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Abstract Physical meaning of activation energy is ana-

lyzed from the viewpoint of non-isothermal kinetic evalu-

ation. The term of heat inertia, meaning the degree of

slowness with which the temperature of a body approaches

that of its surroundings, is examined, and its impact on

activation energy determination is discussed, which is

particularly functional for a DTA peak kinetic appraisal.

Impact of a process equilibrium background on kinetics is

recollected as specifically important for Kissinger kinetic

evaluation distinguishing competent case of glass cold

crystallization on heating but unsuitable for melt crystal-

lization on cooling without introducing additional ther-

modynamic terms. Parallel to non-Arrhenian kind of

kinetics, an analogous model-free description is advocated

accentuating a generalized approach by logistic functions.
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In their recent paper [1], Svoboda and Málek criticized the

applicability of popular Kissinger equation [2, 3] which is

an excellent article but falls to those in which a certain

continuity is reflected toward a never ending story how to

determine some publishable numerical figures. Regrettably,

we are witnessing situation when scientists are too busy

with administration having thus not enough time to get

familiar with previous views. Let me remind some of its

history accentuating my own experience with chasing

specifies of activation energy, abbreviated as E. In my first

public lecture [4], in the middle of sixties, I already pointed

out that the E value may not stay constant when taking into

account the mutual interdependence of pre-exponential

factor with its exponential term (E), latter called kinetic

compensation effect [5, 6] ). It has not become fully

accepted in the kinetic literature [7] as yet while still

deciphering variously shared relations often incorporating

changes in the reaction mechanism. Ten years later [8], I

noticed that the standing practice of kinetic evaluation of a

DTA peak involves certain inadequacy when deriving

kinetic parameters [7] because there does not exist a

desired match between the maximum values of the tem-

perature difference (DTA peak profile) and of the associ-

ated reaction rate. Therefore, an experimental method how

to approve such a DTA appraisal by inserting a well-

defined Joule process was investigationally introduced

[10]. Though the ensuing call for an indispensable rectifi-

cation of any DTA peak prior its kinetic exploitation was

published in a distinguished journal [9], it has stayed away

from an appropriate attention until now [11, 12]. It means

that there is negligence to neither the change of existing

long-lasting practice nor its revolt by impediments toward

a readily available kinetic software approving thus an

impression that no one ever listens to the other that is

understandable in the overwhelming information world

which brought instead autonomy: confusion.

Similar philosophy has been persisting in another

important but yet overlooked issue, which is the conse-

quence of proximity to equilibrium, i.e., the effect of pro-

cess equilibrium background [13–15], effecting again the

value of resultant E. It is closely linked with the mathe-

matical procedures, namely integration [16] of the basic
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e-mail: sestak@fzu.cz

123

J Therm Anal Calorim (2014) 117:3–7

DOI 10.1007/s10973-014-3810-7

http://dx.doi.org/10.1007/s10973-013-3486-4
http://dx.doi.org/10.1007/s10973-013-3486-4
http://dx.doi.org/10.1007/s10973-013-3486-4
http://dx.doi.org/10.1007/s10973-013-3486-4


kinetic equation and a prior determination of the so-called

constitutive equation [17]. A number of these kinetic dif-

ficulties [18, 19] were thoroughly analyzed [20–23], but

thermoanalysts are still holding on their established prac-

tices specialized more and less on the numerical accuracy

than on the data reliability.

Let us return to the everlasting commentary on the

Kissinger evaluation method [1–3]. Its foundation is based

on the historical treaty by Murray and White [24], the

mathematical background of which was historically ana-

lyzed in detail elsewhere [25, 26]. The Kissinger method

has received as many as 4,500 citation responses [26] and

was revised and modified numerously, noting just this

JTAC journal during past thirty years (from [27] to [28]),

which received again countless literature quotations [26].

