
�
� bi � ðt � miÞ

�

1þ si � exp
�
� bi � ðt � miÞ

�� � 1þsið Þ=si
;

ð2Þ

where the c parameter represents the mass involved in the

degradation process, b is related to the decomposition rate

or rate of change, s accounts for the asymmetry, m repre-

sents the temperature at the maximum rate of change, and t

is the temperature. The optimal fits were obtained by

minimizing the average squared error (ASE). Once these

fits and the discretization process were carried out, several

multivariate classification methods, such as LDA, Logistic

Regression, NBC, k-NN, SVM and NN, were applied.

Next, a brief description of these approaches is presented.

The first multivariate classification technique, LDA, was

proposed by Fisher [41]. This method assumes multivariate

normality and equal covariance matrices between groups. In

the context of wood classification, LDA was applied in [4].

The logistic model can be employed when the basic

LDA assumptions are not fulfilled [42]. In the context of

the present paper, it is important not to confuse the Logistic

Regression classifier with the regression model composed

of four logistic terms used to characterize the DTG curves.

The logit model is generalized to more than two popu-

lations, i.e., for qualitative response with more than two

possible levels. Denoting by G the number of different

populations, and pig the posterior probability that an

observation i belongs to the class g, then

pig ¼
expðb0g þ b01gxiÞ

1þ
PG�1

j¼1 expð�b0j � b01jxiÞ

The NBC classifier is based on the Bayes rule. This method

selects the event class or the sample as that corresponding

to the largest posterior obtained probability (that is, the

probability that a sample, X ¼ fx1; x2; . . .; xdg, belongs

to a particular class, Cj, from a group of possible classes

C ¼ fC1;C2; . . .;Ckg). Note that assuming independence

of the variables, the posterior probabilities are the

following:

pðCjjXÞ / pðCjÞ
Y

pðxkjCjÞ

The k-NN procedure is a well-known multivariate non-

parametric supervised classification method [43]. Any

parametric assumption has to be supposed for its applica-

tion. A description of this approach can be found in [10].

SVM is a machine learning multivariate method, where

the classification is done by constructing hyperplanes in a

multidimensional space that separates the cases with dif-

ferent class labels [44]. See, for example, [10] for a

description of this method.

NN is a nonlinear machine learning model based on the

structure and performance of biological neural networks

[45]. It consists of an interconnected group of artificial

neurons grouped in layers that process information. In the

special case of supervised classification, the mapping

implied by the data is inferred and the cost function, related

to the mismatch between the developed mapping and the

data, is calculated.

In our study, some functions belonging to e1071, nnet,

MASS, andkknnR libraries [37] were used to implement the

previous multivariate classification methods.

Results and discussion

This section presents the application of the methods

described in Sects. NPFDA clasification methods, Func-

tional GAM classification method, and Multivariate clas-

sification techniques. Different thermal analysis curves of a

sample of 49 wood items to classify them in different

species were used. The procedure applied to validate the

proposed classification methods was a double leave-one-

out cross-validation technique. It works by leaving out one

curve; then a model is trained with the 48 remaining curves

(using another leave-one-out process), and finally, the

model obtained is used for classifying the curve left out.

This is repeated until all the curves have been left out once

[32, 46]. Finally, the proportion of success or probability of

correct classification corresponding to each classification

method is calculated (overall and for each species). The

leave-one-out cross-validation procedure is specially suit-

able when the number of samples is small. This validation

procedure can be consulted in [10] or in [47].

Figure 2 shows the 49 TG traces corresponding to the

seven different species, seven per species, after smoothing

these curves with the nonparametric local linear estimator

[48]. Note that each legend in this figure refers to the seven

TG curves of each species. The local linear estimator is a
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particular case of the more general local polynomial esti-

mator. This is a well-known nonparametric procedure used

to estimate the mean function (or the trend) in a regression

problem. In the framework of the present paper, denoting

by fðtk; YkÞgn
k¼1, the observed values of a specific TG

curve, Yk, for several temperature levels, tk, with

k ¼ 1; 2; . . .; n, the following regression model could be

formulated:

Yk ¼ mðtkÞ þ ek; 1� k� n; ð3Þ

where ek are random errors. Our aim is ‘‘smoothing the

data’’ or, in other words, estimating the mean function

mð�Þ. With this smoothing process, we seek to eliminate the

noise of the experiment, i.e., all the variability present in

the curve that does not correspond to the experimental

conditions scheduled. Thus, the TG curves become an

almost functional relationship between mass and

temperature.

