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Abstract The inclusion compounds, based on the metal-

organic frameworks (MOFs), have promising practical

application in gas storage, separation and fine purification

of substances, and also in catalysis. These MOFs are

crystalline compounds consisting of metal ions coordinated

by bridging organic ligands with the formation of porous

structures. We study the kinetic stability of the inclusion

compound: [Li2(H2btc)]�dioxane (H4btc = 1,2,4,5-ben-

zenetetracarboxylic acid, 1,4–dioxane = C4H8O2). The

connection between the kinetic stability of inclusion

compounds and the properties of the host matrix and of the

guest molecules is considered. So as the centrosymmetric

dioxane molecule can easily transform the chair confor-

mation to the bath conformation, it can have the influence

on the steric hindrance (as well as on the activation barrier)

for the guest molecules removal. Therefore, the entropy

contribution is as favorable factor, as the energetic one in

the kinetic stability of the supramolecular compounds.

Keywords Coordination compounds � Inclusion

compounds � Kinetic stability � Metal–organic

frameworks � Non-isothermal kinetics � Supramolecular

compounds

Introduction

Metal–organic coordination polymer frameworks (MOFs)

are crystalline compounds consisting of metal ions coordi-

nated by bridging organic ligands, which form one-, two-,

or three-dimensional structures that can be porous. MOFs

with rigid and open skeleton have received intense atten-

tion for their potential applications in catalysis, gas storage,

molecular recognition, high-capacity adsorbents, non-lin-

ear optics, magnetics, and bio-medical imaging. Compared

to other porous materials, MOFs provide flexibility in

choosing various combinations of linkers and metal, that

have different pore sizes, shapes, structures, and function-

alities, and can maintain the porous structure for an infi-

nitely long time [1–9]. The advantages of these materials

are the simple synthesis process and good thermal stability.

Such MOFs have become a very important topic in

hydrogen economics due to their high specific surface areas

(500–6,500 m2 g-1), low densities (0.17–1.7 g cm-3), and

tunable pores. The H2 molecules are linked via van der

Waals interactions within the host MOFs. Both experi-

mental and theoretical researches indicated that, owing to

the strong affinity of Li? for H2 molecules, H2 adsorption

capacities of MOFs can be significantly enhanced by

doping Li? into the frameworks [10–19].

The standard process of the MOF production begins

from the synthesis of the inclusion compound; the mole-

cules of the used organic solvent (dmf, benzene, thf etc.)

are caught in the channels and holes of the metal–organic

polymer structure.

These primary included guest molecules are excluded

further by the evacuation or by the heating; this process is

called the framework activation. Such polymeric matrix

with the empty pores (without the support of the included

guest molecules) can be thermodynamically or kinetically
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unstable and collapse, therefore, during the guest mole-

cules moving off. The stability both of the inclusion

compound and of the empty framework can be connected

with the linker ligand size and structure, or can depend on

the structure of the coordination polyhedron [20–22].

Therefore, the quantity estimation of the stability both of

the empty host matrix (the activated framework), and of the

primary inclusion compound are important for the evalu-

ation and the comparison properties of MOFs in the series.

We study the kinetic stability of the inclusion com-

pound: [Li2(H2btc)]�dioxane (H4btc = 1,2,4,5-benzenetet-

racarboxylic acid, 1,4–dioxane = C4H8O2). The another

inclusion compound with 1,4–dioxane: Mn(HCOO)2�
0.33dioxane was studied earlier [23].

Experimental

The synthesis and the structure study of the inclusion

compound [Li2(H2btc)]�dioxane [24]

The compound was synthesized by the interaction of

LiOH�H2O (10 mg, dissolved in 1.1 cm3 CH3OH), 1,2,4,5-

benzenetetracarboxylic acid (40 mg), and of 1,4-dioxane

(1.1 cm3) under sonication up to a slurry formation. Col-

orless octahedral crystals were filtered, washed with

0.5 mL of acetone, and heated at 80 �C during 5 h. Anal:

Calc. for C14H12Li2O10 (%): C 47.48; H 3.42. Found (%):

C 47.50; H 3.60. Elemental analysis on C and H was

performed on a Euro EA 3000 CHN Elemental Analyzer.