Various adaptations were mostly directed to the availability

of various mathematical models of reaction mechanism

[29, 30] being concluded that the entire models are not that

much responsible to the yielding value of E [31]. No one,

however, took attention to the method origin [2, 3] trying to

locate where and how this kinetic evaluation was born

indicative thus of true conditions for the shift of a DTA

peak apex with an increasing heating rate. The original

derivation of Kissinger formula [2, 3] did not account on

the consequence of heat inertia, which is inherent in the

buildup of any DTA peak [10–12]. Triggered disparity

between the seeking maximum of reaction rate and the

associated upper limit (apex) of a DTA peak prevails over

other numerical errors arising from various mathematical

adjustments. The implementation of a resourceful view to

the DTA theory was thoroughly revealed in detail in our

previous papers [11, 12]. It again shows the lack of

attention to the area under actual discussion though

appearing in our previous papers [9, 32] markedly accepted

in other topics of investigation [33–39] being recognized as

a general tendency of substances to resist temperature

changes (especially acknowledged as a thermocouple

thermal inertia effect [33, 34]). For example, thermal

inertia has been long purposeful to environmental studies

[35, 36], buildings [37], and material science [38]. Various

dictionaries counsel the term thermal inertia as a measure

of the receptiveness of a material to differences in tem-

perature which can be referred to as a kind of volume-

specific heat capacity capable to circumscribe the facility

of a given substance to penetratingly accumulate internal

energy (physically proportional to a square root of the

product of material density, specific heat capacity, and

thermal conductivity) [39]. Another definition points on the

degree of slowness with which the temperature of a body

approaches that of its surroundings.

Thermal inertia was well treated in the paper by Vold

[40] (preceding Kissinger [3] by almost ten years) and

consequently particularized for kinetics by Blumberg [41].

Ignoring the papers [9–12, 32] and even the books [42–45]

where this effect was revealed is a sign of reluctance or

better laziness to adapt to new ideas. Moreover, it is not

only heat inertia distortion involved in DTA measurements

but also there appears another trouble due to the determi-

nation of reaction temperature when a gradient distribution

exists in the solid sample. Early fifties, it was already

noticed by Smyth [46], mathematically specified in [11]

and practically elaborated toward a use of averaged tem-

perature in [47].

Certainly, there are more yet undecided particularities in

the application of Kissinger method [2, 3, 12, 48, 49] the

mathematics of which is valid only for a process transfer

from its non-equilibrium state to equilibrium one [15]

which is the most common case of glass crystallization.

Such a process of ‘‘cold’’ crystallization begins immedi-

ately as the freeze-in and ready-to-grow nuclei start

growing upon heating, because they are already present as

a product of the previous process of melt cooling. This,

however, is not true for a process of melt crystallization

upon cooling where together with the melt undercooling

the nuclei are first forced to begin with their formation

which occurrence needs a certain nucleation energy (E) to

emerge. Such a term will possibly contain some other

thermodynamic data as the change of formation enthalpy

(f), DHr, driving force (undercooling), DTr, attuned to the

reduced (r) temperatures Tr = T/To (most common

approximations being DHr Tr/(DTr)
2 and/or DHr/(DTr Tr)

2)

which would become a part of the (apparent) activation

energies. Associated mathematical derivation makes,

however, the resulting equation rather complicated [48,

49]. Certainly, there is yet another mathematical approach,

which can be perceptibly anticipated to all transformation

processes following the departure from equilibrium [15]

where the classical Kissinger plot cannot be straightfor-

wardly applied [49]. In the case of interaction between

kinetics and proximity to equilibrium [13, 18, 19], the

meaning of E becomes doubtful [50–54].

A special issue of kinetics encompasses illimitable

predicaments associated with a popular subject of

exploration focused on finding a suitable representation

of reaction mechanism of solid-state processes, where the

boundlessly derived mathematical models [55–57] are

based on geometrical portrayal of certain theoretical

ideas about the reaction pathway. It describes the evo-

lution of degree of reaction within the framework of an

identifiable f(a)-expression often including non-integral

or better fractal exponents [56–59] thus capable to

upgrade the impact of reaction non-homogeneity in a

relation to classical homogeneous reactions (where

f(a) = (1 - a)n and n = 1, 2, and 3 are the so-called

reaction orders as employed in the Kissinger original

derivation [3]). Hence, we can speak about distorted
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cases of simpler/ideal models becoming suitable to

describe more complex situation of spatial/heterogeneous

reactions where a supplementary added function, am, can

undertake a role of accommodation [60] for variously

defect/imperfect states. Inaugurating thus a simple

logistic equation (1 - a)n am [31, 59] where the a-term

keeps going for the process advancement while the term

with (1 - a) accounts the process proceeding only in

that reacting part that is not yet transformed. In other

words [56], this means mortality (am describing reactant

disappearance and the product formation) and the com-

plementary fertility [for a reactant still ready to react in

response of (1 - a)n]. In this fashion, it bears a logical

justification for any process though having no straight

correlation to a particular reaction mechanism [54–60]

which anyhow is usually off the confirmation by direct

complementary observations (microscopy). For a specific

case of nucleation-growth models [55–57], am stays

interchanged by {-ln (1 - a]}p which, however, sound

strange concerning the logic of reaction progress [31].

