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Abstract Quantitative structure property relationship

models for the speed of sound in liquids are developed

based on molecular descriptors. A large dataset of 1,470

experimental data of speed of sound in 73 liquids is applied

to derive the model. Twelve descriptors are selected by

genetic function approximation to relate the speed of sound

in liquids to their corresponding chemical structures. To

capture the nonlinear nature of speed of sound in liquids, a

model based on least-squared supported vector machine is

also developed. The derived models are authenticated with

several statistical validation techniques.
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Introduction

Speed of sound (u) is one of the important parameters in both

acoustics as well as thermodynamics. Speed of sound and

density are noticeable thermodynamic properties owing to

their high level of experimental accuracy, which is at least

one order of magnitude higher than the other quantities.

Density is conventionally employed for the sake of model-

ing; however, recently attentions have been altered to the

speed of sound regarding to the significant development of

the rigorous measuring protocols in a wide array of temper-

ature and pressure in fluid state. Quick and highly accurate

measurement protocols for the speed of sound make it a

reliable quantity to estimate other thermodynamic properties

with high precision. All observable thermodynamic proper-

ties of a fluid phase can be directly obtained from the speed of

sound by integration of partial differential equations which

relate it with the other thermodynamic properties. This pro-

cedure offers promising predictions over conventional direct

approaches owing to high accurate acoustic data.

In liquids, applying speed of sound data aligned with (p,

q, T) data would offer an alternative approach to determine

heat capacities instead of calorimetric method:
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Also, the combination of speed of sound with (p, q, T) data

is the promising experimental way to determine the heat-

capacity ratio c and the isentropic compressibility js of

pure liquids:

Electronic supplementary material The online version of this
article (doi:10.1007/s10973-013-3465-9) contains supplementary
material, which is available to authorized users.