Single crystal X-ray diffraction data of [Li2(H2btc)]

dioxane were collected at 150 K on a Bruker Apex Duo

automatic four-circle diffractometer equipped with an area

detector (Mo-Ka, k = 0.71073 Å, graphite monochroma-

tor, u and x scans).

The asymmetric unit of [Li2(H2btc)]�dioxane contains

one Li? cation and one H2btc2- anion. Lithium cation has

tetrahedral coordination environment. Each Li? coordi-

nates four oxygen atoms of four H2btc2- ligands. The Li–O

bond lengths [1.997(2) and 1.8798(19) Å] found fall within

the common values for tetrahedral carboxylate complexes

of lithium. The lithium cations are interconnected via

bridging bidentate l2-RCOO–O,O0 groups. Consequently,

each H2btc2- anion coordinates eight Li? cations forming

3D metal–organic framework. Two carboxylate hydrogen

atoms are disordered over all four carboxylic groups of

H2btc2- anion. There are intramolecular hydrogen bonds

between neighboring carboxylate groups of H2btc2-

ligand. The metal-organic framework forms square chan-

nels (5 9 5 Å) running along the c-axis occupied by highly

disordered guest 1,4-dioxane molecules that could not be

modeled as a set of discrete atomic sites. PLATON/

SQUEEZE procedure was employed to calculate the

contribution to the diffraction from the solvent region and

thereby produced a set of solvent-free diffraction intensi-

ties. The final formula of [Li2(H2btc)]�dioxane was calcu-

lated from the SQUEEZE results (388 e per unit cell)

combined with elemental (C, H) analysis data.

Thermal analysis

TG measurements were carried out on a Netzsch thermal

analyser TG 209 F1. The experiments were performed

under a helium flow (60 cm3 min-1) at heating rates of 3,

5, 10, 20, and 40 K min-1. The sample mass was kept cca

5.0 mg.

Kinetic analysis under non-isothermal conditions

Thermogravimetric data were processed with the computer

program Netzsch Thermokinetics 2 (Version 2004.05)

[25, 26]. A special program module, ‘‘Model-free’’, based

on well-known studies [27–33], allows one to process

multiple thermogravimetric curves obtained with different

heating rates and calculate the activation energy without

preliminary information about the kinetic topochemical

equation. The Friedman method was used to calculate the

activation energies for each experimental point of frac-

tional conversion (in the range 0.005 \ a\ 0.995).

If the activation energy is variable in compliance with

the Friedman method, therefore, the decomposition process

is the multi-stage reaction.

We further used the same set of experimental data to

search for the corresponding topochemical equation (the

selection was made from 16 equations: chemical reaction at

the interface, nucleation, and diffusion). This calculation

was made by the improved differential procedure of

Borchardt–Daniels within the multiple linear regression

approach. It is very important that the range for the degree

of conversion (a) for this calculation be chosen based on

the relative constancy of the calculated kinetic parameters

from the Friedman analysis.

The F test [25] was used to search for the best kinetic

description and for statistical control of the obtained

equation. It tests the residual variance of individual models

against one another and answers the question of whether

the models differ significantly (statistically) or not. If

Fexp(1) & Fexp(2) for two equations, there is no reason to

assume the first model is better at characterizing the

experiment. The statistical quantile Fcrit is obtained for a

level of significance of 0.05.

If the calculation results in two or three kinetic equa-

tions with close values in their correlation coefficients and

on the Ftest, but with noticeably different values in kinetics

parameters, it is most correct to choose the equation with

activation energy values closest to the data from the
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‘‘Model-free’’ module program. Discrimination between

the two steps is very relative in this search for topochem-

ical equations, but it helps to find the most reliable ones.

The special program of non-linear regression is useful in

searching for a full set of kinetic parameters for multi-stage

processes. The closest fit between the activation energies

from the ‘‘Model-free’’ analysis and the non-linear

regression calculation is important from a physicochemical

point of view. Therefore, the authors of the computer

program used recommend fixing E values (obtained by

linear regression and congruent with E from the ‘‘Model-

free’’ analysis) in calculations with this program.