Nevertheless, it can be opportunely expended to a series

then transformable back to a kind of am -function. There

are attempts to mathematically correlate variously termed

equations each other [55], but it seems pointless as the

particular models [56, 57] are more and less suited for

publication often microscopically uncorrelated. Like the

escalation of non-Arrhenian kinetics [61], we can well

proceed with an analogous model-free description of the

reaction mechanism merely based on logistic functions

[31] though being a ‘‘non-prototype’’ (purely phenome-

nological) execution. This idea can be promoted by

studying reactions under a rate-controlled mode [62]

which can facilitate diminishing undesired temperature

gradients [46] (auxiliary distorting the trial for mecha-

nism resolution.)

We should imagine that other alternating physical–

chemical approaches [61–65] can be anticipated to be taken

operational into our kinetic conservative contemplation.

Mathematical custom of a habitual application of an

exponential term can be substituted by another premise

[7, 61] which, certainly, would require a more patient

approach of scientists in reading previous and simultaneous

papers on similar, even historically recognized, subjects.

We should become ready to question the traditional

meaning of E as a broadly expedient quantity [51–53, 63],

the determination of which still seems to prevail in eval-

uations of kinetic behavior of solid-state process [56, 57]

presumptuous of the Maxwell–Boltzmann energy distri-

bution applicable as a possible explanation for the Arrhe-

nius-type temperature dependence analogous to the

electronic energy distribution at the impurity levels in

semiconductor interfaces [7, 57]. In the historical recol-

lection of kinetic papers, many values of so-far published

E [48, 49, 63] can stay numerically erroneous but that does

not deteriorate the scientific level of reports. However, I am

almost convinced that my notification of such widespread

inadequacies will not bring applause from the conformist

readers because it would factually imply that copious

articles [26] concerning E determination would mean the

inclusion of incorrect data [49].

In conclusion we can pronounce that the amalgamation

of heat inertia effect into our everyday thermal analysis

kinetics [9–12, 45] would revolutionize not only its

enduring practice [66] but also built-in philosophy [18]

changing both the consequence of the of DTA apex dis-

position [12, 48, 49] and the values of entire degree of

reaction customarily derived by the partitioning of DTA

peak area, see Fig. 1., early introduces in [25, 26, 67] and

widely applied to the kinetic appraisal on almost all DTA

figures [21, 42, 44, 45, 55, 57]. To our delight, we found

that there appeared a new tentative attempt to put the

otherwise assumed hear inertia (as time leg) into the

computer evaluation practice [68] - let us follow these

motivation examples [9, 68] though having been thirty

At

Apl

At

Aph

as–measured
DTA peak

as–measured
DTA peak as–measured

DTA peak

maxima shift

heat–inertia
corrected
DTA peak

thermal inertia
compensation curve

Fig. 1 Gradual refinements applied on an explicatory DTA peak (:x-

axis is the recorded temperature deviation, DT, and the ?y-axis

settles time, t). Left linearly interpolated peak background where At is

the peak total area and Apl is the partitioned area (providing the

traditional value of degree of reaction as apl % Apl/ At). Middle

incorporation of the heat inertia term (& dDT/dt) which causes the

s-shaping of peak background while the total peak area, At, is

preserved but altering the partitioned area, Aph (changing thus to the

factual value of degree of reaction to aph % Aph/At , because Aph =

Apl). Right comparison of the original (as-cased instrumentally) and

mathematically rectified (incorporating thermal inertia) peaks (nor-

malized to the same linear background) displaying that both the peak

inner areas, At, are preserved identical (calorimetry) but changing the

shape and position (kinetics) of rectified peak
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years apart [9, 68] and comprehending dissimilar

approaches.
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Heat transfer and phase transition at DTA experiments. Chapter 5

in book thermal analysis of Micro-, nano- and non-crystalline

materials. Berlin: Springer; 2013. p. 99–134.
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lesná. Publishing house of the Slovak Technical University,

Bratislava; 2005. p. 3–17.
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