Y. Bagheri-Chokami

Department of Chemical Engineering, South Tehran Branch,

Islamic Azad University, Tehran, Iran

N. Farahani

Department of Chemistry, Buinzahra Branch, Islamic Azad

University, Buinzahra, Iran

S. A. Mirkhani � P. Ilani-Kashkouli � F. Gharagheizi (&)

Department of Chemical Engineering, Buinzahra Branch,

Islamic Azad University, Buinzahra, Iran

e-mail: fghara@ut.ac.ir; fghara@gmail.com

P. Ilani-Kashkouli � F. Gharagheizi � A. H. Mohammadi

Thermodynamics Research Unit, School of Engineering,

University of KwaZulu-Natal, Howard College Campus, King

George V Avenue, Durban 4041, South Africa

A. H. Mohammadi (&)

Institut de Recherche en Génie Chimique et Pétrolier (IRGCP),

Paris Cedex, France

e-mail: a.h.m@irgcp.fr

123

J Therm Anal Calorim (2014) 116:529–538

DOI 10.1007/s10973-013-3465-9

http://dx.doi.org/10.1007/s10973-013-3465-9


Table 1 Predicted speed of sound values in studied liquids by GFA model

No. Family AARD/% Temperature range/K crep./pred.(linear) range/m s-1 N

1 1,1-Difluoroethane 31.2 278.00–298.80 430.09–525.54 3

2 1-Chlorohexane 19.6 293.15–373.15 704.57–1,047.36 12

3 1-Chlorononane 12.0 293.15–373.15 849.04–1,191.84 17

4 1-Hydroxyhexane 5.4 293.00–573.00 367.46–1,377.31 20

5 1-Iodoheptane 9.3 293.15–373.15 890.29–1,233.08 17

6 2,2,4-Trimethylhexane 2.0 243.00–313.00 1,040.40–1,366.57 15

7 2,3,4-Trimethylpentane 8.9 233.00–313.00 970.67–1,346.15 17

8 2,4-Dimethylpentane 3.2 233.00–313.00 960.11–1,335.59 17

9 2,5-Dimethylhexane 1.4 243.00–313.00 1,040.91–1,367.08 15

10 2-Hydroheptafluoropropane 9.2 293.22–373.99 71.90–417.74 18

11 2-Methylhexane 1.1 243.00–313.00 1,022.95–1,349.12 15

12 3-Bromohexane 12.2 213.00–523.00 358.12–1,613.04 10

13 3-Chloroheptane 15.1 233.00–473.00 395.33–1,391.34 9

14 HFC-365mfc 13.0 298.15–423.15 196.65–708.91 8

15 R-14 7.3 95.10–200.10 449.95–1,032.21 20

16 R-143a 13.7 288.11–344.04 147.03–393.17 15

17 Acetonitrile 1.4 240.00–470.04 602.23–1,553.78 27

18 Ammonia 7.1 200.20–270.00 1,467.87–1,813.45 15

19 Benzene 4.1 283.00–523.00 407.19–1,321.68 34

20 Bromobenzene 11.5 273.00–623.00 183.00–1,409.65 34

21 Butan-2-ol 9.8 183.00–503.00 491.18–1,840.93 24

22 Butane 5.7 199.79–360.00 681.08–1,425.54 19

23 Carbon dioxide 8.6 217.03–277.50 635.21–929.59 18

24 Cetane 3.0 293.15–368.15 1,103.38–1,426.02 7

25 Chlorotrimethylsilane 14.9 301.00–313.00 979.77–1,033.32 2

26 Cyclohexane 20.8 292.85–536.45 145.22–1,054.16 18

27 Diethyl ether 32.6 362.00–362.00 902.81–902.81 1

28 dl-2-Pentanol 5.2 293.00–543.00 366.03–1,293.16 17

29 Ethane 12.2 91.00–275.00 719.37–1,695.46 63

30 Ethyl silicon trichloride 18.7 499.00–507.00 72.08–97.13 2

31 Ethylbenzene 4.9 193.00–593.00 253.43–1,804.76 41

32 Formamide, N,N-dimethyl- 25.1 303.15–318.15 1,031.04–1,097.61 3

33 Freon 134a 2.0 294.80–328.10 362.77–510.36 8

34 Freon 160 30.0 259.15–285.15 712.78–834.96 12

35 Heptane 3.9 193.00–513.15 300.25–1,628.72 43

36 Hexane, 1-iodo- 8.6 293.15–373.15 850.31–1,193.11 17

37 Hexane, 2,2-dimethyl- 1.5 243.00–313.00 1,030.71–1,356.88 15

38 Hexane, 3-methyl- 2.3 243.00–313.00 1,020.41–1,346.58 15

39 Isooctane 4.0 233.00–313.00 1,056.74–1,432.22 17

40 Methane 9.5 91.00–160.00 1,043.18–1,436.17 48

41 Methanol 32.1 374.00–393.20 537.11–612.80 2

42 Methylbenzene 2.1 193.00–493.00 535.11–1,800.51 25

43 n-Butyl alcohol 6.1 193.00–533.00 399.49–1,787.41 27

44 n-Decane 7.7 313.15–593.15 193.54–1,165.06 15

45 n-Docosane 3.9 333.00–473.00 835.31–1,368.76 15

46 n-Dodecane 12.3 393.15–633.15 157.86–892.78 13

47 n-Hexane 3.6 183.00–473.15 374.57–1,627.84 40

48 n-Octane 4.4 313.15–533.15 283.73–1,091.91 12
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At higher pressures, (p, q, T) measurements are much more

difficult and in this region sound speed measurements in

liquids are probably of the greatest value [1].