The local polynomial regression estimator consists in

locally fitting a p-degree polynomial to the observed

sample, fðtk; YkÞgn
k¼1, and it can be written as

m̂hðtÞ ¼ e01 X0tW tXt

� ��1
X0tW tY ð4Þ

where e1 ¼ ð1; 0; . . .; 0Þ0; Y ¼ ðY1; . . .;YnÞ0,

Xt ¼

1 t1 � t . . . ðt1 � tÞp

..

. ..
. ..

.

1 tn � t . . . ðtn � tÞp

2

6
6
4

3

7
7
5;

and Wt ¼ diag
n

Kððt1 � tÞ=hÞ; . . .;K
�
ðtn � tÞ=h

�o
, with

Kð�Þ a kernel function, p the degree of the local polynomial

(the local linear estimator corresponds to the case of

p ¼ 1), and h the bandwidth. Similarly to the estimator

given in (1), the bandwidth h is a very important parameter

to be selected by the user in order to obtain reliable esti-

mators. In Fig. 2, the corresponding bandwidth h was

selected using a direct plug-in method [49].

An important advantage of the local polynomial

regression estimator is that estimators of the derivatives of

the mean function can by directly obtained [48]. For

example, Fig. 3 presents the estimators of the first deriv-

ative of the TG curves (or DTG curves), calculated using

the nonparametric local polynomial model, with a second

degree polynomial, applied to the TG data. It can be

observed in Fig. 3 that the DTG signal noise, usually much

higher when numerical derivation is used than that in the

TG signal, has been attenuated to a large extent. Addi-

tionally, estimators of the DTG first and second deriva-

tives, obtained from the nonparametric model, are shown in

Figs. 4 and 5, respectively. Local polynomials of degrees 3

and 4, respectively, were used to perform these fits. Simi-

larly in Fig. 2, each legend in Figs. 3, 4, and 5 refers to the

corresponding derivatives of the seven TG curves of each

species.

In a first step, the estimated DTG curves were used to

classify the wood species, applying FDA classification

methods (K-NPFDA and GAM models), described in

Sects. NPFDA clasification methods and Functional GAM

classification method, respectively, and the multivariate

approaches, presented in Sect. Multivariate classification

techniques. Regarding the K-NPFDA technique, we have

observed that a prior smoothing of the data (with the local

100 200 300 400 500 600
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Fig. 2 The 49 smoothed TG curves using the linear local polynomial

estimator, corresponding to the 49 samples tested, seven per species

(each legend refers to the seven TG curves of each species)

100 200 300 400 500 600

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

Temperature/°C

dM
as

s/
dT

/%
/°

C

Chestnut
European oak
Insignis Pine
Scots Pine
European beech
Eucalyptus globulus
Jatobá

Fig. 3 Estimations of the 49 DTG curves or TG derivatives, using the

linear local polynomial estimator, corresponding to the 49 samples

tested, seven per species (each legend refers to the seven DTG curves

of each species)
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linear estimator and an optimal bandwidth) to estimate the

DTG curves led to a better correct classification percentage

than that obtained when the DTG curves directly provided

by the analyzer were used. Specifically, a probability of

correct classification of 78 %, using the rough data, and a

82 %, using the estimated DTG curves. On the other hand,

regarding the multivariate classification, after adjusting the

parametric model consisting of the mixture of the first

derivatives of four generalized logistic components, the

resulting parameters were scaled, that is, each column of

the feature matrix was centered and divided by its standard

deviation for matching the feature variabilities. Then, the

metric multidimensional scaling (MDS) technique was

applied to obtain descriptive information about the multi-

variate data [42]. The MDS method calculates the distance

matrix between samples. The information provided by this

matrix can be approximated by two principal coordinates

corresponding to the two largest eigenvalues of the matrix

[42]. In Fig. 6, the data structure is plotted using two

coordinates. It shows that the samples belonging to the

same species tend to be closer than the samples belonging

to different ones. All the species samples are grouped. The

results seem good, but there is some confusion between

Scots pine and insignis pine and between oak and beech. At

a first glance, it seems that the parameters properly sum-

marize the information of each curve, being useful to

identify and classify these wood species. However, this

descriptive study has to be corroborated with the results

provided by the supervised multivariate classification

methods.

