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Abstract Nanocomposite copper chromite spinel was

fabricated by sol–gel process using copper nitrate trihy-

drate, chromium nitrate nonahydrate, ethylene glycol,

diethyl ether, and citric acid. The thermoanalytical mea-

surements (TG–DTG), X-ray powder diffractometry

(XRD), field emission scanning electron microscopy (FE-

SEM), and energy dispersive X-ray analysis were used to

characterize the structural and the chemical features of the

nanocomposites. TG–DTG results showed that the major

mass loss for copper(II) nitrate, chromium(III) nitrate as

precursors occur at 258 and 140 �C, respectively. The

major mass loss for dried gel of copper chromite occurs at

310 �C. XRD data revealed the formation of pure copper

chromite after thermal decomposition at 1,000 �C for 2 h.

The observation of XRD patterns reveals the presence of

single-phase tetragonal spinel CuCr2O4. FESEM analysis

of calcined composite was found to be in the range of

20–30 nm.
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Introduction

Semiconductor-based nanocomposites are remarkable

because of their prospective applications [1–10]. Chromite

is a main mineral of chromium, and in Iran it is found in

Balochestan and Kerman provinces with about 40 % Cr2O3

and a chrome-to-iron ratio of 2.6:1 [11–14]. Spinels with

the general formula of AB2O4, where A and B are cations

occupying tetrahedral and octahedral sites, respectively,

which A is a divalent and B is a trivalent cations [15–18].

Spinel copper chromite (CuCr2O4) is a narrow band

semiconductor used as catalysts for oxidation of carbon

monoxide. Different methods are reported for the synthesis

of chromite spinels including wet chemical process and

micro emulsion processes. Among these methods sol–gel

process is a cost-effective which operates at low tempera-

tures and more environmental friendly [19–21]. Previously,

we have reported the thermal preparation of semiconductor

metal oxides [22–24]. Different methods have also been

reported to prepare chromites include [25]. Evaluation of

cation influence on the formation of M(II)Cr2O4 during the

thermal decomposition of mixed carboxylate type precur-

sors have been reported [11]. Nanocomposite of chromites

has been synthesized by thermal decomposition of pre-

cursors [26–29].

The aim of the present study was to develop an envi-

ronmental friendly sol–gel route to prepare nanosized

copper chromite spinel. Moreover, their structural and

physical properties were characterized by TG–DTG, X-ray

powder diffractometry (XRD), field emission scanning

electron microscopy (FESEM), and energy dispersive

X-ray analysis (EDAX) techniques.

Experimental

Materials and methods

Copper nitrate trihydrate, Cu(NO3)2�3H2O (2 mmol) and

chromium nitrate nonahydrate, Cr(NO3)3�9H2O (4 mmol)

were dissolved in 20 mL distilled water. To the above
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solution, ethylene glycol (1 mL) and diethyl ether (1 mL)

were added and continued stirring. Citric acid (4 mmol)

was added to this solution with the molar ratio of citric acid

to the Cu of 2:1. After stirring for 30 min, the pH of the

solution was adjusted to pH 7.0 by slowly dropping

ammonia and continued stirring for 1 h. A homogeneous

sol solution was formed which was aged for 1 week at

room temperature. The temperature of the obtained stable

sol was raised to 70 �C with continued stirring to evaporate

the solvent, and the solution turned into high-viscous gel.

The gel was then kept at 135 �C for 2 h to allow the Cu–

Cr–citric xerogel to form. The xerogel was ignited in air

using a few drops of ethanol 96 % as initiating combustion

agent. The obtained powder was calcined in air at tem-

peratures ranging from 1,000 �C for 2 h. Figure 1 shows a

flow chart of the complete steps sol–gel preparation of

nanocomposite copper chromite spinels.

Thermal studies

The thermoanalytical measurements (TG–DTG) study for

the thermal decomposition of copper nitrate, chromium

nitrate, and dried copper chromite sol were carried out with

using a Mettler TA4000 system at a heating rate of

10 �C min-1. Air at 20 mL min-1 was used as purge gas.

X-ray diffraction

Copper chromite nanoparticles were characterized by XRD

analysis using X-ray diffractometer (D8 Advance, BRU-

KER) in the diffraction angle range 2h = 20�–60�, using

Cu Ka radiation. The crystallite size D of the sample was

estimated using the Scherer’s equation, (0.9k)/(bcosh), by

measuring the line broadening of main intensity peak,

where k is the wavelength of Cu Ka radiation, b is the full

width at half-maximum, and h is the brag’s angle.

Field emission scanning electron microscopy

Field emission scanning electron microscopy (FE-SEM,

Hitachi, model S-4160) was used to observe the surface

morphology of the zinc oxide nanoparticles.