Table 1 continued

No. Family AARD/% Temperature range/K crep./pred.(linear) range/m s-1 N

49 n-Propane 8.8 90.00–325.21 689.03–1,897.45 49

50 n-Tetracosane 5.1 333.00–473.00 868.69–1,402.15 15

51 n-Tricosane 4.3 333.00–473.00 849.94–1,383.40 15

52 Nitrogen, diatomic 23.8 63.30–85.00 1,038.45–1,169.61 11

53 Nonane 7.8 323.00–578.00 198.70–1,088.07 22

54 Octamethylcyclotetrasiloxane 6.5 293.11–439.64 448.21–1,043.00 18

55 Oxygen 5.8 58.00–134.88 640.90–1,093.94 106

56 Pentafluoro(trifluoromethyl)benzene 21.2 293.00–353.00 450.37–711.60 4

57 Pentafluoroethane 10.2 293.10–335.50 139.74–326.85 7

58 Pentan-1-ol 5.0 293.00–553.00 377.80–1,333.18 23

59 Pentane 9.5 153.00–433.00 459.07–1,735.20 15

60 Pentane, 2,3-dimethyl- 1.1 233.00–313.00 1,045.09–1,420.56 16

61 Pentane, 2-methyl- 0.6 233.00–313.00 978.29–1,353.77 17

62 Pentane, 3-methyl- 1.5 233.00–313.00 987.60–1,363.08 17

63 Perfluoro-3-methyl-2-pentene 21.9 323.15–363.15 212.21–380.89 3

64 Perfluoroheptane 10.0 363.15–423.15 168.34–400.98 4

65 Perfluoroisononane 14.9 413.15–513.15 78.35–418.53 6

66 Perfluorooctane 15.2 383.15–483.15 80.33–440.89 6

67 Propene 3.9 88.00–281.70 978.80–2,003.91 44

68 Silane, dichlorodimethyl- 20.1 528.00–556.00 55.03–135.29 7

69 Trichloromonofluoromethane 9.4 162.68–457.72 129.00–1,439.19 158

70 Undecane 10.5 393.15–613.15 175.59–864.21 12

71 Water 22.8 452.57–646.47 369.05–914.90 11

72 Water-d2 20.9 578.22–643.23 376.07–532.05 7

Table 2 Model’s descriptors

Item Descriptor Definition Class Reference

1 AAC Mean information index on atomic composition Information indices [25]

2 Yindex Balaban Yindex Information indices [26]

3 SPH Spherosity Geometrical descriptors [27]

4 Mor13m Signal 13/weighted by mass 3D-MoRSE descriptors [28]

5 E2v 2nd component accessibility directional WHIM index/weighted by van der Waals

volume

WHIM descriptors [29]

6 Ds D total accessibility index/weighted by I-state WHIM descriptors [29]

7 HATS1m Leverage-weighted autocorrelation of lag 1/weighted by mass GETAWAY descriptors [30]

8 RTp R total index/weighted by polarizability GETAWAY descriptors [30]

9 nRCN Number of nitriles (aliphatic) Functional group counts –

10 nHDon Number of donor atoms for H-bonds (N and O) Functional group counts –
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In this communication, the quantitative structure prop-

erty relationship (QSPR) methodology [2–8] is success-

fully applied for prediction of u for a wide array of liquids

at the broad spectrum of temperatures.

Methodology

Data preparation

In this study, a comprehensive dataset of speed of sound

comprising 1,470 data belongs to 73 liquids in a wide range

of temperature (58–646.47 K) was extracted from Ther-

moData Engine [9]. In terms of reliability as well as the

critical evaluation of the experimental data, ThermoData

Engine would be one of the most promising options to

collect experimental data.