The random error in the activation energy values for

such a reversible decomposition reaction is usually about

10 % in these experiments, which we took into consider-

ation. The computer program Netzsch Thermokinetics 2

enables estimation of the contribution of each stage (as

Dm portion) after this non-linear regression calculation.

New studies on non-isothermal kinetics were taken into

account [34–37]; well-known recommendations for per-

forming kinetic computations on thermal analysis data [38]

were used.

There were several important assumptions and limita-

tions. The kinetic equations to calculate the kinetic

parameters are topochemical ones and the calculated

parameters (E and A) are formal and conventional from the

standpoint of the classical chemistry of solids.

However, the general trend in the variation of these

values within a specially selected series of compounds

(either isostructural or genetically related) is very impor-

tant because the expected disorder in the reaction zones can

be identical for them; all other errors will be minimized

and smoothed in such a comparison. The best series are the

coordination compounds with volatile ligands (with one

central atom and different ligands or with different central

atoms and the same ligand) or the inclusion compounds

(with the same host matrix and the different guest mole-

cules) [39–46].

The rate constant (k) and the pre-exponential factor

(A) were calculated in sec-1.

Results and discussion

The inclusion compound [Li2(H2btc)]�dioxane decomposes

in two well-defined steps (Fig. 1). The first step is the guest

molecules removal; the more is the heating rate, the less is

the dioxane removal before host matrix destruction. The

half of the included dioxane (12–14 % from 24.9 %) is

removed at experimental conditions. MOF structure dis-

torts during guest molecules removal and the residual

dioxane molecules get stuck in the collapsed channels. The

whole mass loss at 600 K after the full pyrolysis is the

same for all experiments with different heating rates.

The only way the inclusion compound can lose all

included dioxane without the framework collapse is vac-

uum pumping during several days at 90 �C.

The decomposition step at 300–500 K (Fig. 1) was

chosen for the kinetic study; it corresponds to the dioxane

removal: [Li2(H2btc)]�dioxane ? [Li2(H2btc)]�(1–n) diox-

ane ? n dioxane: (Fig. 2).

‘‘Model–free’’ data are given in Fig. 3. The activation

energy can be considered as variable in compliance with

300 400 500 600

0

20

40

60

Temperature/K

Δm
/% 1

2
3
4
5

Fig. 1 Thermal decomposition of [Li2(H2btc)]�dioxane. Sample mass

cca. 5 mg; helium flow 60 cm3 min-1. The heating rates were 3 (1),

5 (2), 10 (3) 20 (4) and 40 (5) K min-1. The first step is the inclusion

compound decomposition; the second step is the host matrix

destruction
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Fig. 2 Thermal decomposition of [Li2(H2btc)]�dioxane, TG curves

corresponding to the first mass loss step (Fig. 1). Sample mass cca

5 mg; helium flow 60 cm3 min-1. The heating rates were 3 (1), 5 (2),

20 (3) and 40 (4) K min-1
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the Friedman method; therefore, the decomposition process

is the multi-stage reaction. The best descriptions for the

process are the two-stage processes: or with the concurrent

reactions (A ? B; C ? D), or with the consecutive ones

(A ? B ? C), with the n-order equation (Fn) and the

Avrami–Erofeev equation (An) for the stages (Table 1).

The most probable estimate is two consecutive reactions

(Fig. 4):

A ? B Fn, f1(a) = (1–a)4.8, E1 = 148 ± 9 kJ mol-1,

lg A1 = 22 ± 1.

B ? C An, f2(a) = (1–a)/[–ln(1–a)]1.7, E1 = 132 ±

2 kJ mol-1, lg A2 = 13.9 ± 0.2.

Corr. coeff. = 0.999393. The time dependencies of the

yield for each reactant in the decomposition are shown in

Fig. 5. The mentioned mass loss step Dm & 12–14 % is

related to &0.5 dioxane molecule removal. The used

computer program enables estimation of the contribution of

each stage (as Dm portion) after the non-linear regression

calculation. If 0.5 dioxane molecule removal is related to

100 % of this step of decomposition, the first stage

(A ? B) corresponds to 14.9 %, the second stage (B ? C)

corresponds to 85.1 % of this decomposition step. The

approximate composition of the intermediate phase (B) is

[Li2(H2btc)]�0.4(dioxane); it is kinetically hindered meta-

stable phase.