Results and discussion

Thermal investigation

The decomposition mechanism of the Cu(NO3)2�3H2O,

Cr(NO3)3�9H2O precursors, copper chromite xerogel pre-

cursor, and the formation of their oxides was studied by

thermal analysis. The TG–DTG of copper nitrate, chro-

mium nitrate precursors, and copper chromite xerogel

precursor powders are shown in Figs. 2, 3, and 4. The mass

loss from room temperature to about 600 �C was 76, 62,

and 84 % in the chromium nitrate nonahydrate, copper

nitrate trihydrate, and copper chromites, respectively. As

shown in Fig. 2 two distinct mass loss centered on 105 and

140 �C are observed for Cr(NO3)3�9H2O as precursors.

Figure 3 shows the TG/DTG curves of Cu(NO3)2�3H2O as

precursor. A relative mass loss of 10.0 % is observed at

115 �C attributed to the loss of adsorbed water. At 152 �C

Cu(NO3)2·3H2O (0.5 g)

Ethylene glycol with diethyl
ether (1 mL)

Citric acid (0.875 g)

Dissolved in 20 mL distilled
water with stirring

Dropping ammonia until

Dark sol aging @ r.t for 1 week

Evaporate the solvent @ 70 °C

Xerogel annealing @ 1000 °C 

Gel dry @ 135 °C for 2 h 

to PH 7.0

Cr(NO3)3·9H2O (1.658 g)

for 2 h 

Fig. 1 Flow chart for preparation of CuCr2O4 nanocomposites
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Fig. 2 TG and DTG curves of Cu(NO3)2�3H2O as precursor
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a large mass loss of 15.3 % is observed. A final mass loss is

observed at 258 �C of 40.2 %. Figure 4 shows the TG/

DTG curves of died gel for CuCr2O4 precursor. The DTG

peak max at 310 �C can be attributed to the decomposition

of nitrates and phase transformation to the complete crys-

tallization of copper chromite (CuCr2O4).

X-ray and structural investigation

Figure 5 shows the XRD patterns for copper chromite

precursor annealed at 1,000 �C. The xerogel powder is a

mixture of amorphous substances and citrate crystals. The

XRD patterns of the as burnt powder and powder calcined

at 1,000 �C reveal a single phase spinel CuCr2O4 (PDF No.

34-0424). The XRD pattern shows peaks 18.6 (101), 29.6
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Fig. 4 TG/DTG curves for dried gel of CuCr2O4 nanocomposites

using Cu(NO3)2�3H2O and Cr(NO3)3�9H2O as precursors with mol

ratio 1:2 dried at 70 �C
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Fig. 5 XRD pattern of CuCr2O4 nanocomposite prepared using

Cu(NO3)2�3H2O and Cr(NO3)3�9H2O as precursors with mol ratio 1:2

annealed at 1,000 �C

Fig. 6 FESEM image of CuCr2O4 nanocomposite prepared using

Cu(NO3)2�3H2O and Cr(NO3)3�9H2O as precursors with mol ratio 1:2

annealed at 1,000 �C
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Fig. 7 EDAX of CuCr2O4 nanocomposite prepared using

Cu(NO3)2�3H2O and Cr(NO3)3�9H2O as precursors with mol ratio

1:2 annealed at 1,000 �C
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(200), 31.1 (112), 35.2 (211), 42.3 (220), 53.4 (312), 56.2

(321), 61.4 (400), 64.8 (411), and 74.4 (422). The dif-

fraction peaks matched the standard data for CuCr2O4

(PDF No. 34-0424).

FESEM analysis

Figure 6 depicts the FESEM micrographs of the powders

calcined at 1,000 �C. The micrograph in Fig. 6 shows the

formation of powder consisting of octahedral-like structure

particles with an average particle size of 20 nm [30].

EDAX spectrum (Fig. 7) corresponding to the single phase

spinel CuCr2O4 calcined at 700 �C indicate the presence of

elements Cu, Cr, O in the samples, which further confirms

the spinel phase CuCr2O4. The EDAX peaks at 1 and 2 eV

are assigned to O and Cu.

Conclusions

The nanocrystalline form of copper chromite was fabri-

cated successfully using a simple, sol–gel method. The

influence of calcination temperature on properties was

investigated by XRD, FESEM, and TG–DTG. The particle

size about 20 nm was formed when the calcination tem-

perature was 1,273 K. EDAX was used to characterize the

composition of the samples, and it confirmed the presence

of Cu, Cr, and O in the sample. For the first time, we

fabricated copper chromite nanoparticles by a simple

method. The method can be extended to the fabrication of

other spinel chromite nanoparticles of interest in

nanotechnology.
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