Training and test set selection

Typically, in QSPR modeling, the compiled experimental

database is split into two subsets: training set which is

involved in model development and the test set used to assess

the learning ability of the model from training set to produce

reliable results for absent compounds. In this study, K-means

clustering is applied to select training and test sets. K-means

clustering is a method of cluster analysis, which aims to

partition n observations into k clusters in which each

observation belongs to the cluster with the nearest mean. As

the rule of thumb, 20 % of collecting data was retained to test
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Fig. 1 Predicted speed of sound values by GFA model versus the
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Fig. 2 Deviation of the predicted speed of sound by GFA model

from experimental data
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Fig. 3 Predicted speed of sound values by LSSVM model versus the

experimental ones
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Fig. 4 Deviation of the predicted speed of sound by LSSVM model

from experimental data
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Table 3 Predicted speed of sound values in studied liquids by LSSVM model

No. Family AARD/% Temperature range/K crep./pred. range/m s-1 N

1 1,1-Difluoroethane 31.2 278.00–298.80 430.09–525.54 3

2 1-Chlorohexane 19.6 293.15–373.15 704.57–1,047.36 12

3 1-Chlorononane 12.0 293.15–373.15 849.04–1,191.84 17

4 1-Hydroxyhexane 5.4 293.00–573.00 367.46–1,377.31 20

5 1-Iodoheptane 9.3 293.15–373.15 890.29–1,233.08 17

6 2,2,4-Trimethylhexane 2.0 243.00–313.00 1,040.40–1,366.57 15

7 2,3,4-Trimethylpentane 8.9 233.00–313.00 970.67–1,346.15 17

8 2,4-Dimethylpentane 3.2 233.00–313.00 960.11–1,335.59 17

9 2,5-Dimethylhexane 1.4 243.00–313.00 1,040.91–1,367.08 15

10 2-Hydroheptafluoropropane 9.2 293.22–373.99 71.90–417.74 18

11 2-Methylhexane 1.1 243.00–313.00 1,022.95–1,349.12 15

12 3-Bromohexane 12.2 213.00–523.00 358.12–1,613.04 10

13 3-Chloroheptane 15.1 233.00–473.00 395.33–1,391.34 9

14 HFC-365mfc 13.0 298.15–423.15 196.65–708.91 8

15 R-14 7.3 95.10–200.10 449.95–1,032.21 20

16 R-143a 13.7 288.11–344.04 147.03–393.17 15

17 Acetonitrile 1.4 240.00–470.04 602.23–1,553.78 27

18 Ammonia 7.1 200.20–270.00 1,467.87–1,813.45 15

19 Benzene 4.1 283.00–523.00 407.19–1,321.68 34

20 Bromobenzene 11.5 273.00–623.00 183.00–1,409.65 34

21 Butan-2-ol 9.8 183.00–503.00 491.18–1,840.93 24

22 Butane 5.7 199.79–360.00 681.08–1,425.54 19

23 Carbon dioxide 8.6 217.03–277.50 635.21–929.59 18

24 Cetane 3.0 293.15–368.15 1,103.38–1,426.02 7

25 Chlorotrimethylsilane 14.9 301.00–313.00 979.77–1,033.32 2

26 Cyclohexane 20.8 292.85–536.45 145.22–1,054.16 18