Tables 1 and 2 show the percentages of correct classifi-

cation when the different approaches are used. Table 1 is

referred to the FDA classification methods (K-NPFDA and

GAM models), and Table 2 shows the results of the multi-

variate classification procedures. Note that when classifying

among the seven wood species with the estimated DTG
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Fig. 4 Estimations of the second derivatives of the 49 TG curves,
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2DTG curves of each species)
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curves, using both functional and multivariate methods, the

results are excellent. However, the multivariate methods

seem to perform better than the functional approaches,

especially SVM using a Gaussian kernel (0.92), Logistic

Regression (0.92), LDA (0.90), and NN (0.90). In general,

results in Table 2 show that it is possible to classify among

the seven studied species using these 16 parameters,

obtained from the parametric fits as original multivariate

data, jointly with the proposed classification methods. We

can say that there are differences in the mass loss rate of the

wood species and that the 16 parameters corresponding to

each DTG curve summarize correctly these differences. It is

important to note that LDA and Logistic Regression meth-

ods require a shorter computing time.

Tables 1 and 2 also show, in the first column, the results

when the smoothed TG curves were used. The best results

were obtained with the K-NPFDA and the GAM methods

(0.78, in both cases), slightly worse than using the esti-

mated DTG curves with these techniques (0.82 and 0.80,

for the K-NPFDA and the GAM procedures, respectively).

In this case, to apply the multivariate classification

approaches, the expression of the model of generalized

logistic derivatives, given in (2), was integrated, obtaining

a parametric model for the smoothed TG curves. In view of

the results presented in Tables 1 and 2, the probabilities of

correct classification using the DTG curves are always

significantly higher than those obtained for the TG curves.

In fact, as above mentioned, the DTG curves can provide

higher resolution than TG curves and thus more informa-

tion to classify the different wood species.

Functional data classification can also be done from the

successive derivatives of the DTG curves (see Table 1).

The probability of correct classification obtained from the

estimated DTG second derivatives, applying the K-NPFDA

method, is particularly high (0.90) and competitive with the

results obtained using the multivariate methods with the

DTG curves. It is interesting to observe that, in this case,

the 3DTG or mass loss acceleration rate resulted more

informative (0.90) than the DTG curves and their first

derivatives (0.82 and 0.84, respectively). In addition, the

2DTG or mass loss acceleration is more informative than

the DTG curve, while the DTG curves give more infor-

mation about the wood species than the TG curves in this

classification problem.

Functional techniques present the advantage of not

having to perform any regression model to obtain the

corresponding parameters. Note that we have not adjusted

parametric models to the first and second derivatives of the

DTG curves due to the increasing difficulty in terms of

physical interpretation and the required number of

components.

The results in Tables 1 and 2 are an indication of the

potential interest that may have the study of mass loss

acceleration and mass loss acceleration rate curves in the

field of thermal analysis; in particular, in the case of

material identification. The use of the local polynomial

regression estimator to smooth the data allows to estimate

the derivatives of the TG curves avoiding numerical deri-

vation. As a result, much of the uncontrolled variability or

noise, characteristic of the successive derivatives of TG

curves, can be removed.

The analysis of the K-NPFDA method was completed

detecting the intervals of the temperature range where this

method provided better results. To do this, 1,280 intervals

of temperatures were considered and the K-NPFDA pro-

cedure was applied in each one of them. The highest

probabilities of correct classification were obtained in the

temperature ranges of 209.1–305.1, 139.6–331.4, and

163.6–307.5 �C, when using the estimated DTG curves,

and their estimated first and the second derivatives,

respectively. The hemicellulose, cellulose, and lignin, the

three main wood components, decompose at temperatures

ranging between 200–260, 240–350, and 280–500 �C,

respectively [16, 18, 20, 22, 23, 25]. Therefore, it can be

observed that the referenced temperature ranges corre-

sponding to the decomposition of hemicellulose and cel-

lulose are the ranges where more differences among

species were found, when using the estimated DTG curves

and their first and second derivatives.

Regarding the functional GAM model, as previously

mentioned, this is a very recent FDA classification method

that can perform identification of materials using more than

one type of curves. This is the only method that is able to

Table 1 Prediction probabilities for seven different classes obtained

by each FDA classification method, using the smoothed TG curves,

and their estimated derivatives up to order 3

Methods TG DTG 2DTG 3DTG

Pred. Pred. Pred. Pred.

K-NPFDA 0.78 0.82 0.84 0.90

GAM 0.78 0.80 0.76 0.73

Table 2 Prediction probabilities for seven different classes obtained

by each multivariate classification method. The multivariate methods

are applied using the extracted features from the TG and the DTG

curves

Classification methods TG DTG

Predict. Predict.