The order n in Fn equation is big; the dispersion of the

particles is considered usually as a reason for the experi-

mental order increase [47].
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Fig. 3 Friedman analysis of [Li2(H2btc)]�dioxane thermal decompo-

sition: activation energies depending on the degree of conversion a.

Perpendicular lines SD of calculation

Table 1 [Li2(H2btc)]�(dioxane) decomposition

Fcrit Fexp Fact Equation

A ? B

Equation

B ? C

Equation

C ? D

1.09 1.00 1489 An An

1.09 1.35 1489 Fn An

1.09 1.50 1489 Fn An

1.09 1.60 1489 An Fn

1.09 3.20 1489 Fn Fn

1.09 3.36 1489 An B1

1.09 5.57 1489 An An

The used topochemical equations are Avrami-Erofeev (An), n-th

order (Fn) and Prout-Tompkins (B1) equations [25, 26]. Data on the

F test of fit quality/to identify the best kinetic description/
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Fig. 4 Data processing for thermal decomposition [Li2(H2btc)]�diox-

ane. TG curves fitting of non-linear regression, simulated with two

consecutive (A ? B ? C) reactions (equations Fn and An). The

heating rates were 3 (1), 5 (2), 20 (3) and 40(4) K min-1. The points

are the experimental data; the lines are the calculated data
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Fig. 5 Thermal decomposition of [Li2(H2btc)]�dioxane. Time depen-

dence of the yield for each reactant in the decomposition. The

calculation corresponds to two-stage consecutive processes

(A ? B ? C) in Fig. 4. The heating rate is 40 K min-1
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The Avrami–Erofeev equations describe the main

decomposition part; the equation form indicates the evident

diffusion contribution.

Conclusions

The interaction between the guest molecules and the

framework in such supramolecular compounds is generally

due to van der Waals forces. It is worth to compare the

thermal (kinetic) stability of two different inclusion com-

pounds with the same 1,4–dioxane guest molecules:

Mn HCOOð Þ2�0:33C4H8O2!Mn HCOOð Þ2þ0:33C4H8O2"

The temperature interval of the decomposition is 470–

540 K; Ea = 78 kJ mol-1; lg Aa = 6.3 [23].

Li2 H2btcð Þ½ � � nC4H8O2 ! Li2 H2btcð Þ½ � � 0:5C4H8O2

þ 0; 5C4H8O2 "

The temperature interval of the decomposition is

300–500 K; Eb = 148 kJ mol-1; lg Ab = 22.

The unusual difference between the kinetic stability

(Ta init [ Tb init, but Ea \ Eb) can be connected with the

different channels structures and the different flexibilities

of the host matrices. Mn(HCOO)2�0.33C4H8O2 structure

encloses adamantane-like cages (with an internal diameter

of 5.5 Å); they are connected to each other via small

window of 4.5 Å to form a 1D zigzag channel along the b-

axis [48]. It was shown that this structure expands during

the heating in the temperature interval 30–200 �C and

begins to decompose only after this phase transition [23,

41]; dioxane molecules leave the expanded channels rather

easily. It seems that the more rigid [Li2(H2btc)] structure

does not expand before the decomposition.

The initial temperatures of two compounds thermal

decomposition (&470 and &300 K) at the same experi-

mental conditions (10 K min-1) are the temperatures of

the achievement of the identical (one and the same) rate

constant [39, 40]. Therefore, Mn(HCOO)2�0.33dioxane

compound is more stable, if we compare the kinetic sta-

bility by the rate constants. But this high stability depends

not on the activation energy value (it is small:

Ea = 78 kJ mol-1), but on the very low value of the pre-

exponential factor (Aa = 106.3 s-1). Therefore, the great

difference in the kinetic stability for these two inclusion

compounds with the dioxane depends a lot more on the

entropy factor.

One can take into account that the centrosymmetric 1,

4–dioxane molecule has the chair conformation, but easily

transforms to the bath conformation. It will change the

steric hindrance (as well as the activation barrier) for the

guest molecules removal at the difference temperature

intervals through the different channels configurations.

It is an additional proof that the entropy contribution is

as favorable factor, as the energetic one in the kinetic

stability of the supramolecular compounds [41, 43].
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