27 Diethyl ether 32.6 362.00–362.00 902.81–902.81 1

28 dl-2-Pentanol 5.2 293.00–543.00 366.03–1,293.16 17

29 Ethane 12.2 91.00–275.00 719.37–1,695.46 63

30 Ethyl silicon trichloride 18.7 499.00–507.00 72.08–97.13 2

31 Ethylbenzene 4.9 193.00–593.00 253.43–1,804.76 41

32 Formamide, N,N-dimethyl- 25.1 303.15–318.15 1,031.04–1,097.61 3

33 Freon 134a 2.0 294.80–328.10 362.77–510.36 8

34 Freon 160 30.0 259.15–285.15 712.78–834.96 12

35 Heptane 3.9 193.00–513.15 300.25–1,628.72 43

36 Hexane, 1-iodo- 8.6 293.15–373.15 850.31–1,193.11 17

37 Hexane, 2,2-dimethyl- 1.5 243.00–313.00 1,030.71–1,356.88 15

38 Hexane, 3-methyl- 2.3 243.00–313.00 1,020.41–1,346.58 15

39 Isooctane 4.0 233.00–313.00 1,056.74–1,432.22 17

40 Methane 9.5 91.00–160.00 1,043.18–1,436.17 48

41 Methanol 32.1 374.00–393.20 537.11–612.80 2

42 Methylbenzene 2.1 193.00–493.00 535.11–1,800.51 25

43 N-butyl alcohol 6.1 193.00–533.00 399.49–1,787.41 27

44 n-Decane 7.7 313.15–593.15 193.54–1,165.06 15

45 n-Docosane 3.9 333.00–473.00 835.31–1,368.76 15

46 n-Dodecane 12.3 393.15–633.15 157.86–892.78 13

47 n-Hexane 3.6 183.00–473.15 374.57–1,627.84 40

48 n-Octane 4.4 313.15–533.15 283.73–1,091.91 12

Estimating speed of sound in liquids 533

123



the model and the remaining was applied for model deriva-

tion [10]. For LSSVM model derivation, 80-10-10 % of data

points split into training-validation-test sets, respectively.

This selection like the previous one is performed by k-means

clustering.

Calculation of descriptor

Prior to the descriptor calculation, the optimization of 3D

structures of present compounds is required. The well-

known Dreiding Force field [11] implemented by Chema-

xon’s JChem software was applied to optimize 3D structures

in this study. About 3,000 descriptors from 22 diverse classes

of descriptors are calculated by Dragon software [12]. These

22 classes of descriptors are Constitutional descriptors,

Topological indices, Walk and path counts, Connectivity

indices, Information indices, 2D autocorrelations, Burden

Eigen values, Edge-adjacency indices, Functional group

counts, Atom-centered fragments, Molecular properties,

topological charge indices, Eigenvalue-based indices, Ran-

dic molecular profiles, geometrical descriptors, RDF

descriptors, 3D-MORSE descriptors, WHIM descriptors,

GETAWAY descriptors, charge descriptors, 2D binary fin-

gerprint, and 2D frequency finger print.

Descriptors that could not be calculated for a compound

are excluded completely from the list. Next, the pair cor-

relation for each binary group of descriptors is performed.

For correlation greater than 0.9, one of the descriptors is

omitted randomly.

Subset variable selection

Genetic function approximation (GFA) was successfully

implemented for subset variable selection in this study.