LDA 0.76 0.90

Logistic regression 0.76 0.92

NBC 0.65 0.78

k-NN 0.71 0.78

SVM 0.65 0.92

NN 0.73 0.90
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work with more than one type of curves or functional

covariates, in addition to the functional generalized linear

model (GLM) approach [39]. Table 3 shows the results for

the GAM method when it is applied to the curve pairs TG-

DTG, TG-2DTG, TG-3DTG, and DTG-2DTG in the

interval between 200 and 400 �C. The best results are

highlighted in bold in Table 3. This is the range corre-

sponding to the hemicellulose and cellulose thermal

degradation.

Comparing the results in Tables 2 and 3, it can be

observed that higher proportions of good classification are

obtained for the GAM approach when two types of curves

are used. Thus, the TG derivatives actually add information

that the TG curves did not provide. Due to the limited

degrees of freedom (49 curves), the use, as covariates, of

three or more type of curves is not possible. It is important

to note that the GAM model provides the highest propor-

tion of correct classification, 0.92, using the TG and DTG

Table 3 Prediction probabilities for seven different classes obtained by each GAM classification method, using the smoothed TG curves, and

their estimated derivatives up to order 3

Methods TG ? DTG TG ? 2DTG TG ? 3DTG DTG ? 2DTG

Pred. Pred. Pred. Pred.

GAM 0.92 0.90 0.92 0.84

Table 4 Confusion matrix or probabilities of correct classification in seven groups, obtained with the second derivatives of the estimated DTG

curves when applying the K-NPFDA method, and using the parameters extracted from the nonlinear fitting model of the estimated DTG curves

when applying SVM and Logistic regression. The confusion matrix obtained applying the functional GAM method to the TG and DTG curves

simultaneously is also presented

Methods Estimated Actual

Chestn. Oak Insig. P. Scots P. Beech Eucal. Jat.

K-NPFDA (from DTG 2nd derivative) Chestn. 0.86 0.00 0.00 0.00 0.00 0.00 0.00

Oak 0.00 0.57 0.00 0.00 0.00 0.00 0.00

Insig. P. 0.00 0.00 1.00 0.14 0.00 0.00 0.00

Scots P. 0.00 0.00 0.00 0.86 0.00 0.00 0.00

Beech 0.00 0.29 0.00 0.00 1.00 0.00 0.00

Eucal. 0.00 0.14 0.00 0.00 0.00 1.00 0.00

Jat. 0.14 0.00 0.00 0.00 0.00 0.00 1.00

SVM (from DTG curves) Chestn. 1.00 0.00 0.00 0.00 0.00 0.00 0.14

Oak 0.00 0.86 0.00 0.00 0.00 0.00 0.00

Insig. P. 0.00 0.00 1.00 0.29 0.00 0.00 0.00

Scots P. 0.00 0.00 0.00 0.71 0.00 0.00 0.00

Beech 0.00 0.14 0.00 0.00 1.00 0.00 0.00

Eucal. 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Jat. 0.00 0.00 0.00 0.00 0.00 0.00 0.86

Log. Reg. (from DTG curves) Chestn. 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Oak 0.00 0.86 0.00 0.00 0.00 0.00 0.00

Insig. P. 0.00 0.00 1.00 0.29 0.00 0.00 0.00

Scots P. 0.00 0.00 0.00 0.71 0.00 0.00 0.14

Beech 0.00 0.14 0.00 0.00 1.00 0.00 0.00

Eucal. 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Jat. 0.00 0.00 0.00 0.00 0.00 0.00 0.86

GAM (from TG and DTG curves) Chestn. 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Oak 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Insig. P. 0.00 0.00 0.71 0.14 0.00 0.00 0.00

Scots P. 0.00 0.00 0.29 0.86 0.00 0.00 0.00

Beech 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Eucal. 0.00 0.00 0.00 0.00 0.00 1.00 0.14

Jat. 0.00 0.00 0.00 0.00 0.00 0.00 0.86
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as covariates. The addition of DTG functional covariate

increases in almost 15 % the proportion of good classifi-

cation. When the pair DTG-2DTG is used, the results are

slightly lower because of the increasing of noise in deriv-

ative estimation. The application of functional GAM

classification models could be even more useful when

applied to larger databases. This method is strongly rec-

ommended for timber classification.

Table 4 shows the confusion matrix corresponding to the

seven species, using the best multivariate and functional

methods. Looking at the diagonal of this table, all the partic-

ular class probabilities are very high. There is only a little of

confusion between oak and beech, and between Scots and

insignis pine, possibly because the physical properties of these

two pairs of wood are very similar. In the case of K-NPFDA

method, the confusion between beech and oak is relatively

high, but, apart from this case, there is almost no confusion. In

the case of functional GAM, SVM, and Logistic Regression

methods, the largest confusion occurs between the two types

of pine species, although this is relatively small. This confu-

sion obeys to its similar thermal degradation.

Conclusions

The obtained probabilities of correct classification show that

it is possible to observe differences among wood species

studying thermal stability tested by DTG. Thus, DTG is an

appropriate technique for classifying wood species.

The functional GAM model is a flexible and useful

proposal to classify wood species. The highest proportion

of correct classification, 0.92, is obtained by this method.

This is a high value compared to the results provided by

other methodologies in the wood identification field. The

GAM model permits to work simultaneously with TG

curves and their derivatives. This represents an advance

with respect to other approaches.

The functional nonparametric K-NPFDA classification

method has also been successfully applied to discriminate

among wood species. The best results were obtained when

the second derivatives of the DTG curves (0.90), related to

the wood mass loss rate, were used.

The application of local polynomial smoothing with an

optimal bandwidth significantly improved the correct

classification percentages. It removed much of the uncon-

trolled variability or characteristic noise of the successive

TG curve derivatives. As a consequence of this, we

observed that the DTG second derivative or mass loss

acceleration rate provided more information than the rest of

the thermogravimetric curves considered for classification

purposes. In addition, the DTG first derivative or mass loss

acceleration was more informative than the DTG curves,

while the DTG curves gave more information than the TG

traces, in this supervised classification problem.

Mainly, the referenced temperature intervals corre-

sponding to the decomposition of hemicellulose and cellu-

lose were the ranges where more differences among species

were found, using the DTG curves and their first and second

derivatives, when the K-NPFDA method was used.

A parametric regression model consisting of the mixture

of the first derivatives of four generalized logistic compo-

nents to fit the DTG curves and to extract some features of

these curves was proposed, obtaining very good perfor-

mance. The model is justified on the basis that there are

mainly four different degradation processes. Using these

features (represented by 16-dimensional vectors), multi-

variate classifiers such as SVM with Gaussian kernel

(0.92), NN (0.90) and Logistic Regression (0.92) produced

slightly better probabilities of correct classification than

functional methods when the DTG curves were used.

However, the K-NPFDA approach was able to give similar

results (with a shorter computing time) when the estimated

DTG second derivatives were employed.

In summary, functional nonparametric and semipara-

metric classification techniques (GAM and K-NPFDA) are

competitive if they are compared with traditional and

machine learning multivariate procedures. FDA methods

use all the information provided by the thermal curves and

can be run more quickly, avoiding the data dimension

reduction process. This makes GAM and K-NPFDA

functional methods appropriate techniques to classify wood

species using thermogravimetric data.

This paper shows a first approximation to classify wood

species using the derivatives of the TG curves and FDA

techniques. Although the sample size employed is not very

large, we can assume (based on our previous experience)

that the samples considered represent quite well the spe-

cies. Of course, in a future research, a more intensive

sampling would be possible to study the influence of sev-

eral factors on the intra-species variability. Additionally,

this work establishes a starting point that opens the possi-

bility of applying these procedures to other materials.
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Beceiro J, Artiaga R. Wood identification using pressure DSC

data. J Chem. 2013;27:475–87.

13. Wendlandt WW, Gallagher PK. Instrumentation. In: Turi EA,

editor. Recent advances in functional data analysis and related

topics. New York: Academic Press; 1981.

14. Prime RB, Bair HE, Gallagher PK, Riga A. Thermogravimetric

analysis (TGA). In: Menczel JD, Prime RB, editors. Thermal

analysis of polymers fundamentals and applications. San José:
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39. Febrero-Bande M, González-Manteiga W. Generalized additive

models for functional data. Test. 2013;22:278–92.

40. Wood S. Generalized additive models: an introduction with R.

Boca Raton: Chapman and Hall/CRC; 2006.

41. Fisher RA. The use of multiple measurements in taxonomic

problems. Ann Eugen. 1936;7:179–88.

42. Hill T, Lewicki P. Statistics methods and applications. Tulsa:

StatSoft; 2007.

43. Fix E, Hodges JL. Discriminatory analysis, nonparametric dis-

crimination: consistency properties. USAF School of Aviation

Medicine, Randolph Field, Texas Technical Report 4; 1951.

44. Vapnik V. Statistical learning theory. New York: Wiley; 1998.

45. Ripley BD. Pattern recognition and neural networks. Cambridge:

Cambridge University Press; 1996.
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