GFA originally developed by Rogers and Hopfinger [13] is

the fusion of two seemingly distinctive algorithms: multi-

variate adaptive regression splines algorithm [14] and

genetic algorithm [15]. One of the promising features of the

GFA is to evolve a series of models instead of one model. In

addition, by utilizing the Friedman’s LOF scoring function

in GFA, derived models are prone to overfitting with better

predictions. In this study, population and the number of

maximum generations are set to 100 and 5,000,

Table 3 continued

No. Family AARD/% Temperature range/K crep./pred. range/m s-1 N

49 n-Propane 8.8 90.00–325.21 689.03–1,897.45 49

50 n-Tetracosane 5.1 333.00–473.00 868.69–1,402.15 15

51 n-Tricosane 4.3 333.00–473.00 849.94–1,383.40 15

52 Nitrogen, diatomic 23.8 63.30–85.00 1,038.45–1,169.61 11

53 Nonane 7.8 323.00–578.00 198.70–1,088.07 22

54 Octamethylcyclotetrasiloxane 6.5 293.11–439.64 448.21–1,043.00 18

55 Oxygen 5.8 58.00–134.88 640.90–1,093.94 106

56 Pentafluoro(trifluoromethyl)benzene 21.2 293.00–353.00 450.37–711.60 4

57 Pentafluoroethane 10.2 293.10–335.50 139.74–326.85 7

58 Pentan-1-ol 5.0 293.00–553.00 377.80–1,333.18 23

59 Pentane 9.5 153.00–433.00 459.07–1,735.20 15

60 Pentane, 2,3-dimethyl- 1.1 233.00–313.00 1,045.09–1,420.56 16

61 Pentane, 2-methyl- 0.6 233.00–313.00 978.29–1,353.77 17

62 Pentane, 3-methyl- 1.5 233.00–313.00 987.60–1,363.08 17

63 Perfluoro-3-methyl-2-pentene 21.9 323.15–363.15 212.21–380.89 3

64 Perfluoroheptane 10.0 363.15–423.15 168.34–400.98 4

65 Perfluoroisononane 14.9 413.15–513.15 78.35–418.53 6

66 Perfluorooctane 15.2 383.15–483.15 80.33–440.89 6

67 Propene 3.9 88.00–281.70 978.80–2,003.91 44

68 Silane, dichlorodimethyl- 20.1 528.00–556.00 55.03–135.29 7

69 Trichloromonofluoromethane 9.4 162.68–457.72 129.00–1,439.19 158

70 Undecane 10.5 393.15–613.15 175.59–864.21 12

71 Water 22.8 452.57–646.47 369.05–914.90 11

72 Water-d2 20.9 578.22–643.23 376.07–532.05 7
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respectively. The value of mutation probability is set to 1.5

in this study. To study the nonlinear nature of speed of

sound, the LSSVM is also practiced for the sake of model

derivation.

Result and discussion

Linear model

The final linear model derived by GFA for estimation of

speed of sound in liquids contains 12 descriptors as

follows:

c¼ 1564:5671 �15:2855ð Þ� 6:5480 �0:1143ð ÞT
þ 0:0034 �0:0001ð ÞT2þ 438:7373 �12:9701ð ÞAAC

þ 12:8962 �2:2292ð ÞYindexþ 455:4282 �12:5541ð ÞSPH

� 336:8196 �7:5202ð ÞMor13mþ 432:8956 �22:0591ð ÞE2v

� 504:0771 �16:3251ð ÞDs� 837:9355 �25:5316ð ÞHATS1m

þ 69:1189 �1:6293ð ÞRTpþ 635:6081 �20:0058ð ÞNRCN

þ 193:9080 �6:4533ð ÞnHDon

ð7Þ

R2 ¼ 0:949; R2
adj ¼ 0:948; nTraining ¼ 1176; nTest ¼ 294;

F ¼ 21652:59; Q2 ¼ 0:938; Q2
boot ¼ 0:948; Q2

ext ¼ 0:952

aðR2Þ ¼ �0:019; DK ¼ 0:974; DQ ¼ 0;

Rp ¼ 0; RN ¼ 0:996

Table 1 demonstrates the GFA predicted values of speed of

sounds in the studied liquids (u is in m s-1 unit). The

definitions of molecular descriptors in Eq. 7 are enlisted in

Table 2. Figure 1 illustrates the predicted speed of sound

values versus experimental data. As it can be seen, the

majority of points are located in the vicinity of the bisec-

tion of graph. This indicates the reasonable agreement

between GFA predicted values versus experimental ones.

Relative deviations of GFA predicted values from experi-

mental data are depicted in Fig. 2.

Nonlinear model

For the sake of nonlinear modeling, LSSVM was suc-

cessfully implemented in this study. LSSVM is a member

of large machine-learning family namely support vector

machine (SVM) which profoundly based on the seeking of

an optimal separating hyperplane to minimize expected

generalization error in the feature space. The detailed

Table 4 Statistical parameters of LSSVM model

Statistical parameter

Training set

R2a 0.999

Average absolute relative deviationb 0.4

Standard deviation errorc 13.27

Root mean square errord 13.27

Ne 1,158

Validation set

R2 0.998

Average absolute relative deviation 0.6

Standard deviation error 18.09

Root mean square error 18.03

N 144

Test set

R2 0.998

Average absolute relative deviation 0.5

Standard deviation error 17.33

Root mean square error 17.46

N 144

Total

R2 0.999

Average absolute relative deviation 0.5

Standard deviation error 14.27

Root mean square error 14.27

N 1,446

a R2 ¼ 1�
PN
i¼1

Calc: ið Þ�Exp: ið Þð Þ2
Calc: ið Þ�Average Exp: ið Þð Þð Þ2

b % AAD ¼ 100
N�n

PN
i¼1

Calc ið Þ�ExpðiÞj j
ExpðiÞ

c Std ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðCalc: ið Þ � Average Calc: ið Þð Þ2
s

d RMSE ¼
PN

i¼1
calc: ið Þ�Exp: ið Þð Þ2

n

� �1
2

e Number of experimental data

n Number of model parameters
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Fig. 5 Williams graph of the developed model
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mathematical explanation of the optimization problem

treated by LSSVM approach is not provided here and can

be found in detail in mentioned references [16–18]. To

implement the original SVM algorithm to handle nonlinear

problem, radial basis function is defined as the kernel

function. The objective of the definition of the kernel

function is to map the data into the higher dimensional

feature space in order to increase computational power.

The simulated annealing optimization method is actuated

to find the proper combination of the LSSVM parameters,

namely (c, r2) considering the minimum mean squared

error of leave-one-out (LOO) cross-validation of the

training set as the optimal condition. The twelve descrip-

tors selected for linear model by GFA were introduced as

inputs to LSSVM for the nonlinear model derivation. The

obtained parameters of the final model are described as

follows: c = 14649.98, r2 = 0.5602.

Figure 3 shows the LSSVM predicted values versus the

experimental speeds of sound. As it is vividly clear in this

figure, the great improvement of prediction is achieved by

employing LSSVM instead of GFA. Besides, deviation of

predicted LSSVM values from experimental ones is

depicted in Fig. 4. The significant reduction of deviation of

predicted values by LSSVM model in comparison with

GFA model is apparent in this figure. Table 3 demonstrates

the LSSVM predicted values of speed of sounds in the

studied liquids. Statistical parameters of LSSVM model are

enlisted in Table 4.

Applicability domain (AD) [19]

To test the reliability of the predicted responses, the AD of

the derived model is investigated. AD is a theoretical

spatial domain defined by molecular descriptors as well as

by both training and test sets. The AD objective is to

investigate whether the test and training sets share the same

domain or not. This is crucial since prediction outside of

the AD might be erroneous.

In this study, Williams graph generated from Hat indices

is used to investigate AD. Hat indices are calculated based

on Hat matrix (H) with the following definition:

H ¼ XðXTXÞ�1
XT; ð8Þ

where X is a two-dimensional matrix comprising n com-

pounds (rows) and k descriptors (columns). The diagonal

elements of H are leverages or hat values (hi) of the

chemicals in the descriptor space.

Williams graph shows the correlation of hat values and

standardized cross-validated residuals (R). A warning

leverage (h* = 0.0337)—blue vertical line—is generally

fixed at 3n/p, where n is number of training compounds and

p is the number of model variables plus one. The leverage

of 3 is considered as a cutoff value to accept the points that

lay ±3 (two horizontal red lines) standard deviations from

the mean (to cover 99 % normally distributed data).

The AD is located in the region of 0 B h B 0.0337 and

-3 B R B ?3. The prediction within this region is con-

sidered valid. As it is clearly illustrated in this figure, the

majority of test and training compounds are located in this

region. There are 24 points that wrongly predicted by the

model (3 \ R or R \ -3), however, their hat values lie in

the domain of AD. This erroneous prediction could prob-

ably be attributed to wrong experimental data rather than

the molecular structure [20]. Figure 5 depicts the Williams

graph of the studied model.

The absolute relative deviation is defined as follows:

Table 5 Validation techniques

Item Validation technique Interpretation Numerical

value

Reference

1 R2 Its high value suggests the reliability of the model 0.9486 –

2 F test Its high value suggests the reliability of the model 21,652.59 [31]

3 Q2 Statistical parameter of well-known internal validation technique namely leave one

out (LOO). Its closeness to the R2 suggests the model is reliable

0.9484 [32]

4 R2
adj

Its closeness to the R2 suggests the reliability of the model 0.9485 [32]

5 RQK Satisfying four proposed constraints guarantees that the model is prone to being a

chance correlation. To insure model reliability, all the four constraints should have

values equal or greater than zero

RP ¼ 0 [17, 33–

36]
RN ¼ 0:996

DK ¼ 0:974

DQ ¼ 0

6 Boot strap ðQ2
BootÞ Its closeness to the R2 suggests the reliability of the model 0.9482 [37]

7 Y-Scrambling (a) Examine the immunity of the model to the chance correlation by studying the model

response to the shuffled prediction set. Near zero values of a reflecting nonchance

correlation

-0.019 [38]

8 External validation

technique ðQ2
extÞ

Its closeness to the R2 suggests the reliable model 0.952 [39]
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ARD% ¼ 1

Np

� �XNp

i¼1

cexp � ccalc

cexp

����
����; ð9Þ

where Np is the number of total points. The GFA-driven

model shows that for 72 studied liquids the mean ARD %

is 10.4 % with maximum deviation of 34.2 %.The highest

error associated with GFA model belongs to water at

T = 452.57. However, this point is located at the wrongly

predicted area with the high chance of being wrong

experimental data. 32.7 % of the estimated speed of sound

was within absolute deviation of 0.00–3.00 %, 19.9 % was

within 3.001–6.00 %, 16.5 % was within 6.001–10.00 %,

8.2 % was within 10.001–13.00 %, and only 11.1 % was

within 13.001–20 % and 11.6 % was within 20.1–34.2 %.

The results obtained by the nonlinear model present that

98.4 % of the estimated speeds of sounds were within

absolute deviation of 0.00–3.00 %, and merely 1.6 % of

the predicted value have the error higher than 3 %.

The applied validation techniques as well as their

interpretations are shown in Table 5. The readers can find

the detailed statistical procedures of the mentioned tech-

niques from previous works of the authors [2, 7, 8, 18, 21–24].

The results of validation techniques indicate that the derive

model is not only an accurate one but also prone to being a

chance-correlated model.

Conclusions

In the light of highly accurate measurement protocols, the

application of speed of sound to correlate thermodynamic

properties of liquids received many attentions in the recent

decade. The ease of measurement as well as highly precise

mensuration make speed of sound a reliable option to

replace arduous (p, q, T) measurement at high pressures.

Despite its broad applications, there is no study conducted

on the prediction of speed of sounds in liquid.

Originally, in this communication a robust twelve-

parameter QSPR model is introduced to estimate speed of

sounds of 73 liquids at wide range of temperatures. GFA is

applied for subset variable selection as well linear model

derivation. For the sake of more accurate modeling as well as

studying the nonlinearity of the speed of sound, LSSVM

approach is also practiced to develop a nonlinear model. The

results of LSSVM modeling reveal significant improvement

of prediction power as well as substantial reduction of pre-

dicted values deviation from experimental ones.

For the sake of the investigation of the model reliability,

AD of the model is also studied. The presence of the

majority of both training and test sets data in the AD

generated by Williams graph authenticates the validity of

the predictions. Besides, Analysis based on AD of the

derived model and LSSVM (0 B h B 0.0337 and R [ 3 or

\ -3) implies that reported experimental data for 24 data

points are ambiguous and need modification. By the aid of

derived model parameters as well as its AD, the reliability

of the experimental data could be analyzed to find flawed

data points. Moreover, the reliability and predictive capa-

bility of the model are adequately scrutinized by various

statistical validation techniques. The results of validation

techniques pronounced that the model is stable and accu-

rate and is immune of chance correlation. Predicted speed

of sounds by both GFA and LSSVM model for studied data

points as well as corresponding model descriptors values

are provided as supplementary information.
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